Struct feanor_math::rings::float_real::Real64Base

source ·
pub struct Real64Base;

Implementations§

source§

impl Real64Base

source

pub fn is_absolute_approx_eq( &self, lhs: <Self as RingBase>::Element, rhs: <Self as RingBase>::Element, absolute_threshold: f64, ) -> bool

source

pub fn is_relative_approx_eq( &self, lhs: <Self as RingBase>::Element, rhs: <Self as RingBase>::Element, relative_threshold: f64, ) -> bool

source

pub fn is_approx_eq( &self, lhs: <Self as RingBase>::Element, rhs: <Self as RingBase>::Element, precision: u64, ) -> bool

Trait Implementations§

source§

impl<I> CanHomFrom<I> for Real64Base
where I: ?Sized + IntegerRing,

§

type Homomorphism = ()

source§

fn has_canonical_hom(&self, _from: &I) -> Option<Self::Homomorphism>

source§

fn map_in( &self, from: &I, el: <I as RingBase>::Element, _hom: &Self::Homomorphism, ) -> Self::Element

source§

fn map_in_ref( &self, from: &I, el: &<I as RingBase>::Element, _hom: &Self::Homomorphism, ) -> Self::Element

source§

fn mul_assign_map_in( &self, from: &S, lhs: &mut Self::Element, rhs: S::Element, hom: &Self::Homomorphism, )

source§

fn mul_assign_map_in_ref( &self, from: &S, lhs: &mut Self::Element, rhs: &S::Element, hom: &Self::Homomorphism, )

source§

impl<I> CanHomFrom<RationalFieldBase<I>> for Real64Base

§

type Homomorphism = ()

source§

fn has_canonical_hom( &self, _from: &RationalFieldBase<I>, ) -> Option<Self::Homomorphism>

source§

fn map_in( &self, from: &RationalFieldBase<I>, el: El<RationalField<I>>, hom: &Self::Homomorphism, ) -> Self::Element

source§

fn map_in_ref( &self, from: &RationalFieldBase<I>, el: &El<RationalField<I>>, _hom: &Self::Homomorphism, ) -> Self::Element

source§

fn mul_assign_map_in( &self, from: &S, lhs: &mut Self::Element, rhs: S::Element, hom: &Self::Homomorphism, )

source§

fn mul_assign_map_in_ref( &self, from: &S, lhs: &mut Self::Element, rhs: &S::Element, hom: &Self::Homomorphism, )

source§

impl CanHomFrom<Real64Base> for Real64Base

§

type Homomorphism = ()

source§

fn has_canonical_hom(&self, from: &Self) -> Option<()>

source§

fn map_in( &self, _from: &Self, el: <Self as RingBase>::Element, _: &Self::Homomorphism, ) -> <Self as RingBase>::Element

source§

fn map_in_ref( &self, from: &S, el: &S::Element, hom: &Self::Homomorphism, ) -> Self::Element

source§

fn mul_assign_map_in( &self, from: &S, lhs: &mut Self::Element, rhs: S::Element, hom: &Self::Homomorphism, )

source§

fn mul_assign_map_in_ref( &self, from: &S, lhs: &mut Self::Element, rhs: &S::Element, hom: &Self::Homomorphism, )

source§

impl CanIsoFromTo<Real64Base> for Real64Base

§

type Isomorphism = ()

source§

fn has_canonical_iso(&self, from: &Self) -> Option<()>

source§

fn map_out( &self, _from: &Self, el: <Self as RingBase>::Element, _: &Self::Homomorphism, ) -> <Self as RingBase>::Element

source§

impl Clone for Real64Base

source§

fn clone(&self) -> Real64Base

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl DivisibilityRing for Real64Base

source§

fn checked_left_div( &self, lhs: &Self::Element, rhs: &Self::Element, ) -> Option<Self::Element>

Checks whether there is an element x such that rhs * x = lhs, and returns it if it exists. Note that this does not have to be unique, if rhs is a left zero-divisor. In particular, this function will return any element in the ring if lhs = rhs = 0.
source§

fn is_unit(&self, x: &Self::Element) -> bool

source§

impl EuclideanRing for Real64Base

source§

fn euclidean_div_rem( &self, _lhs: Self::Element, _rhs: &Self::Element, ) -> (Self::Element, Self::Element)

source§

fn euclidean_deg(&self, _: &Self::Element) -> Option<usize>

source§

fn euclidean_div( &self, lhs: Self::Element, rhs: &Self::Element, ) -> Self::Element

source§

fn euclidean_rem( &self, lhs: Self::Element, rhs: &Self::Element, ) -> Self::Element

source§

impl Field for Real64Base

source§

fn div(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element

source§

impl<J> LLLRealField<J> for Real64Base
where J: ?Sized + IntegerRing,

source§

fn from_integer(&self, x: J::Element, ZZ: &J) -> Self::Element

source§

fn round_to_integer(&self, x: &Self::Element, ZZ: &J) -> J::Element

source§

impl OrderedRing for Real64Base

source§

fn cmp(&self, lhs: &Self::Element, rhs: &Self::Element) -> Ordering

source§

fn is_leq(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool

source§

fn is_geq(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool

source§

fn is_lt(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool

source§

fn is_gt(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool

source§

fn is_neg(&self, value: &Self::Element) -> bool

source§

fn is_pos(&self, value: &Self::Element) -> bool

source§

fn abs(&self, value: Self::Element) -> Self::Element

source§

impl PartialEq for Real64Base

source§

fn eq(&self, other: &Real64Base) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl PrincipalIdealRing for Real64Base

source§

fn extended_ideal_gen( &self, _lhs: &Self::Element, _rhs: &Self::Element, ) -> (Self::Element, Self::Element, Self::Element)

Computes a Bezout identity for the generator g of the ideal (lhs, rhs) as g = s * lhs + t * rhs. Read more
source§

fn ideal_gen(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element

Computes a generator g of the ideal (lhs, rhs) = (g), also known as greatest common divisor. Read more
source§

fn lcm(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element

Computes a generator of the ideal (lhs) ∩ (rhs), also known as least common multiple. Read more
source§

impl RingBase for Real64Base

§

type Element = f64

source§

fn clone_el(&self, val: &Self::Element) -> Self::Element

source§

fn add_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)

source§

fn negate_inplace(&self, x: &mut Self::Element)

source§

fn mul_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)

source§

fn from_int(&self, value: i32) -> Self::Element

source§

fn eq_el(&self, _: &Self::Element, _: &Self::Element) -> bool

source§

fn pow_gen<R: IntegerRingStore>( &self, x: Self::Element, power: &El<R>, integers: R, ) -> Self::Element
where R::Type: IntegerRing,

Raises x to the power of an arbitrary, nonnegative integer given by a custom integer ring implementation. Read more
source§

fn is_commutative(&self) -> bool

source§

fn is_noetherian(&self) -> bool

source§

fn is_approximate(&self) -> bool

Returns whether this ring computes with approximations to elements. This would usually be the case for rings that are based on f32 or f64, to represent real or complex numbers. Read more
source§

fn dbg<'a>(&self, x: &Self::Element, out: &mut Formatter<'a>) -> Result

source§

fn characteristic<I: IntegerRingStore>(&self, ZZ: &I) -> Option<El<I>>
where I::Type: IntegerRing,

Returns the characteristic of this ring as an element of the given implementation of ZZ. Read more
source§

fn add_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)

source§

fn sub_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)

source§

fn mul_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)

source§

fn zero(&self) -> Self::Element

source§

fn one(&self) -> Self::Element

source§

fn neg_one(&self) -> Self::Element

source§

fn is_zero(&self, value: &Self::Element) -> bool

source§

fn is_one(&self, value: &Self::Element) -> bool

source§

fn is_neg_one(&self, value: &Self::Element) -> bool

source§

fn square(&self, value: &mut Self::Element)

source§

fn negate(&self, value: Self::Element) -> Self::Element

source§

fn sub_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)

source§

fn mul_assign_int(&self, lhs: &mut Self::Element, rhs: i32)

source§

fn mul_int(&self, lhs: Self::Element, rhs: i32) -> Self::Element

source§

fn mul_int_ref(&self, lhs: &Self::Element, rhs: i32) -> Self::Element

source§

fn sub_self_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)

Computes lhs := rhs - lhs.
source§

fn sub_self_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)

Computes lhs := rhs - lhs.
source§

fn add_ref(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element

source§

fn add_ref_fst(&self, lhs: &Self::Element, rhs: Self::Element) -> Self::Element

source§

fn add_ref_snd(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element

source§

fn add(&self, lhs: Self::Element, rhs: Self::Element) -> Self::Element

source§

fn sub_ref(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element

source§

fn sub_ref_fst(&self, lhs: &Self::Element, rhs: Self::Element) -> Self::Element

source§

fn sub_ref_snd(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element

source§

fn sub(&self, lhs: Self::Element, rhs: Self::Element) -> Self::Element

source§

fn mul_ref(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element

source§

fn mul_ref_fst(&self, lhs: &Self::Element, rhs: Self::Element) -> Self::Element

source§

fn mul_ref_snd(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element

source§

fn mul(&self, lhs: Self::Element, rhs: Self::Element) -> Self::Element

source§

fn sum<I>(&self, els: I) -> Self::Element
where I: Iterator<Item = Self::Element>,

source§

fn prod<I>(&self, els: I) -> Self::Element
where I: Iterator<Item = Self::Element>,

source§

impl Copy for Real64Base

source§

impl Domain for Real64Base

source§

impl StructuralPartialEq for Real64Base

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<R> ConvMulComputation for R
where R: RingBase + ?Sized,

source§

default fn karatsuba_threshold(&self) -> usize

Define a threshold from which on the default implementation of ConvMulComputation::add_assign_conv_mul() will use the Karatsuba algorithm. Read more
source§

fn add_assign_conv_mul<M>( &self, dst: &mut [<R as RingBase>::Element], lhs: &[<R as RingBase>::Element], rhs: &[<R as RingBase>::Element], memory_provider: &M, )
where M: MemoryProvider<<R as RingBase>::Element>,

Computes the convolution of lhs and rhs, and adds the result to dst. Read more
source§

impl<R, S> CooleyTuckeyButterfly<S> for R
where S: RingBase + ?Sized, R: RingBase + ?Sized,

source§

default fn butterfly<V, H>( &self, hom: &H, values: &mut V, twiddle: &<S as RingBase>::Element, i1: usize, i2: usize, )
where V: VectorViewMut<<R as RingBase>::Element>, H: Homomorphism<S, R>,

Should compute (values[i1], values[i2]) := (values[i1] + twiddle * values[i2], values[i1] - twiddle * values[i2])
source§

default fn inv_butterfly<V, H>( &self, hom: &H, values: &mut V, twiddle: &<S as RingBase>::Element, i1: usize, i2: usize, )
where V: VectorViewMut<<R as RingBase>::Element>, H: Homomorphism<S, R>,

Should compute (values[i1], values[i2]) := (values[i1] + values[i2], (values[i1] - values[i2]) * twiddle)
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<F> GBRingDescriptorRing for F
where F: Field,

source§

impl<R> InnerProductComputation for R
where R: RingBase + ?Sized,

source§

default fn inner_product_ref_fst<'a, I>( &self, els: I, ) -> <R as RingBase>::Element
where I: Iterator<Item = (&'a <R as RingBase>::Element, <R as RingBase>::Element)>, <R as RingBase>::Element: 'a,

Computes the inner product sum_i lhs[i] * rhs[i].
source§

default fn inner_product_ref<'a, I>(&self, els: I) -> <R as RingBase>::Element
where I: Iterator<Item = (&'a <R as RingBase>::Element, &'a <R as RingBase>::Element)>, <R as RingBase>::Element: 'a,

Computes the inner product sum_i lhs[i] * rhs[i].
source§

default fn inner_product<I>(&self, els: I) -> <R as RingBase>::Element
where I: Iterator<Item = (<R as RingBase>::Element, <R as RingBase>::Element)>,

Computes the inner product sum_i lhs[i] * rhs[i].
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<R> SelfIso for R
where R: CanIsoFromTo<R> + ?Sized,