feanor_math/rings/poly/
sparse_poly.rs

1use crate::algorithms;
2use crate::algorithms::convolution::ConvolutionAlgorithm;
3use crate::algorithms::poly_gcd::PolyTFracGCDRing;
4use crate::divisibility::*;
5use crate::integer::IntegerRing;
6use crate::integer::IntegerRingStore;
7use crate::pid::*;
8use crate::field::Field;
9use crate::seq::VectorViewMut;
10use crate::ring::*;
11use crate::rings::poly::*;
12use crate::seq::*;
13use crate::seq::sparse::*;
14
15use std::alloc::Allocator;
16use std::cmp::max;
17use std::fmt::Debug;
18use std::fmt::{Formatter, Result};
19use std::sync::Arc;
20
21///
22/// The univariate polynomial ring `R[X]`. Polynomials are stored as sparse vectors of
23/// coefficients, thus giving improved performance in the case that most coefficients are
24/// zero.
25/// 
26/// Unless polynomials are very sparse, [`crate::rings::poly::dense_poly::DensePolyRing`] will provide better performance.
27/// 
28/// # Example
29/// ```rust
30/// # use feanor_math::ring::*;
31/// # use feanor_math::homomorphism::*;
32/// # use feanor_math::rings::poly::*;
33/// # use feanor_math::rings::poly::sparse_poly::*;
34/// # use feanor_math::primitive_int::*;
35/// 
36/// let ZZ = StaticRing::<i32>::RING;
37/// let P = SparsePolyRing::new(ZZ, "X");
38/// let x10_plus_1 = P.add(P.pow(P.indeterminate(), 10), P.int_hom().map(1));
39/// let power = P.pow(x10_plus_1, 10);
40/// assert_eq!(0, *P.coefficient_at(&power, 1));
41/// ```
42/// This ring has a [`CanIsoFromTo`] to [`dense_poly::DensePolyRingBase`].
43/// ```rust
44/// # use feanor_math::assert_el_eq;
45/// # use feanor_math::homomorphism::*;
46/// # use feanor_math::ring::*;
47/// # use feanor_math::rings::poly::*;
48/// # use feanor_math::rings::poly::dense_poly::*;
49/// # use feanor_math::rings::poly::sparse_poly::*;
50/// # use feanor_math::primitive_int::*;
51/// 
52/// let ZZ = StaticRing::<i32>::RING;
53/// let P = SparsePolyRing::new(ZZ, "X");
54/// let P2 = DensePolyRing::new(ZZ, "X");
55/// let high_power_of_x = P.pow(P.indeterminate(), 10);
56/// assert_el_eq!(P2, P2.pow(P2.indeterminate(), 10), &P.can_iso(&P2).unwrap().map(high_power_of_x));
57/// ```
58/// 
59pub struct SparsePolyRingBase<R: RingStore> {
60    base_ring: Arc<R>,
61    unknown_name: &'static str,
62    zero: El<R>
63}
64
65impl<R: RingStore + Clone> Clone for SparsePolyRingBase<R> {
66    
67    fn clone(&self) -> Self {
68        SparsePolyRingBase {
69            base_ring: self.base_ring.clone(), 
70            unknown_name: self.unknown_name, 
71            zero: self.base_ring.zero()
72        }
73    }
74}
75
76impl<R: RingStore> Debug for SparsePolyRingBase<R>
77    where R::Type: Debug
78{
79    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
80        f.debug_struct("SparsePolyRingBase")
81            .field("base_ring", &self.base_ring.get_ring())
82            .finish()
83    }
84}
85
86///
87/// The univariate polynomial ring `R[X]`, with polynomials being stored as sparse vectors of coefficients.
88/// For details, see [`SparsePolyRingBase`].
89/// 
90#[allow(type_alias_bounds)]
91pub type SparsePolyRing<R: RingStore> = RingValue<SparsePolyRingBase<R>>;
92
93impl<R: RingStore> SparsePolyRing<R> {
94
95    ///
96    /// Creates a new sparse polynomial ring over the given base ring.
97    /// 
98    pub fn new(base_ring: R, unknown_name: &'static str) -> Self {
99        let zero = base_ring.zero();
100        Self::from(SparsePolyRingBase { 
101            base_ring: Arc::new(base_ring), 
102            unknown_name: unknown_name, 
103            zero: zero
104        })
105    }
106}
107
108impl<R: RingStore> SparsePolyRingBase<R> {
109
110    fn degree_truncate(&self, el: &mut SparseMapVector<Arc<R>>) {
111        for i in (0..el.len()).rev() {
112            if !self.base_ring.is_zero(&el.at(i)) {
113                el.set_len(i + 1);
114                return;
115            }
116        }
117        el.set_len(0);
118    }
119
120    fn poly_div<F>(&self, lhs: &mut <Self as RingBase>::Element, rhs: &<Self as RingBase>::Element, mut left_div_lc: F) -> Option<<Self as RingBase>::Element>
121        where F: FnMut(El<R>) -> Option<El<R>>
122    {
123        let lhs_val = std::mem::replace(lhs, self.zero());
124        let (quo, rem) = algorithms::poly_div::poly_div_rem(
125            RingRef::new(self), 
126            lhs_val, 
127            rhs, 
128            |x| left_div_lc(self.base_ring().clone_el(x)).ok_or(())
129        ).ok()?;
130        *lhs = rem;
131        return Some(quo);
132    }
133}
134
135///
136/// An element of a [`SparsePolyRing`].
137/// 
138pub struct SparsePolyRingEl<R: RingStore> {
139    data: SparseMapVector<Arc<R>>
140}
141
142impl<R: RingStore> Debug for SparsePolyRingEl<R>
143    where El<R>: Debug
144{
145    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
146        self.data.fmt(f)
147    }
148}
149
150impl<R: RingStore> RingBase for SparsePolyRingBase<R> {
151    
152    type Element = SparsePolyRingEl<R>;
153
154    fn clone_el(&self, val: &Self::Element) -> Self::Element {
155        SparsePolyRingEl {
156            data: val.data.clone()
157        }
158    }
159
160    fn add_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element) {
161        lhs.data.set_len(max(lhs.data.len(), rhs.data.len()));
162        for (i, c) in rhs.data.nontrivial_entries() {
163            self.base_ring.add_assign_ref(lhs.data.at_mut(i), c);
164        }
165        self.degree_truncate(&mut lhs.data);
166    }
167
168    fn add_assign(&self, lhs: &mut Self::Element, rhs: Self::Element) {
169        self.add_assign_ref(lhs, &rhs);
170    }
171
172    fn sub_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element) {
173        lhs.data.set_len(max(lhs.data.len(), rhs.data.len()));
174        for (i, c) in rhs.data.nontrivial_entries() {
175            self.base_ring.sub_assign_ref(lhs.data.at_mut(i), c);
176        }
177        self.degree_truncate(&mut lhs.data);
178    }
179
180    fn negate_inplace(&self, lhs: &mut Self::Element) {
181        lhs.data.scan(|_, c| self.base_ring.negate_inplace(c));
182    }
183
184    fn mul_assign(&self, lhs: &mut Self::Element, rhs: Self::Element) {
185        self.mul_assign_ref(lhs, &rhs);
186    }
187
188    fn mul_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element) {
189        *lhs = self.mul_ref(lhs, rhs);
190    }
191
192    fn zero(&self) -> Self::Element {
193        SparsePolyRingEl {
194            data: SparseMapVector::new(0, self.base_ring.clone())
195        }
196    }
197    
198    fn from_int(&self, value: i32) -> Self::Element {
199        self.from(self.base_ring().get_ring().from_int(value))
200    }
201
202    fn eq_el(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool {
203        if lhs.data.len() != rhs.data.len() {
204            return false;
205        }
206        for (i, c) in lhs.data.nontrivial_entries() {
207            if !self.base_ring.eq_el(rhs.data.at(i), c) {
208                return false;
209            }
210        }
211        for (i, c) in rhs.data.nontrivial_entries() {
212            if !self.base_ring.eq_el(lhs.data.at(i), c) {
213                return false;
214            }
215        }
216        return true;
217    }
218
219    fn is_commutative(&self) -> bool {
220        self.base_ring.is_commutative()
221    }
222
223    fn is_noetherian(&self) -> bool {
224        // by Hilbert's basis theorem
225        self.base_ring.is_noetherian()
226    }
227
228    fn dbg_within<'a>(&self, value: &Self::Element, out: &mut Formatter<'a>, env: EnvBindingStrength) -> Result {
229        super::generic_impls::dbg_poly(self, value, out, self.unknown_name, env)
230    }
231
232    fn dbg<'a>(&self, value: &Self::Element, out: &mut Formatter<'a>) -> Result {
233        self.dbg_within(value, out, EnvBindingStrength::Weakest)
234    }
235
236    fn square(&self, value: &mut Self::Element) {
237        *value = self.mul_ref(&value, &value);
238    }
239
240    fn mul_ref(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element {
241        if lhs.data.len() == 0 || rhs.data.len() == 0 {
242            return self.zero();
243        }
244        let mut result = SparseMapVector::new(lhs.data.len() + rhs.data.len() - 1, self.base_ring.clone());
245        for (i, c1) in lhs.data.nontrivial_entries() {
246            for (j, c2) in rhs.data.nontrivial_entries() {
247                self.base_ring.add_assign(result.at_mut(i + j), self.base_ring.mul_ref(c1, c2));
248            }
249        }
250        // if the ring is not zero-divisor free
251        self.degree_truncate(&mut result);
252        return SparsePolyRingEl {
253            data: result
254        };
255    }
256
257    fn mul_assign_int(&self, lhs: &mut Self::Element, rhs: i32) {
258        if rhs == 0 {
259            *lhs = self.zero();
260        } else {
261            lhs.data.scan(|_, c| self.base_ring.int_hom().mul_assign_map(c, rhs));
262        }
263    }
264    
265    fn characteristic<I: IntegerRingStore + Copy>(&self, ZZ: I) -> Option<El<I>>
266        where I::Type: IntegerRing
267    {
268        self.base_ring().characteristic(ZZ)
269    }
270    
271    fn is_approximate(&self) -> bool {
272        self.base_ring().get_ring().is_approximate()
273    }
274}
275
276impl<R> PartialEq for SparsePolyRingBase<R> 
277    where R: RingStore
278{
279    fn eq(&self, other: &Self) -> bool {
280        self.base_ring.get_ring() == other.base_ring.get_ring()
281    }
282}
283
284impl<R: RingStore> RingExtension for SparsePolyRingBase<R> {
285    
286    type BaseRing = R;
287
288    fn base_ring<'a>(&'a self) -> &'a Self::BaseRing {
289        &self.base_ring
290    }
291
292    fn from(&self, x: El<Self::BaseRing>) -> Self::Element {
293        let mut result = self.zero();
294        if !self.base_ring().is_zero(&x) {
295            result.data.set_len(1);
296            *result.data.at_mut(0) = x;
297        }
298        return result;
299    }
300}
301
302pub trait ImplGenericCanIsoFromToMarker: PolyRing {}
303
304impl<R, A, C> ImplGenericCanIsoFromToMarker for dense_poly::DensePolyRingBase<R, A, C> 
305    where R: RingStore, A: Allocator + Clone, C: ConvolutionAlgorithm<R::Type>
306{}
307
308impl<R, P> CanHomFrom<P> for SparsePolyRingBase<R> 
309    where R: RingStore, R::Type: CanHomFrom<<P::BaseRing as RingStore>::Type>, P: ImplGenericCanIsoFromToMarker
310{
311    type Homomorphism = super::generic_impls::Homomorphism<P, Self>;
312
313    fn has_canonical_hom(&self, from: &P) -> Option<Self::Homomorphism> {
314        super::generic_impls::has_canonical_hom(from, self)
315    }
316
317    fn map_in(&self, from: &P, el: P::Element, hom: &Self::Homomorphism) -> Self::Element {
318        super::generic_impls::map_in(from, self, el, hom)
319    }
320}
321
322impl<R1, R2> CanHomFrom<SparsePolyRingBase<R1> > for SparsePolyRingBase<R2> 
323    where R1: RingStore, R2: RingStore, R2::Type: CanHomFrom<R1::Type>
324{
325    type Homomorphism = <R2::Type as CanHomFrom<R1::Type>>::Homomorphism;
326
327    fn has_canonical_hom(&self, from: &SparsePolyRingBase<R1>) -> Option<Self::Homomorphism> {
328        self.base_ring().get_ring().has_canonical_hom(from.base_ring().get_ring())
329    }
330
331    fn map_in_ref(&self, from: &SparsePolyRingBase<R1> , el: &SparsePolyRingEl<R1>, hom: &Self::Homomorphism) -> Self::Element {
332        let mut result = SparseMapVector::new(el.data.len(), self.base_ring.clone());
333        for (j, c) in el.data.nontrivial_entries() {
334            *result.at_mut(j) = self.base_ring().get_ring().map_in_ref(from.base_ring().get_ring(), c, hom);
335        }
336        return SparsePolyRingEl {
337            data: result
338        };
339    }
340
341    fn map_in(&self, from: &SparsePolyRingBase<R1>, el: <SparsePolyRingBase<R1> as RingBase>::Element, hom: &Self::Homomorphism) -> Self::Element {
342        self.map_in_ref(from, &el, hom)
343    }
344}
345
346impl<R, P> CanIsoFromTo<P> for SparsePolyRingBase<R> 
347    where R: RingStore, R::Type: CanIsoFromTo<<P::BaseRing as RingStore>::Type>, P: ImplGenericCanIsoFromToMarker
348{
349    type Isomorphism = super::generic_impls::Isomorphism<P, Self>;
350
351    fn has_canonical_iso(&self, from: &P) -> Option<Self::Isomorphism> {
352        self.base_ring().get_ring().has_canonical_iso(from.base_ring().get_ring())
353    }
354
355    fn map_out(&self, from: &P, el: Self::Element, iso: &Self::Isomorphism) -> P::Element {
356        super::generic_impls::map_out(from, self, el, iso)
357    }
358}
359
360impl<R1, R2> CanIsoFromTo<SparsePolyRingBase<R1>> for SparsePolyRingBase<R2> 
361    where R1: RingStore, R2: RingStore, R2::Type: CanIsoFromTo<R1::Type>
362{
363    type Isomorphism = <R2::Type as CanIsoFromTo<R1::Type>>::Isomorphism;
364
365    fn has_canonical_iso(&self, from: &SparsePolyRingBase<R1>) -> Option<Self::Isomorphism> {
366        self.base_ring().get_ring().has_canonical_iso(from.base_ring().get_ring())
367    }
368
369    fn map_out(&self, from: &SparsePolyRingBase<R1>, el: Self::Element, iso: &Self::Isomorphism) -> SparsePolyRingEl<R1> {
370        let mut result = SparseMapVector::new(el.data.len(), from.base_ring.clone());
371        for (j, c) in el.data.nontrivial_entries() {
372            *result.at_mut(j) = self.base_ring().get_ring().map_out(from.base_ring().get_ring(), self.base_ring().clone_el(c), iso);
373        }
374        return SparsePolyRingEl {
375            data: result
376        };
377    }
378}
379
380pub struct TermIterator<'a, R>
381    where R: RingStore
382{
383    iter: SparseMapVectorIter<'a, Arc<R>>
384}
385
386impl<'a, R> Iterator for TermIterator<'a, R>
387    where R: RingStore
388{
389    type Item = (&'a El<R>, usize);
390
391    fn next(&mut self) -> Option<Self::Item> {
392        if let Some((i, c)) = self.iter.next() {
393            Some((c, i))
394        } else {
395            None
396        }
397    }
398}
399
400impl<R> PolyRing for SparsePolyRingBase<R> 
401    where R: RingStore
402{
403    type TermsIterator<'a> = TermIterator<'a, R>
404        where Self: 'a;
405
406    fn indeterminate(&self) -> Self::Element {
407        let mut result = self.zero();
408        result.data.set_len(2);
409        *result.data.at_mut(1) = self.base_ring.one();
410        return result;
411    }
412
413    fn terms<'a>(&'a self, f: &'a Self::Element) -> TermIterator<'a, R> {
414        TermIterator {
415            iter: f.data.nontrivial_entries()
416        }
417    }
418
419    fn add_assign_from_terms<I>(&self, lhs: &mut Self::Element, rhs: I)
420        where I: IntoIterator<Item = (El<Self::BaseRing>, usize)>
421    {
422        for (c, i) in rhs {
423            lhs.data.set_len(max(lhs.data.len(), i + 1));
424            self.base_ring().add_assign(lhs.data.at_mut(i), c);
425        }
426        // if a previously set entry is then set to zero or adds up to zero, this might be not truncated
427        self.degree_truncate(&mut lhs.data);
428    }
429
430    fn coefficient_at<'a>(&'a self, f: &'a Self::Element, i: usize) -> &'a El<Self::BaseRing> {
431        if i < f.data.len() {
432            return f.data.at(i);
433        } else {
434            return &self.zero;
435        }
436    }
437
438    fn degree(&self, f: &Self::Element) -> Option<usize> {
439        f.data.len().checked_sub(1)
440    }
441
442    fn div_rem_monic(&self, mut lhs: Self::Element, rhs: &Self::Element) -> (Self::Element, Self::Element) {
443        assert!(self.base_ring().is_one(self.coefficient_at(rhs, self.degree(rhs).unwrap())));
444        let quo = self.poly_div(&mut lhs, rhs, |x| Some(x)).unwrap();
445        return (quo, lhs);
446    }
447}
448
449impl<R> Domain for SparsePolyRingBase<R> 
450    where R: RingStore, R::Type: Domain
451{}
452
453impl<R,> DivisibilityRing for SparsePolyRingBase<R> 
454    where R: RingStore, 
455        R::Type: DivisibilityRing + Domain
456{
457    fn checked_left_div(&self, lhs: &Self::Element, rhs: &Self::Element) -> Option<Self::Element> {
458        if let Some(d) = self.degree(rhs) {
459            let lc = rhs.data.at(d);
460            let mut lhs_copy = self.clone_el(&lhs);
461            let quo = self.poly_div(&mut lhs_copy, rhs, |x| self.base_ring().checked_left_div(&x, lc))?;
462            if self.is_zero(&lhs_copy) {
463                Some(quo)
464            } else {
465                None
466            }
467        } else if self.is_zero(lhs) {
468            Some(self.zero())
469        } else {
470            None
471        }
472    }
473}
474
475impl<R> PrincipalIdealRing for SparsePolyRingBase<R>
476    where R: RingStore, R::Type: Field + PolyTFracGCDRing
477{
478    fn checked_div_min(&self, lhs: &Self::Element, rhs: &Self::Element) -> Option<Self::Element> {
479        // base ring is a field, so everything is fine
480        if self.is_zero(rhs) && self.is_zero(lhs) {
481            return Some(self.one());
482        } else if self.is_zero(rhs) {
483            return None;
484        }
485        let (quo, rem) = self.euclidean_div_rem(self.clone_el(lhs), rhs);
486        if self.is_zero(&rem) {
487            return Some(quo);
488        } else {
489            return None;
490        }
491    }
492
493    fn extended_ideal_gen(&self, lhs: &Self::Element, rhs: &Self::Element) -> (Self::Element, Self::Element, Self::Element) {
494        algorithms::eea::eea(self.clone_el(lhs), self.clone_el(rhs), RingRef::new(self))
495    }
496    
497    fn ideal_gen(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element {
498        <_ as PolyTFracGCDRing>::gcd(RingRef::new(self), lhs, rhs)
499    }
500}
501
502impl<R> EuclideanRing for SparsePolyRingBase<R> 
503    where R: RingStore, R::Type: Field + PolyTFracGCDRing
504{
505    fn euclidean_div_rem(&self, mut lhs: Self::Element, rhs: &Self::Element) -> (Self::Element, Self::Element) {
506        let lc_inv = self.base_ring.invert(rhs.data.at(self.degree(rhs).unwrap())).unwrap();
507        let quo = self.poly_div(&mut lhs, rhs, |x| Some(self.base_ring().mul_ref_snd(x, &lc_inv))).unwrap();
508        return (quo, lhs);
509    }
510
511    fn euclidean_deg(&self, val: &Self::Element) -> Option<usize> {
512        return Some(self.degree(val).map(|x| x + 1).unwrap_or(0));
513    }
514}
515
516#[cfg(test)]
517use crate::rings::zn::*;
518#[cfg(test)]
519use crate::rings::zn::zn_static::{Zn, Fp};
520#[cfg(test)]
521use crate::rings::finite::FiniteRingStore;
522#[cfg(test)]
523use super::dense_poly::DensePolyRing;
524#[cfg(test)]
525use crate::primitive_int::StaticRing;
526
527#[cfg(test)]
528fn edge_case_elements<P: PolyRingStore>(poly_ring: P) -> impl Iterator<Item = El<P>>
529    where P::Type: PolyRing
530{
531    let base_ring = poly_ring.base_ring();
532    vec![ 
533        poly_ring.from_terms([].into_iter()),
534        poly_ring.from_terms([(base_ring.int_hom().map(1), 0)].into_iter()),
535        poly_ring.from_terms([(base_ring.int_hom().map(1), 1)].into_iter()),
536        poly_ring.from_terms([(base_ring.int_hom().map(1), 0), (base_ring.int_hom().map(1), 1)].into_iter()),
537        poly_ring.from_terms([(base_ring.int_hom().map(-1), 0)].into_iter()),
538        poly_ring.from_terms([(base_ring.int_hom().map(-1), 1)].into_iter()),
539        poly_ring.from_terms([(base_ring.int_hom().map(-1), 0), (base_ring.int_hom().map(1), 1)].into_iter()),
540        poly_ring.from_terms([(base_ring.int_hom().map(1), 0), (base_ring.int_hom().map(-1), 1)].into_iter()),
541        poly_ring.from_terms([(base_ring.int_hom().map(-1), 0), (base_ring.int_hom().map(1), 2)].into_iter()),
542        poly_ring.from_terms([(base_ring.int_hom().map(1), 0), (base_ring.int_hom().map(-1), 2)].into_iter()),
543        poly_ring.from_terms([(base_ring.int_hom().map(1), 0), (base_ring.int_hom().map(-1), 2), (base_ring.int_hom().map(0), 2)].into_iter())
544    ].into_iter()
545}
546
547#[test]
548fn test_ring_axioms() {
549    let poly_ring = SparsePolyRing::new(Zn::<7>::RING, "X");
550    crate::ring::generic_tests::test_ring_axioms(&poly_ring, edge_case_elements(&poly_ring));
551}
552
553#[test]
554fn test_poly_ring_axioms() {
555    let poly_ring = SparsePolyRing::new(Zn::<7>::RING, "X");
556    super::generic_tests::test_poly_ring_axioms(poly_ring, Zn::<7>::RING.elements());
557}
558
559#[test]
560fn test_canonical_iso_axioms_different_base_ring() {
561    let poly_ring1 = SparsePolyRing::new(zn_big::Zn::new(StaticRing::<i128>::RING, 7), "X");
562    let poly_ring2 = SparsePolyRing::new(zn_64::Zn::new(7), "X");
563    crate::ring::generic_tests::test_hom_axioms(&poly_ring1, &poly_ring2, edge_case_elements(&poly_ring1));
564    crate::ring::generic_tests::test_iso_axioms(&poly_ring1, &poly_ring2, edge_case_elements(&poly_ring1));
565}
566
567#[test]
568fn test_canonical_iso_dense_poly_ring() {
569    let poly_ring1 = SparsePolyRing::new(zn_64::Zn::new(7), "X");
570    let poly_ring2 = DensePolyRing::new(zn_64::Zn::new(7), "X");
571    crate::ring::generic_tests::test_hom_axioms(&poly_ring2, &poly_ring1, edge_case_elements(&poly_ring2));
572    crate::ring::generic_tests::test_iso_axioms(&poly_ring2, &poly_ring1, edge_case_elements(&poly_ring2));
573}
574
575#[test]
576fn test_divisibility_ring_axioms() {
577    let poly_ring = SparsePolyRing::new(Fp::<7>::RING, "X");
578    crate::divisibility::generic_tests::test_divisibility_axioms(&poly_ring, edge_case_elements(&poly_ring));
579}
580
581#[test]
582fn test_euclidean_ring_axioms() {
583    let poly_ring = SparsePolyRing::new(Fp::<7>::RING, "X");
584    crate::pid::generic_tests::test_euclidean_ring_axioms(&poly_ring, edge_case_elements(&poly_ring));
585}
586
587#[test]
588fn test_principal_ideal_ring_axioms() {
589    let poly_ring = SparsePolyRing::new(Fp::<7>::RING, "X");
590    crate::pid::generic_tests::test_principal_ideal_ring_axioms(&poly_ring, edge_case_elements(&poly_ring));
591}