pub struct SparsePolyRingBase<R: RingStore> { /* private fields */ }Expand description
The univariate polynomial ring R[X]. Polynomials are stored as sparse vectors of
coefficients, thus giving improved performance in the case that most coefficients are
zero.
Unless polynomials are very sparse, crate::rings::poly::dense_poly::DensePolyRing will provide better performance.
§Example
let ZZ = StaticRing::<i32>::RING;
let P = SparsePolyRing::new(ZZ, "X");
let x10_plus_1 = P.add(P.pow(P.indeterminate(), 10), P.int_hom().map(1));
let power = P.pow(x10_plus_1, 10);
assert_eq!(0, *P.coefficient_at(&power, 1));This ring has a CanIsoFromTo to dense_poly::DensePolyRingBase.
let ZZ = StaticRing::<i32>::RING;
let P = SparsePolyRing::new(ZZ, "X");
let P2 = DensePolyRing::new(ZZ, "X");
let high_power_of_x = P.pow(P.indeterminate(), 10);
assert_el_eq!(P2, P2.pow(P2.indeterminate(), 10), &P.can_iso(&P2).unwrap().map(high_power_of_x));Trait Implementations§
Source§impl<R, P> CanHomFrom<P> for SparsePolyRingBase<R>where
R: RingStore,
R::Type: CanHomFrom<<P::BaseRing as RingStore>::Type>,
P: ImplGenericCanIsoFromToMarker,
impl<R, P> CanHomFrom<P> for SparsePolyRingBase<R>where
R: RingStore,
R::Type: CanHomFrom<<P::BaseRing as RingStore>::Type>,
P: ImplGenericCanIsoFromToMarker,
Source§type Homomorphism = <<<SparsePolyRingBase<R> as RingExtension>::BaseRing as RingStore>::Type as CanHomFrom<<<P as RingExtension>::BaseRing as RingStore>::Type>>::Homomorphism
type Homomorphism = <<<SparsePolyRingBase<R> as RingExtension>::BaseRing as RingStore>::Type as CanHomFrom<<<P as RingExtension>::BaseRing as RingStore>::Type>>::Homomorphism
Source§fn has_canonical_hom(&self, from: &P) -> Option<Self::Homomorphism>
fn has_canonical_hom(&self, from: &P) -> Option<Self::Homomorphism>
from -> self, returns Some(data), where
data is additional data that can be used to compute the action of the homomorphism
on ring elements. Otherwise, None is returned.Source§fn map_in(
&self,
from: &P,
el: P::Element,
hom: &Self::Homomorphism,
) -> Self::Element
fn map_in( &self, from: &P, el: P::Element, hom: &Self::Homomorphism, ) -> Self::Element
Source§fn map_in_ref(
&self,
from: &S,
el: &S::Element,
hom: &Self::Homomorphism,
) -> Self::Element
fn map_in_ref( &self, from: &S, el: &S::Element, hom: &Self::Homomorphism, ) -> Self::Element
Source§fn mul_assign_map_in(
&self,
from: &S,
lhs: &mut Self::Element,
rhs: S::Element,
hom: &Self::Homomorphism,
)
fn mul_assign_map_in( &self, from: &S, lhs: &mut Self::Element, rhs: S::Element, hom: &Self::Homomorphism, )
rhs, and multiplies the result to lhs.Source§fn mul_assign_map_in_ref(
&self,
from: &S,
lhs: &mut Self::Element,
rhs: &S::Element,
hom: &Self::Homomorphism,
)
fn mul_assign_map_in_ref( &self, from: &S, lhs: &mut Self::Element, rhs: &S::Element, hom: &Self::Homomorphism, )
rhs, taking it by reference, and multiplies the result to lhs.Source§fn fma_map_in(
&self,
from: &S,
lhs: &Self::Element,
rhs: &S::Element,
summand: Self::Element,
hom: &Self::Homomorphism,
) -> Self::Element
fn fma_map_in( &self, from: &S, lhs: &Self::Element, rhs: &S::Element, summand: Self::Element, hom: &Self::Homomorphism, ) -> Self::Element
summand + lhs * rhs, where rhs is mapped into the ring via the homomorphism.Source§impl<R1, R2> CanHomFrom<SparsePolyRingBase<R1>> for SparsePolyRingBase<R2>
impl<R1, R2> CanHomFrom<SparsePolyRingBase<R1>> for SparsePolyRingBase<R2>
Source§type Homomorphism = <<R2 as RingStore>::Type as CanHomFrom<<R1 as RingStore>::Type>>::Homomorphism
type Homomorphism = <<R2 as RingStore>::Type as CanHomFrom<<R1 as RingStore>::Type>>::Homomorphism
Source§fn has_canonical_hom(
&self,
from: &SparsePolyRingBase<R1>,
) -> Option<Self::Homomorphism>
fn has_canonical_hom( &self, from: &SparsePolyRingBase<R1>, ) -> Option<Self::Homomorphism>
from -> self, returns Some(data), where
data is additional data that can be used to compute the action of the homomorphism
on ring elements. Otherwise, None is returned.Source§fn map_in_ref(
&self,
from: &SparsePolyRingBase<R1>,
el: &SparsePolyRingEl<R1>,
hom: &Self::Homomorphism,
) -> Self::Element
fn map_in_ref( &self, from: &SparsePolyRingBase<R1>, el: &SparsePolyRingEl<R1>, hom: &Self::Homomorphism, ) -> Self::Element
Source§fn map_in(
&self,
from: &SparsePolyRingBase<R1>,
el: <SparsePolyRingBase<R1> as RingBase>::Element,
hom: &Self::Homomorphism,
) -> Self::Element
fn map_in( &self, from: &SparsePolyRingBase<R1>, el: <SparsePolyRingBase<R1> as RingBase>::Element, hom: &Self::Homomorphism, ) -> Self::Element
Source§fn mul_assign_map_in(
&self,
from: &S,
lhs: &mut Self::Element,
rhs: S::Element,
hom: &Self::Homomorphism,
)
fn mul_assign_map_in( &self, from: &S, lhs: &mut Self::Element, rhs: S::Element, hom: &Self::Homomorphism, )
rhs, and multiplies the result to lhs.Source§fn mul_assign_map_in_ref(
&self,
from: &S,
lhs: &mut Self::Element,
rhs: &S::Element,
hom: &Self::Homomorphism,
)
fn mul_assign_map_in_ref( &self, from: &S, lhs: &mut Self::Element, rhs: &S::Element, hom: &Self::Homomorphism, )
rhs, taking it by reference, and multiplies the result to lhs.Source§fn fma_map_in(
&self,
from: &S,
lhs: &Self::Element,
rhs: &S::Element,
summand: Self::Element,
hom: &Self::Homomorphism,
) -> Self::Element
fn fma_map_in( &self, from: &S, lhs: &Self::Element, rhs: &S::Element, summand: Self::Element, hom: &Self::Homomorphism, ) -> Self::Element
summand + lhs * rhs, where rhs is mapped into the ring via the homomorphism.Source§impl<R, P> CanIsoFromTo<P> for SparsePolyRingBase<R>where
R: RingStore,
R::Type: CanIsoFromTo<<P::BaseRing as RingStore>::Type>,
P: ImplGenericCanIsoFromToMarker,
impl<R, P> CanIsoFromTo<P> for SparsePolyRingBase<R>where
R: RingStore,
R::Type: CanIsoFromTo<<P::BaseRing as RingStore>::Type>,
P: ImplGenericCanIsoFromToMarker,
Source§type Isomorphism = <<<SparsePolyRingBase<R> as RingExtension>::BaseRing as RingStore>::Type as CanIsoFromTo<<<P as RingExtension>::BaseRing as RingStore>::Type>>::Isomorphism
type Isomorphism = <<<SparsePolyRingBase<R> as RingExtension>::BaseRing as RingStore>::Type as CanIsoFromTo<<<P as RingExtension>::BaseRing as RingStore>::Type>>::Isomorphism
Source§fn has_canonical_iso(&self, from: &P) -> Option<Self::Isomorphism>
fn has_canonical_iso(&self, from: &P) -> Option<Self::Isomorphism>
from -> self, and this homomorphism
is an isomorphism, returns Some(data), where data is additional data that
can be used to compute preimages under the homomorphism. Otherwise, None is
returned.Source§impl<R1, R2> CanIsoFromTo<SparsePolyRingBase<R1>> for SparsePolyRingBase<R2>
impl<R1, R2> CanIsoFromTo<SparsePolyRingBase<R1>> for SparsePolyRingBase<R2>
Source§type Isomorphism = <<R2 as RingStore>::Type as CanIsoFromTo<<R1 as RingStore>::Type>>::Isomorphism
type Isomorphism = <<R2 as RingStore>::Type as CanIsoFromTo<<R1 as RingStore>::Type>>::Isomorphism
Source§fn has_canonical_iso(
&self,
from: &SparsePolyRingBase<R1>,
) -> Option<Self::Isomorphism>
fn has_canonical_iso( &self, from: &SparsePolyRingBase<R1>, ) -> Option<Self::Isomorphism>
from -> self, and this homomorphism
is an isomorphism, returns Some(data), where data is additional data that
can be used to compute preimages under the homomorphism. Otherwise, None is
returned.Source§fn map_out(
&self,
from: &SparsePolyRingBase<R1>,
el: Self::Element,
iso: &Self::Isomorphism,
) -> SparsePolyRingEl<R1>
fn map_out( &self, from: &SparsePolyRingBase<R1>, el: Self::Element, iso: &Self::Isomorphism, ) -> SparsePolyRingEl<R1>
el under the canonical homomorphism from -> self.Source§impl<R: RingStore> Debug for SparsePolyRingBase<R>
impl<R: RingStore> Debug for SparsePolyRingBase<R>
Source§impl<R> DivisibilityRing for SparsePolyRingBase<R>
impl<R> DivisibilityRing for SparsePolyRingBase<R>
Source§fn checked_left_div(
&self,
lhs: &Self::Element,
rhs: &Self::Element,
) -> Option<Self::Element>
fn checked_left_div( &self, lhs: &Self::Element, rhs: &Self::Element, ) -> Option<Self::Element>
x such that rhs * x = lhs, and
returns it if it exists. Read moreSource§type PreparedDivisorData = ()
type PreparedDivisorData = ()
Source§fn divides_left(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool
fn divides_left(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool
x such that rhs * x = lhs.
If you need such an element, consider using DivisibilityRing::checked_left_div(). Read moreSource§fn divides(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool
fn divides(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool
DivisibilityRing::divides_left(), but requires a commutative ring.Source§fn checked_div(
&self,
lhs: &Self::Element,
rhs: &Self::Element,
) -> Option<Self::Element>
fn checked_div( &self, lhs: &Self::Element, rhs: &Self::Element, ) -> Option<Self::Element>
DivisibilityRing::checked_left_div(), but requires a commutative ring.Source§fn is_unit(&self, x: &Self::Element) -> bool
fn is_unit(&self, x: &Self::Element) -> bool
Source§fn balance_factor<'a, I>(&self, _elements: I) -> Option<Self::Element>
fn balance_factor<'a, I>(&self, _elements: I) -> Option<Self::Element>
Source§fn prepare_divisor(&self, _: &Self::Element) -> Self::PreparedDivisorData
fn prepare_divisor(&self, _: &Self::Element) -> Self::PreparedDivisorData
Source§fn checked_left_div_prepared(
&self,
lhs: &Self::Element,
rhs: &Self::Element,
_rhs_prep: &Self::PreparedDivisorData,
) -> Option<Self::Element>
fn checked_left_div_prepared( &self, lhs: &Self::Element, rhs: &Self::Element, _rhs_prep: &Self::PreparedDivisorData, ) -> Option<Self::Element>
DivisibilityRing::checked_left_div() but for a prepared divisor. Read moreSource§fn divides_left_prepared(
&self,
lhs: &Self::Element,
rhs: &Self::Element,
_rhs_prep: &Self::PreparedDivisorData,
) -> bool
fn divides_left_prepared( &self, lhs: &Self::Element, rhs: &Self::Element, _rhs_prep: &Self::PreparedDivisorData, ) -> bool
DivisibilityRing::divides_left() but for a prepared divisor. Read moreSource§fn is_unit_prepared(&self, x: &PreparedDivisor<Self>) -> bool
fn is_unit_prepared(&self, x: &PreparedDivisor<Self>) -> bool
DivisibilityRing::is_unit() but for a prepared divisor. Read moreSource§impl<R> EuclideanRing for SparsePolyRingBase<R>
impl<R> EuclideanRing for SparsePolyRingBase<R>
Source§fn euclidean_div_rem(
&self,
lhs: Self::Element,
rhs: &Self::Element,
) -> (Self::Element, Self::Element)
fn euclidean_div_rem( &self, lhs: Self::Element, rhs: &Self::Element, ) -> (Self::Element, Self::Element)
Source§fn euclidean_deg(&self, val: &Self::Element) -> Option<usize>
fn euclidean_deg(&self, val: &Self::Element) -> Option<usize>
EuclideanRing.Source§impl<R> PartialEq for SparsePolyRingBase<R>where
R: RingStore,
impl<R> PartialEq for SparsePolyRingBase<R>where
R: RingStore,
Source§impl<R> PolyRing for SparsePolyRingBase<R>where
R: RingStore,
impl<R> PolyRing for SparsePolyRingBase<R>where
R: RingStore,
Source§type TermsIterator<'a> = TermIterator<'a, R>
where
Self: 'a
type TermsIterator<'a> = TermIterator<'a, R> where Self: 'a
PolyRing::terms().Source§fn indeterminate(&self) -> Self::Element
fn indeterminate(&self) -> Self::Element
X generating this polynomial ring.Source§fn terms<'a>(&'a self, f: &'a Self::Element) -> TermIterator<'a, R> ⓘ
fn terms<'a>(&'a self, f: &'a Self::Element) -> TermIterator<'a, R> ⓘ
Source§fn add_assign_from_terms<I>(&self, lhs: &mut Self::Element, rhs: I)
fn add_assign_from_terms<I>(&self, lhs: &mut Self::Element, rhs: I)
Source§fn coefficient_at<'a>(
&'a self,
f: &'a Self::Element,
i: usize,
) -> &'a El<Self::BaseRing>
fn coefficient_at<'a>( &'a self, f: &'a Self::Element, i: usize, ) -> &'a El<Self::BaseRing>
f that corresponds to the monomial X^i.Source§fn degree(&self, f: &Self::Element) -> Option<usize>
fn degree(&self, f: &Self::Element) -> Option<usize>
f, i.e. the value d such that f can be written as
f(X) = a0 + a1 * X + a2 * X^2 + ... + ad * X^d. Returns None if f is zero.Source§fn div_rem_monic(
&self,
lhs: Self::Element,
rhs: &Self::Element,
) -> (Self::Element, Self::Element)
fn div_rem_monic( &self, lhs: Self::Element, rhs: &Self::Element, ) -> (Self::Element, Self::Element)
rhs. Read moreSource§fn mul_assign_monomial(&self, lhs: &mut Self::Element, rhs_power: usize)
fn mul_assign_monomial(&self, lhs: &mut Self::Element, rhs_power: usize)
X^rhs_power.Source§fn truncate_monomials(
&self,
lhs: &mut Self::Element,
truncated_at_inclusive: usize,
)
fn truncate_monomials( &self, lhs: &mut Self::Element, truncated_at_inclusive: usize, )
lhs by X^truncated_at_inclusive.Source§fn map_terms<P, H>(&self, from: &P, el: &P::Element, hom: H) -> Self::Element
fn map_terms<P, H>(&self, from: &P, el: &P::Element, hom: H) -> Self::Element
el
under the given homomorphism. Read moreSource§impl<R> PrincipalIdealRing for SparsePolyRingBase<R>
impl<R> PrincipalIdealRing for SparsePolyRingBase<R>
Source§fn checked_div_min(
&self,
lhs: &Self::Element,
rhs: &Self::Element,
) -> Option<Self::Element>
fn checked_div_min( &self, lhs: &Self::Element, rhs: &Self::Element, ) -> Option<Self::Element>
DivisibilityRing::checked_left_div() this computes a “quotient” q
of lhs and rhs, if it exists. However, we impose the additional constraint
that this quotient be minimal, i.e. there is no q' with q' | q properly and
q' * rhs = lhs. Read moreSource§fn extended_ideal_gen(
&self,
lhs: &Self::Element,
rhs: &Self::Element,
) -> (Self::Element, Self::Element, Self::Element)
fn extended_ideal_gen( &self, lhs: &Self::Element, rhs: &Self::Element, ) -> (Self::Element, Self::Element, Self::Element)
g of the ideal (lhs, rhs)
as g = s * lhs + t * rhs. Read moreSource§fn ideal_gen(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element
fn ideal_gen(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element
g of the ideal (lhs, rhs) = (g), also known as greatest
common divisor. Read moreSource§fn annihilator(&self, val: &Self::Element) -> Self::Element
fn annihilator(&self, val: &Self::Element) -> Self::Element
Source§fn create_elimination_matrix(
&self,
a: &Self::Element,
b: &Self::Element,
) -> ([Self::Element; 4], Self::Element)
fn create_elimination_matrix( &self, a: &Self::Element, b: &Self::Element, ) -> ([Self::Element; 4], Self::Element)
A of unit determinant such that A * (a, b)^T = (d, 0).
Returns (A, d).Source§fn ideal_gen_with_controller<Controller>(
&self,
lhs: &Self::Element,
rhs: &Self::Element,
_: Controller,
) -> Self::Elementwhere
Controller: ComputationController,
fn ideal_gen_with_controller<Controller>(
&self,
lhs: &Self::Element,
rhs: &Self::Element,
_: Controller,
) -> Self::Elementwhere
Controller: ComputationController,
PrincipalIdealRing::ideal_gen(), this computes a generator of the ideal (lhs, rhs).
However, it additionally accepts a ComputationController to customize the performed
computation.Source§impl<R: RingStore> RingBase for SparsePolyRingBase<R>
impl<R: RingStore> RingBase for SparsePolyRingBase<R>
Source§type Element = SparsePolyRingEl<R>
type Element = SparsePolyRingEl<R>
fn clone_el(&self, val: &Self::Element) -> Self::Element
fn add_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)
fn add_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)
fn sub_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)
fn negate_inplace(&self, lhs: &mut Self::Element)
fn mul_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)
fn mul_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)
fn zero(&self) -> Self::Element
fn from_int(&self, value: i32) -> Self::Element
fn eq_el(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool
Source§fn is_commutative(&self) -> bool
fn is_commutative(&self) -> bool
a * b = b * a for all elements a, b.
Note that addition is assumed to be always commutative.Source§fn is_noetherian(&self) -> bool
fn is_noetherian(&self) -> bool
Source§fn dbg_within<'a>(
&self,
value: &Self::Element,
out: &mut Formatter<'a>,
env: EnvBindingStrength,
) -> Result
fn dbg_within<'a>( &self, value: &Self::Element, out: &mut Formatter<'a>, env: EnvBindingStrength, ) -> Result
value to out, taking into account the possible context
to place parenthesis as needed. Read morefn square(&self, value: &mut Self::Element)
fn mul_ref(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element
fn mul_assign_int(&self, lhs: &mut Self::Element, rhs: i32)
Source§fn characteristic<I: IntegerRingStore + Copy>(&self, ZZ: I) -> Option<El<I>>where
I::Type: IntegerRing,
fn characteristic<I: IntegerRingStore + Copy>(&self, ZZ: I) -> Option<El<I>>where
I::Type: IntegerRing,
ZZ. Read moreSource§fn is_approximate(&self) -> bool
fn is_approximate(&self) -> bool
f32 or
f64, to represent real or complex numbers. Read morefn one(&self) -> Self::Element
fn neg_one(&self) -> Self::Element
fn is_zero(&self, value: &Self::Element) -> bool
fn is_one(&self, value: &Self::Element) -> bool
fn is_neg_one(&self, value: &Self::Element) -> bool
Source§fn fma(
&self,
lhs: &Self::Element,
rhs: &Self::Element,
summand: Self::Element,
) -> Self::Element
fn fma( &self, lhs: &Self::Element, rhs: &Self::Element, summand: Self::Element, ) -> Self::Element
summand + lhs * rhs.fn negate(&self, value: Self::Element) -> Self::Element
fn sub_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)
fn mul_int(&self, lhs: Self::Element, rhs: i32) -> Self::Element
fn mul_int_ref(&self, lhs: &Self::Element, rhs: i32) -> Self::Element
Source§fn fma_int(
&self,
lhs: &Self::Element,
rhs: i32,
summand: Self::Element,
) -> Self::Element
fn fma_int( &self, lhs: &Self::Element, rhs: i32, summand: Self::Element, ) -> Self::Element
summand + lhs * rhs.Source§fn sub_self_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)
fn sub_self_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)
lhs := rhs - lhs.Source§fn sub_self_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)
fn sub_self_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)
lhs := rhs - lhs.fn add_ref(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element
fn add_ref_fst(&self, lhs: &Self::Element, rhs: Self::Element) -> Self::Element
fn add_ref_snd(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element
fn add(&self, lhs: Self::Element, rhs: Self::Element) -> Self::Element
fn sub_ref(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element
fn sub_ref_fst(&self, lhs: &Self::Element, rhs: Self::Element) -> Self::Element
fn sub_ref_snd(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element
fn sub(&self, lhs: Self::Element, rhs: Self::Element) -> Self::Element
fn mul_ref_fst(&self, lhs: &Self::Element, rhs: Self::Element) -> Self::Element
fn mul_ref_snd(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element
fn mul(&self, lhs: Self::Element, rhs: Self::Element) -> Self::Element
Source§fn pow_gen<R: RingStore>(
&self,
x: Self::Element,
power: &El<R>,
integers: R,
) -> Self::Elementwhere
R::Type: IntegerRing,
fn pow_gen<R: RingStore>(
&self,
x: Self::Element,
power: &El<R>,
integers: R,
) -> Self::Elementwhere
R::Type: IntegerRing,
x to the power of an arbitrary, nonnegative integer given by
a custom integer ring implementation. Read moreSource§impl<R: RingStore> RingExtension for SparsePolyRingBase<R>
impl<R: RingStore> RingExtension for SparsePolyRingBase<R>
Source§fn from(&self, x: El<Self::BaseRing>) -> Self::Element
fn from(&self, x: El<Self::BaseRing>) -> Self::Element
Source§fn from_ref(&self, x: &El<Self::BaseRing>) -> Self::Element
fn from_ref(&self, x: &El<Self::BaseRing>) -> Self::Element
Source§fn mul_assign_base(&self, lhs: &mut Self::Element, rhs: &El<Self::BaseRing>)
fn mul_assign_base(&self, lhs: &mut Self::Element, rhs: &El<Self::BaseRing>)
lhs := lhs * rhs, where rhs is mapped into this
ring via RingExtension::from_ref(). Note that this may be
faster than self.mul_assign(lhs, self.from_ref(rhs)).fn fma_base( &self, lhs: &Self::Element, rhs: &El<Self::BaseRing>, summand: Self::Element, ) -> Self::Element
Source§fn mul_assign_base_through_hom<S: ?Sized + RingBase, H: Homomorphism<S, <Self::BaseRing as RingStore>::Type>>(
&self,
lhs: &mut Self::Element,
rhs: &S::Element,
hom: H,
)
fn mul_assign_base_through_hom<S: ?Sized + RingBase, H: Homomorphism<S, <Self::BaseRing as RingStore>::Type>>( &self, lhs: &mut Self::Element, rhs: &S::Element, hom: H, )
lhs := lhs * rhs, where rhs is mapped into this ring
via the given homomorphism, followed by the inclusion (as specified by
RingExtension::from_ref()). Read moreimpl<R> Domain for SparsePolyRingBase<R>
impl<R> ImplGenericCanIsoFromToMarker for SparsePolyRingBase<R>where
R: RingStore,
Auto Trait Implementations§
impl<R> Freeze for SparsePolyRingBase<R>
impl<R> RefUnwindSafe for SparsePolyRingBase<R>
impl<R> Send for SparsePolyRingBase<R>
impl<R> Sync for SparsePolyRingBase<R>
impl<R> Unpin for SparsePolyRingBase<R>
impl<R> UnwindSafe for SparsePolyRingBase<R>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<R> ComputeInnerProduct for R
impl<R> ComputeInnerProduct for R
Source§default fn inner_product_ref_fst<'a, I>(
&self,
els: I,
) -> <R as RingBase>::Element
default fn inner_product_ref_fst<'a, I>( &self, els: I, ) -> <R as RingBase>::Element
unstable-enable only.sum_i lhs[i] * rhs[i].Source§default fn inner_product_ref<'a, I>(&self, els: I) -> <R as RingBase>::Element
default fn inner_product_ref<'a, I>(&self, els: I) -> <R as RingBase>::Element
unstable-enable only.sum_i lhs[i] * rhs[i].Source§impl<R, S> CooleyTuckeyButterfly<S> for R
impl<R, S> CooleyTuckeyButterfly<S> for R
Source§default fn butterfly<V, H>(
&self,
hom: H,
values: &mut V,
twiddle: &<S as RingBase>::Element,
i1: usize,
i2: usize,
)
default fn butterfly<V, H>( &self, hom: H, values: &mut V, twiddle: &<S as RingBase>::Element, i1: usize, i2: usize, )
(values[i1], values[i2]) := (values[i1] + twiddle * values[i2], values[i1] - twiddle * values[i2]). Read moreSource§default fn butterfly_new<H>(
hom: H,
x: &mut <R as RingBase>::Element,
y: &mut <R as RingBase>::Element,
twiddle: &<S as RingBase>::Element,
)where
H: Homomorphism<S, R>,
default fn butterfly_new<H>(
hom: H,
x: &mut <R as RingBase>::Element,
y: &mut <R as RingBase>::Element,
twiddle: &<S as RingBase>::Element,
)where
H: Homomorphism<S, R>,
(x, y) := (x + twiddle * y, x - twiddle * y). Read moreSource§default fn inv_butterfly<V, H>(
&self,
hom: H,
values: &mut V,
twiddle: &<S as RingBase>::Element,
i1: usize,
i2: usize,
)
default fn inv_butterfly<V, H>( &self, hom: H, values: &mut V, twiddle: &<S as RingBase>::Element, i1: usize, i2: usize, )
(values[i1], values[i2]) := (values[i1] + values[i2], (values[i1] - values[i2]) * twiddle) Read moreSource§default fn inv_butterfly_new<H>(
hom: H,
x: &mut <R as RingBase>::Element,
y: &mut <R as RingBase>::Element,
twiddle: &<S as RingBase>::Element,
)where
H: Homomorphism<S, R>,
default fn inv_butterfly_new<H>(
hom: H,
x: &mut <R as RingBase>::Element,
y: &mut <R as RingBase>::Element,
twiddle: &<S as RingBase>::Element,
)where
H: Homomorphism<S, R>,
(x, y) := (x + y, (x - y) * twiddle) Read moreSource§default fn prepare_for_fft(&self, _value: &mut <R as RingBase>::Element)
default fn prepare_for_fft(&self, _value: &mut <R as RingBase>::Element)
CooleyTuckeyButterfly::butterfly_new()
that the inputs are in this form.Source§default fn prepare_for_inv_fft(&self, _value: &mut <R as RingBase>::Element)
default fn prepare_for_inv_fft(&self, _value: &mut <R as RingBase>::Element)
CooleyTuckeyButterfly::inv_butterfly_new()
that the inputs are in this form.Source§impl<R, S> CooleyTukeyRadix3Butterfly<S> for R
impl<R, S> CooleyTukeyRadix3Butterfly<S> for R
Source§default fn prepare_for_fft(&self, _value: &mut <R as RingBase>::Element)
Available on crate feature unstable-enable only.
default fn prepare_for_fft(&self, _value: &mut <R as RingBase>::Element)
unstable-enable only.Possibly pre-processes elements before the FFT starts. Here you can bring ring element
into a certain form, and assume during CooleyTukeyRadix3Butterfly::butterfly()
that the inputs are in this form.
Source§default fn prepare_for_inv_fft(&self, _value: &mut <R as RingBase>::Element)
Available on crate feature unstable-enable only.
default fn prepare_for_inv_fft(&self, _value: &mut <R as RingBase>::Element)
unstable-enable only.Possibly pre-processes elements before the inverse FFT starts. Here you can bring ring element
into a certain form, and assume during CooleyTukeyRadix3Butterfly::inv_butterfly()
that the inputs are in this form.
Source§default fn butterfly<H>(
hom: H,
a: &mut <R as RingBase>::Element,
b: &mut <R as RingBase>::Element,
c: &mut <R as RingBase>::Element,
z: &<S as RingBase>::Element,
t: &<S as RingBase>::Element,
t_sqr_z_sqr: &<S as RingBase>::Element,
)where
H: Homomorphism<S, R>,
default fn butterfly<H>(
hom: H,
a: &mut <R as RingBase>::Element,
b: &mut <R as RingBase>::Element,
c: &mut <R as RingBase>::Element,
z: &<S as RingBase>::Element,
t: &<S as RingBase>::Element,
t_sqr_z_sqr: &<S as RingBase>::Element,
)where
H: Homomorphism<S, R>,
unstable-enable only.(a, b, c) := (a + t b + t^2 c, a + t z b + t^2 z^2 c, a + t z^2 b + t^2 z c). Read moreSource§default fn inv_butterfly<H>(
hom: H,
a: &mut <R as RingBase>::Element,
b: &mut <R as RingBase>::Element,
c: &mut <R as RingBase>::Element,
z: &<S as RingBase>::Element,
t: &<S as RingBase>::Element,
t_sqr: &<S as RingBase>::Element,
)where
H: Homomorphism<S, R>,
default fn inv_butterfly<H>(
hom: H,
a: &mut <R as RingBase>::Element,
b: &mut <R as RingBase>::Element,
c: &mut <R as RingBase>::Element,
z: &<S as RingBase>::Element,
t: &<S as RingBase>::Element,
t_sqr: &<S as RingBase>::Element,
)where
H: Homomorphism<S, R>,
unstable-enable only.(a, b, c) := (a + b + c, t (a + z^2 b + z c), t^2 (a + z b + z^2 c)). Read moreSource§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<R> KaratsubaHint for R
impl<R> KaratsubaHint for R
Source§default fn karatsuba_threshold(&self) -> usize
default fn karatsuba_threshold(&self) -> usize
unstable-enable only.KaratsubaAlgorithm will use the Karatsuba algorithm. Read moreSource§impl<R> LinSolveRing for Rwhere
R: PrincipalIdealRing + ?Sized,
impl<R> LinSolveRing for Rwhere
R: PrincipalIdealRing + ?Sized,
Source§default fn solve_right<V1, V2, V3, A>(
&self,
lhs: SubmatrixMut<'_, V1, <R as RingBase>::Element>,
rhs: SubmatrixMut<'_, V2, <R as RingBase>::Element>,
out: SubmatrixMut<'_, V3, <R as RingBase>::Element>,
allocator: A,
) -> SolveResultwhere
V1: AsPointerToSlice<<R as RingBase>::Element>,
V2: AsPointerToSlice<<R as RingBase>::Element>,
V3: AsPointerToSlice<<R as RingBase>::Element>,
A: Allocator,
default fn solve_right<V1, V2, V3, A>(
&self,
lhs: SubmatrixMut<'_, V1, <R as RingBase>::Element>,
rhs: SubmatrixMut<'_, V2, <R as RingBase>::Element>,
out: SubmatrixMut<'_, V3, <R as RingBase>::Element>,
allocator: A,
) -> SolveResultwhere
V1: AsPointerToSlice<<R as RingBase>::Element>,
V2: AsPointerToSlice<<R as RingBase>::Element>,
V3: AsPointerToSlice<<R as RingBase>::Element>,
A: Allocator,
Source§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<R> StrassenHint for R
impl<R> StrassenHint for R
Source§default fn strassen_threshold(&self) -> usize
default fn strassen_threshold(&self) -> usize
unstable-enable only.StrassenAlgorithm will use the Strassen algorithm. Read more