1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
use std::io::Write;
use std::marker::PhantomData;
use std::cmp::min;

use crate::divisibility::{DivisibilityRingStore, DivisibilityRing};
use crate::field::Field;
use crate::homomorphism::Homomorphism;
use crate::pid::{PrincipalIdealRing, PrincipalIdealRingStore};
use crate::ring::*;
use crate::rings::multivariate::*;
use crate::rings::zn::{ZnRing, zn_64, ZnRingStore, zn_static};
use crate::vector::*;
use crate::algorithms;

use super::sparse_invert::*;

#[allow(type_alias_bounds)]
type Mon<P: MultivariatePolyRingStore> = Monomial<<P::Type as MultivariatePolyRing>::MonomialVector>;

#[allow(type_alias_bounds)]
type Coeff<P: MultivariatePolyRingStore> = El<<P::Type as RingExtension>::BaseRing>;

#[allow(type_alias_bounds)]
type LT<P: MultivariatePolyRingStore> = (Coeff<P>, Mon<P>);

#[allow(non_camel_case_types)]
#[allow(type_alias_bounds)]
type LT_ref<'a, P: MultivariatePolyRingStore> = (&'a Coeff<P>, &'a Mon<P>);

struct MonomialMap<P, O, K = ()>
    where P: MultivariatePolyRingStore,
        P::Type: MultivariatePolyRing,
        <P::Type as RingExtension>::BaseRing: RingStore,
        O: MonomialOrder + Copy
{
    data: Vec<(Mon<P>, K)>,
    order: O
}

enum AddResult<K = ()> {
    Present(usize, K), Added(usize)
}

impl<P, O, K> MonomialMap<P, O, K>
    where P: MultivariatePolyRingStore,
        P::Type: MultivariatePolyRing,
        <P::Type as RingExtension>::BaseRing: RingStore,
        O: MonomialOrder + Copy
{
    fn new(order: O) -> Self {
        Self {
            data: Vec::new(),
            order: order
        }
    }

    fn add(&mut self, m: Mon<P>, k: K) -> AddResult<K> {
        match self.data.binary_search_by(|(x, _)| self.order.compare(x, &m).reverse()) {
            Ok(i) => {
                let old = std::mem::replace(&mut self.data[i].1, k);
                AddResult::Present(i, old)
            },
            Err(i) => {
                self.data.insert(i, (m, k));
                AddResult::Added(i)
            }
        }
    }

    #[allow(unused)]
    fn remove(&mut self, m: &Mon<P>) -> Option<K> {
        match self.data.binary_search_by(|(x, _)| self.order.compare(x, m).reverse()) {
            Ok(i) => {
                let (_, result) = self.data.remove(i);
                return Some(result);
            },
            Err(_) => return None
        }
    }

    #[allow(unused)]
    fn contains<'a>(&'a self, m: &Mon<P>) -> Option<&'a K> {
        match self.data.binary_search_by(|(x, _)| self.order.compare(x, m).reverse()) {
            Ok(i) => Some(&self.data[i].1),
            Err(_) => None
        }
    }

    fn iter<'a>(&'a self) -> impl 'a + Iterator<Item = &'a (Mon<P>, K)> {
        self.data.iter()
    }

    fn at_index(&self, i: usize) -> &Mon<P> {
        &self.data[i].0
    }

    fn index_of(&self, m: &Mon<P>) -> Option<usize> {
        self.data.binary_search_by(|(x, _)| self.order.compare(x, &m).reverse()).ok()
    }

    fn len(&self) -> usize {
        self.data.len()
    }
}

///
/// Computes `(s, t, lcm(x, y))` such that `s * x = t * y = lcm(x, y)`.
/// 
fn coeff_lcm<R>(ring: R, lhs: &El<R>, rhs: &El<R>) -> (El<R>, El<R>, El<R>)
    where R: PrincipalIdealRingStore,
        R::Type: PrincipalIdealRing
{
    let gcd = ring.ideal_gen(lhs, rhs);
    let s = ring.checked_div(rhs, &gcd).unwrap();
    return (ring.clone_el(&s), ring.checked_div(lhs, &gcd).unwrap(), ring.mul(s, gcd));
}

fn mon_lcm<P>(ring: &P, lhs: &Mon<P>, rhs: &Mon<P>) -> (Mon<P>, Mon<P>, Mon<P>)
    where P: MultivariatePolyRingStore,
        P::Type: MultivariatePolyRing
{
    let gcd = ring.clone_monomial(lhs).gcd(rhs);
    return (ring.clone_monomial(rhs).div(&gcd), ring.clone_monomial(lhs).div(&gcd), ring.clone_monomial(lhs).mul(rhs).div(&gcd));
}

fn lt_lcm<'a, P>(ring: &P, lhs: LT_ref<'a, P>, rhs: LT_ref<'a, P>) -> (LT<P>, LT<P>, LT<P>)
    where P: MultivariatePolyRingStore,
        P::Type: MultivariatePolyRing,
        <<P::Type as RingExtension>::BaseRing as RingStore>::Type: PrincipalIdealRing
{
    let (coeff_s, coeff_t, coeff_lcm) = coeff_lcm(ring.base_ring(), lhs.0, rhs.0);
    let (mon_s, mon_t, mon_lcm) = mon_lcm(ring, lhs.1, rhs.1);
    return ((coeff_s, mon_s), (coeff_t, mon_t), (coeff_lcm, mon_lcm));
}

fn lt_divides<'a, P>(ring: &P, lhs: LT_ref<'a, P>, rhs: LT_ref<'a, P>) -> bool
    where P: MultivariatePolyRingStore,
        P::Type: MultivariatePolyRing,
        <<P::Type as RingExtension>::BaseRing as RingStore>::Type: PrincipalIdealRing
{
    lhs.1.divides(rhs.1) && ring.base_ring().checked_div(rhs.0, lhs.0).is_some()
}

fn p_valuation<R>(ring: R, p: &El<R>, mut val: El<R>) -> usize
    where R: RingStore,
        R::Type: DivisibilityRing
{
    assert!(!ring.is_zero(&val));
    let mut result = 0;
    while let Some(new) = ring.checked_div(&val, p) {
        val = new;
        result += 1;
    }
    return result;
}

fn reduce_S_matrix<P, O>(ring: P, p: &Coeff<P>, S_polys: &[El<P>], basis: &[El<P>], order: O) -> Vec<El<P>>
    where P: MultivariatePolyRingStore,
        P::Type: MultivariatePolyRing,
        <P::Type as RingExtension>::BaseRing: RingStore + Sync,
        <<P::Type as RingExtension>::BaseRing as RingStore>::Type: PrincipalIdealRing,
        O: MonomialOrder + Copy,
        Coeff<P>: Send + Sync
{
    if S_polys.iter().all(|S_poly| ring.is_zero(S_poly)) {
        return Vec::new();
    }

    let ring_ref = &ring;
    let mut columns: MonomialMap<P, O> = MonomialMap::new(order);
    for b in S_polys {
        for (_, b_m) in ring.terms(b) {
            columns.add(ring.clone_monomial(&b_m), ());
        }
    }
    let columns_ref = &columns;
    let mut A = algorithms::sparse_invert::builder::SparseMatrixBuilder::new(&ring.base_ring());
    for j in 0..columns.len() {
        A.add_col(j);
    }
    for (i, S_poly) in S_polys.iter().enumerate() {
        A.add_row(i, ring.terms(S_poly).map(move |(c, m)| {
            let col = columns_ref.index_of(m).unwrap();
            return (col, ring_ref.base_ring().clone_el(c));
        }));
    }

    // all monomials for which we have to add a row to A to enable eliminating them
    let mut open = columns.iter().map(|(m, _)| ring.clone_monomial(m)).collect::<Vec<_>>();
    
    while let Some(m) = open.pop() {
        if let Some(f) = basis.iter().filter(|f| ring.lm(f, order).unwrap().divides(&m))
            .min_by_key(|f| p_valuation(ring.base_ring(), p, ring.base_ring().clone_el(ring.lt(f, order).unwrap().0)))
        {
            let div_monomial = ring.clone_monomial(&m).div(ring.lm(f, order).unwrap());
            A.add_zero_row(0);
            for (c, f_m) in ring.terms(f) {
                let final_monomial = ring.clone_monomial(&div_monomial).mul(f_m);
                let col = match columns.add(ring.clone_monomial(&final_monomial), ()) {
                    AddResult::Added(i) => { A.add_col(i); open.push(final_monomial); i },
                    AddResult::Present(i, _) => i
                };

                A.set(0, col, ring.base_ring().clone_el(c));
            }
        }
    }

    let entries = gb_sparse_row_echelon::<_, true>(ring.base_ring(), A, 256);

    let mut result = Vec::new();
    for i in 0..entries.len() {
        if let Some(j) = entries[i].iter().inspect(|(_, c)| assert!(!ring.base_ring().is_zero(c))).map(|(j, _)| *j).min() {
            if basis.iter().all(|f| !ring.lm(f, order).unwrap().divides(columns.at_index(j)) || ring.base_ring().checked_div(&entries[i][0].1, ring.lt(f, order).unwrap().0).is_none()) {
                let f = ring.from_terms(entries[i].iter().map(|(j, c)| (ring.base_ring().clone_el(c), ring.clone_monomial(columns.at_index(*j)))));
                if ring.is_zero(&f) {
                    println!();
                    ring.println(&f);
                    for (j, c) in &entries[i] {
                        print!("({}, {}, {}), ", j, ring.format(&ring.monomial(columns.at_index(*j))), ring.base_ring().format(c));
                    }
                    println!();
                    panic!()
                }
                result.push(f)
            }
        }
    }
    return result;
}

fn sym_tuple(a: usize, b: usize) -> (usize, usize) {
    if a < b {
        (b, a)
    } else {
        (a, b)
    }
}

pub struct RingInfo<R: ?Sized>
    where R: RingBase
{
    pub ring: PhantomData<R>,
    pub extended_ideal_generator: R::Element,
    pub annihilating_power: Option<usize>
}

impl<R: ?Sized + RingBase> RingInfo<R> {

    fn required_s_polys<'a, P>(&'a self, _ring: &'a P, basis: &'a [El<P>]) -> impl 'a + Iterator<Item = SPoly>
        where P: MultivariatePolyRingStore,
            P::Type: MultivariatePolyRing,
            <P::Type as RingExtension>::BaseRing: RingStore<Type = R>
    {
        (0..basis.len()).flat_map(|i| (0..i).map(move |j: usize| SPoly::Standard(i, j)))
            .chain((0..basis.len()).flat_map(|i| (1..self.annihilating_power.unwrap_or(0)).map(move |k: usize| SPoly::Nilpotent(i, k))))
    }
}

#[derive(PartialEq)]
enum SPoly {
    Standard(usize, usize), Nilpotent(usize, usize)
}

impl SPoly {

    ///
    /// The terms are not ordered, and may contain the same monomial multiple times!
    /// 
    fn terms<'a, P, O>(&'a self, ring: &'a P, ring_info: &'a RingInfo<<<P::Type as RingExtension>::BaseRing as RingStore>::Type>, basis: &'a [El<P>], order: O) -> Box<dyn 'a + Iterator<Item = (El<<P::Type as RingExtension>::BaseRing>, Mon<P>)>>
        where P: 'a + MultivariatePolyRingStore,
            P::Type: MultivariatePolyRing,
            <<P::Type as RingExtension>::BaseRing as RingStore>::Type: PrincipalIdealRing,
            O: MonomialOrder + Copy
    {
        match self {
            SPoly::Standard(i, j) => {
                let (f1_factor, f2_factor, lcm) = lt_lcm(ring, ring.lt(&basis[*i], order).unwrap(), ring.lt(&basis[*j], order).unwrap());
                return Box::new(ring.terms(&basis[*i])
                    .map(move |(c, m)| (ring.base_ring().mul_ref(c, &f1_factor.0), ring.clone_monomial(m).mul(&f1_factor.1)))
                    .chain(
                        ring.terms(&basis[*j])
                            .map(move |(c, m)| (ring.base_ring().negate(ring.base_ring().mul_ref(c, &f2_factor.0)), ring.clone_monomial(m).mul(&f2_factor.1))))
                    .filter(move |(_, m)| *m != lcm.1)
                    .filter(move |(c, _)| !ring.base_ring().is_zero(c)));
            },
            SPoly::Nilpotent(i, k) => {
                assert!(ring_info.annihilating_power.is_some());
                let factor = ring.base_ring().pow(ring.base_ring().clone_el(&ring_info.extended_ideal_generator), *k);
                return Box::new(ring.terms(&basis[*i]).map(move |(c, m)| (ring.base_ring().mul_ref(c, &factor), ring.clone_monomial(m))).filter(move |(c, _)| !ring.base_ring().is_zero(c)));
            }
        }
    }
    
    fn is_zero<P, O>(&self, ring: &P, ring_info: &RingInfo<<<P::Type as RingExtension>::BaseRing as RingStore>::Type>, basis: &[El<P>], order: O) -> bool
        where P: MultivariatePolyRingStore,
            P::Type: MultivariatePolyRing,
            <<P::Type as RingExtension>::BaseRing as RingStore>::Type: PrincipalIdealRing,
            O: MonomialOrder + Copy
    {
        self.terms(ring, ring_info, basis, order).next().is_none()
    }

    fn expected_max_deg<P, O>(&self, ring: &P, ring_info: &RingInfo<<<P::Type as RingExtension>::BaseRing as RingStore>::Type>, basis: &[El<P>], order: O) -> u16
        where P: MultivariatePolyRingStore,
            P::Type: MultivariatePolyRing,
            <<P::Type as RingExtension>::BaseRing as RingStore>::Type: PrincipalIdealRing,
            O: MonomialOrder + Copy
    {
        self.terms(ring, ring_info, basis, order).map(|(_, m)| m.deg()).max().unwrap()
    }

    fn expected_lm<P, O>(&self, ring: &P, ring_info: &RingInfo<<<P::Type as RingExtension>::BaseRing as RingStore>::Type>, basis: &[El<P>], order: O) -> Monomial<<P::Type as MultivariatePolyRing>::MonomialVector>
        where P: MultivariatePolyRingStore,
            P::Type: MultivariatePolyRing,
            <<P::Type as RingExtension>::BaseRing as RingStore>::Type: PrincipalIdealRing,
            O: MonomialOrder + Copy
    {
        self.terms(ring, ring_info, basis, order).max_by(|(_, l), (_, r)| order.compare(l, r)).map(|(_, m)| m).unwrap()
    }

    fn expected_lc_valuation<P, O>(&self, ring: &P, ring_info: &RingInfo<<<P::Type as RingExtension>::BaseRing as RingStore>::Type>, basis: &[El<P>], order: O) -> usize
        where P: MultivariatePolyRingStore,
            P::Type: MultivariatePolyRing,
            <<P::Type as RingExtension>::BaseRing as RingStore>::Type: PrincipalIdealRing,
            O: MonomialOrder + Copy
    {
        self.terms(ring, ring_info, basis, order).max_by(|(_, l), (_, r)| order.compare(l, r)).map(|(c, _)| p_valuation(ring.base_ring(), &ring_info.extended_ideal_generator, c)).unwrap()
    }

    fn poly<P, O>(&self, ring: &P, ring_info: &RingInfo<<<P::Type as RingExtension>::BaseRing as RingStore>::Type>, basis: &[El<P>], order: O) -> El<P>
        where P: MultivariatePolyRingStore,
            P::Type: MultivariatePolyRing,
            <<P::Type as RingExtension>::BaseRing as RingStore>::Type: PrincipalIdealRing,
            O: MonomialOrder + Copy
    {
        let result = ring.from_terms(self.terms(ring, ring_info, basis, order));
        match self {
            SPoly::Standard(i, j) => {
                let (f1_factor, f2_factor, _) = lt_lcm(&ring, ring.lt(&basis[*i], order).unwrap(), ring.lt(&basis[*j], order).unwrap());
                let mut f1_scaled = ring.clone_el(&basis[*i]);
                ring.mul_monomial(&mut f1_scaled, &f1_factor.1);
                ring.inclusion().mul_assign_map(&mut f1_scaled, f1_factor.0);
                let mut f2_scaled = ring.clone_el(&basis[*j]);
                ring.mul_monomial(&mut f2_scaled, &f2_factor.1);
                ring.inclusion().mul_assign_map(&mut f2_scaled, f2_factor.0);
                assert_el_eq!(&ring, &result, &ring.sub(f1_scaled, f2_scaled));
            },
            _ => {}
        }
        return result;
    }

    fn filter_chain_criterion<P, O>(&self, ring: &P, ring_info: &RingInfo<<<P::Type as RingExtension>::BaseRing as RingStore>::Type>, basis: &[El<P>], order: O, reduced_pairs: &[(usize, usize)]) -> bool
        where P: MultivariatePolyRingStore,
            P::Type: MultivariatePolyRing,
            <<P::Type as RingExtension>::BaseRing as RingStore>::Type: PrincipalIdealRing,
            O: MonomialOrder + Copy
    {
        match self {
            SPoly::Standard(i, j) => {
                let lcm = lt_lcm(ring, ring.lt(&basis[*i], order).unwrap(), ring.lt(&basis[*j], order).unwrap()).2;
                (0..basis.len())
                    .filter(|k| lt_divides(ring, ring.lt(&basis[*k], order).unwrap(), (&lcm.0, &lcm.1)))
                    .any(|k| reduced_pairs.binary_search(&sym_tuple(*i, k)).is_ok() && reduced_pairs.binary_search(&sym_tuple(k, *j)).is_ok())
            },
            SPoly::Nilpotent(i, k) => self.is_zero(ring, ring_info, basis, order) || (*k > 0 && self.expected_lm(&ring, ring_info, &basis, order) == SPoly::Nilpotent(*i, *k - 1).expected_lm(&ring, ring_info, &basis, order))
        }
    }

    fn filter_product_criterion<P, O>(&self, ring: &P, _ring_info: &RingInfo<<<P::Type as RingExtension>::BaseRing as RingStore>::Type>, basis: &[El<P>], order: O) -> bool
        where P: MultivariatePolyRingStore,
            P::Type: MultivariatePolyRing,
            <<P::Type as RingExtension>::BaseRing as RingStore>::Type: PrincipalIdealRing,
            O: MonomialOrder + Copy
    {
        match self {
            SPoly::Standard(i, j) => {
                let fi_lm = ring.lm(&basis[*i], order).unwrap();
                let fj_lm = ring.lm(&basis[*j], order).unwrap();
                fi_lm.is_coprime(fj_lm) && ring.base_ring().is_unit(&ring.base_ring().extended_ideal_gen(ring.coefficient_at(&basis[*i], fi_lm), ring.coefficient_at(&basis[*j], fj_lm)).2)
            },
            _ => false
        }
    }
}

pub trait GBRingDescriptorRing: Sized + PrincipalIdealRing {

    fn create_ring_info(&self) -> RingInfo<Self>;
}

impl<F: Field> GBRingDescriptorRing for F {

    fn create_ring_info(&self) -> RingInfo<Self> {
        RingInfo {
            annihilating_power: None,
            ring: PhantomData,
            extended_ideal_generator: self.zero()
        }
    }
}

fn ring_info_local_zn_ring<R>(ring: R) -> Option<RingInfo<R::Type>>
    where R: ZnRingStore,
        R::Type: ZnRing
{
    let factorization = algorithms::int_factor::factor(ring.integer_ring(), ring.integer_ring().clone_el(ring.modulus()));
    if factorization.len() > 1 {
        return None;
    }
    let (p, e) = factorization.into_iter().next().unwrap();
    return Some(RingInfo {
        annihilating_power: Some(e),
        ring: PhantomData,
        extended_ideal_generator: ring.can_hom(ring.integer_ring()).unwrap().map(p)
    });
}

impl GBRingDescriptorRing for zn_64::ZnBase {

    fn create_ring_info(&self) -> RingInfo<Self> {
        ring_info_local_zn_ring(RingRef::new(self)).expect("Currently GBRingDescriptorRing only works for local rings Z/nZ, i.e. Z/p^eZ with p prime")
    }
}

#[allow(deprecated)]
impl GBRingDescriptorRing for crate::rings::zn::zn_42::ZnBase {

    fn create_ring_info(&self) -> RingInfo<Self> {
        ring_info_local_zn_ring(RingRef::new(self)).expect("Currently GBRingDescriptorRing only works for local rings Z/nZ, i.e. Z/p^eZ with p prime")
    }
}

impl<const N: u64> GBRingDescriptorRing for zn_static::ZnBase<N, false> {

    fn create_ring_info(&self) -> RingInfo<Self> {
        ring_info_local_zn_ring(RingRef::new(self)).expect("Currently GBRingDescriptorRing only works for local rings Z/nZ, i.e. Z/p^eZ with p prime")
    }
}

///
/// A simple implementation of the F4 algorithm for computing Groebner basis.
/// This implementation does currently not include the Buchberger criteria, and thus
/// cannot compete with highly optimized implementations (Singular, Macaulay2, Magma etc).
/// 
/// This algorithm will only consider S-polynomials of degree smaller than the given bound.
/// Ignoring S-polynomials this way might cause the resulting basis not to be a Groebner basis,
/// but can drastically speed up computatations. If you are unsure which bound to use, set
/// it to `u16::MAX` to get an actual GB.
/// 
/// Note that Groebner basis algorithms are still the subject of ongoing research, and
/// whether the Groebner basis of even a simple example can be efficiently computed is
/// hard to predict from the example itself. 
/// 
/// As an additional note, if you want to compute a GB w.r.t. a term ordering that is
/// not degrevlex, it might be faster to first compute a degrevlex-GB and use that as input
/// for a new invocation of f4.
/// 
/// # Example
/// 
/// ```
/// #![feature(generic_const_exprs)]
/// # use feanor_math::ring::*;
/// # use feanor_math::rings::multivariate::*;
/// # use feanor_math::algorithms::f4::*;
/// # use feanor_math::{assert_el_eq, default_memory_provider};
/// # use feanor_math::rings::zn::zn_static;
/// 
/// let order = DegRevLex;
/// let base = zn_static::F17;
/// let ring: ordered::MultivariatePolyRingImpl<_, _, _, 2> = ordered::MultivariatePolyRingImpl::new(base, order, default_memory_provider!());
/// 
/// // the classical GB example: x^2 + y^2 - 1, xy - 2
/// let f1 = ring.from_terms([
///     (1, Monomial::new([2, 0])),
///     (1, Monomial::new([0, 2])),
///     (16, Monomial::new([0, 0]))
/// ].into_iter());
/// let f2 = ring.from_terms([
///     (1, Monomial::new([1, 1])),
///     (15, Monomial::new([0, 0]))
/// ].into_iter());
/// 
/// let gb = f4::<_, _, true>(&ring, vec![ring.clone_el(&f1), ring.clone_el(&f2)], order, u16::MAX);
/// 
/// let in_ideal = ring.from_terms([
///     (16, Monomial::new([0, 3])),
///     (15, Monomial::new([1, 0])),
///     (1, Monomial::new([0, 1])),
/// ].into_iter());
/// 
/// assert_el_eq!(&ring, &ring.zero(), &multivariate_division(&ring, in_ideal, &gb, order));
/// ```
/// 
pub fn f4<P, O, const LOG: bool>(ring: P, mut basis: Vec<El<P>>, order: O, S_poly_degree_bound: u16) -> Vec<El<P>>
    where P: MultivariatePolyRingStore,
        P::Type: MultivariatePolyRing,
        <P::Type as RingExtension>::BaseRing: Sync,
        <<P::Type as RingExtension>::BaseRing as RingStore>::Type: GBRingDescriptorRing,
        O: MonomialOrder + Copy,
        Coeff<P>: Send + Sync
{
    let ring_info = ring.base_ring().get_ring().create_ring_info();

    basis = reduce(&ring, basis, order);

    let select = |s_poly: &SPoly, basis: &[El<P>], degree_bound: (u16, usize)| 
        if s_poly.expected_max_deg(&ring, &ring_info, basis, order) < degree_bound.0 && s_poly.expected_lc_valuation(&ring, &ring_info, basis, order) <= degree_bound.1 {
            Some(s_poly.poly(&ring, &ring_info, basis, order))
        } else {
            None 
        };

    let mut chain_criterion_reduced_pairs = Vec::new();
    let mut product_criterion_skipped = 0;
    let mut chain_criterion_skipped = 0;

    let mut open = ring_info.required_s_polys(&ring, &basis[..]).collect::<Vec<_>>();

    let mut degree_bound = (1, 0);
    while open.len() > 0 {
        if LOG {
            print!("S({})", open.len());
            std::io::stdout().flush().unwrap();
        }

        let mut new_reduced_pairs = Vec::new();
        let mut S_polys = Vec::new();

        open.retain(|S_poly| {
            if S_poly.is_zero(&ring, &ring_info, &basis[..], order) {
                false
            } else if S_poly.filter_product_criterion(&ring, &ring_info, &basis[..], order) {
                product_criterion_skipped += 1;
                false
            } else if S_poly.filter_chain_criterion(&ring, &ring_info, &basis[..], order, &chain_criterion_reduced_pairs[..]) {
                chain_criterion_skipped += 1;
                false
            } else if let Some(poly) = select(S_poly, &basis[..], degree_bound) { 
                S_polys.push(poly);
                if let SPoly::Standard(i, j) = S_poly {
                    new_reduced_pairs.push((*i, *j));
                }
                false
            } else {
                true
            }
        });

        let new_polys: Vec<_> = if S_polys.len() > 0 {
            
            if S_polys.len() > 20 {
                reduce_S_matrix(&ring, &ring_info.extended_ideal_generator, &S_polys, &basis, order)
            } else {
                let start = std::time::Instant::now();
                let result = S_polys.into_iter().map(|f| multivariate_division(&ring, f, &basis, order)).filter(|f| !ring.is_zero(f)).collect();
                let end = std::time::Instant::now();
                if LOG {
                    print!("[{}ms]", (end - start).as_millis());
                    std::io::stdout().flush().unwrap();
                }
                result
            }

        } else {
            Vec::new()
        };

        chain_criterion_reduced_pairs.extend(new_reduced_pairs.into_iter());
        chain_criterion_reduced_pairs.sort_unstable();

        if new_polys.len() == 0 {
            if degree_bound.0 == S_poly_degree_bound && degree_bound.1 >= ring_info.annihilating_power.unwrap_or(0) {
                if LOG {
                    println!();
                    println!("S-poly degree bound exceeded, aborting GB computation");
                    println!("Redundant S-pairs: {} (prod), {} (chain)", product_criterion_skipped, chain_criterion_skipped);
                }
                return basis;
            }
            degree_bound.0 = min(degree_bound.0 + 5, S_poly_degree_bound);
            degree_bound.1 += 1;
            if LOG {
                print!("{{{:?}}}", degree_bound);
                std::io::stdout().flush().unwrap();
            }
        } else {

            degree_bound = (1, 0);
            basis.extend(new_polys.into_iter());
            basis = reduce(&ring, basis, order);
            chain_criterion_reduced_pairs = Vec::new();

            open = ring_info.required_s_polys(&ring, &basis[..]).collect::<Vec<_>>();
    
            if LOG {
                print!("b({})", basis.len());
                std::io::stdout().flush().unwrap();
            }
        }
    }
    if LOG {
        println!();
        println!("Redundant S-pairs: {} (prod), {} (chain)", product_criterion_skipped, chain_criterion_skipped);
    }
    return basis;
}

pub fn reduce<P, O>(ring: P, mut polys: Vec<El<P>>, order: O) -> Vec<El<P>>
    where P: MultivariatePolyRingStore,
        P::Type: MultivariatePolyRing,
        <P::Type as RingExtension>::BaseRing: DivisibilityRingStore,
        <<P::Type as RingExtension>::BaseRing as RingStore>::Type: DivisibilityRing,
        O: MonomialOrder + Copy
{
    let mut changed = true;
    while changed {
        changed = false;
        polys.sort_by(|l, r| order.compare(ring.lm(l, order).unwrap(), ring.lm(r, order).unwrap()));
        let mut i = 0;
        while i < polys.len() {
            let reduced = multivariate_division(&ring, ring.clone_el(&polys[i]), (&polys[..i]).chain(&polys[(i + 1)..]), order);
            if !ring.is_zero(&reduced) {
                if !ring.eq_el(&reduced, &polys[i]) {
                    changed = true;
                    polys[i] = reduced;
                }
                i += 1;
            } else {
                polys.remove(i);
                changed = true;
            }
        }
    }
    for b1 in &polys {
        for b2 in &polys {
            if b1 as *const _ != b2 as *const _ {
                let b1_lm = ring.lm(b1, order).unwrap();
                let b2_lm = ring.lm(b2, order).unwrap();
                assert!(!b1_lm.divides(b2_lm) || ring.base_ring().checked_div(ring.coefficient_at(b2, b2_lm), ring.coefficient_at(b1, b1_lm)).is_none());
            }
        }
    }
    return polys;
}

pub fn multivariate_division<P, V, O>(ring: P, mut f: El<P>, set: V, order: O) -> El<P>
    where P: MultivariatePolyRingStore,
        P::Type: MultivariatePolyRing,
        <P::Type as RingExtension>::BaseRing: DivisibilityRingStore,
        <<P::Type as RingExtension>::BaseRing as RingStore>::Type: DivisibilityRing,
        O: MonomialOrder + Copy,
        V: VectorView<El<P>>
{
    if ring.is_zero(&f) {
        return f;
    }
    let mut f_lm = ring.clone_monomial(ring.lm(&f, order).unwrap());
    let mut f_lc = ring.base_ring().clone_el(ring.coefficient_at(&f, &f_lm));
    let incl = ring.inclusion();
    let mut changed = true;
    while changed {
        changed = false;
        while let Some((quo, g)) = set.iter()
            .filter(|g| ring.lm(g, order).unwrap().divides(&f_lm))
            .filter_map(|g| ring.base_ring().checked_div(&f_lc, ring.coefficient_at(g, ring.lm(g, order).unwrap())).map(|quo| (quo, g)))
            .next()
        {
            changed = true;
            let g_lm = ring.lm(g, order).unwrap();
            let div_monomial = f_lm.div(&g_lm);
            let mut g_scaled = ring.clone_el(g);
            ring.mul_monomial(&mut g_scaled, &div_monomial);
            incl.mul_assign_map_ref(&mut g_scaled, &quo);
            ring.sub_assign(&mut f, g_scaled);
            if let Some(m) = ring.lm(&f, order) {
                f_lm = ring.clone_monomial(m);
                f_lc = ring.base_ring().clone_el(ring.coefficient_at(&f, &f_lm))
            } else {
                return f;
            }
        }
    }
    return f;
}

#[cfg(test)]
use crate::rings::multivariate::ordered::*;
#[cfg(test)]
use crate::default_memory_provider;
#[cfg(test)]
use crate::rings::poly::*;
#[cfg(test)]
use crate::primitive_int::StaticRing;
#[cfg(test)]
use crate::wrapper::RingElementWrapper;

#[test]
fn test_f4_small() {
    let order = DegRevLex;
    let base: RingValue<zn_static::ZnBase<17, true>> = zn_static::F17;
    let ring: MultivariatePolyRingImpl<_, _, _, 2> = MultivariatePolyRingImpl::new(base, order, default_memory_provider!());

    let f1 = ring.from_terms([
        (1, Monomial::new([2, 0])),
        (1, Monomial::new([0, 2])),
        (16, Monomial::new([0, 0]))
    ].into_iter());
    let f2 = ring.from_terms([
        (1, Monomial::new([1, 1])),
        (15, Monomial::new([0, 0]))
    ].into_iter());

    let actual = f4::<_, _, true>(&ring, vec![ring.clone_el(&f1), ring.clone_el(&f2)], order, u16::MAX);

    let expected = ring.from_terms([
        (16, Monomial::new([0, 3])),
        (15, Monomial::new([1, 0])),
        (1, Monomial::new([0, 1])),
    ].into_iter());

    assert_eq!(3, actual.len());
    assert_el_eq!(&ring, &f2, actual.at(0));
    assert_el_eq!(&ring, &f1, actual.at(1));
    assert_el_eq!(&ring, &ring.negate(expected), actual.at(2));
}

#[test]
fn test_f4_larger() {
    let order = DegRevLex;
    let base = zn_static::F17;
    let ring: MultivariatePolyRingImpl<_, _, _, 3> = MultivariatePolyRingImpl::new(base, order, default_memory_provider!());

    let f1 = ring.from_terms([
        (1, Monomial::new([2, 1, 1])),
        (1, Monomial::new([0, 2, 0])),
        (1, Monomial::new([1, 0, 1])),
        (2, Monomial::new([1, 0, 0])),
        (1, Monomial::new([0, 0, 0]))
    ].into_iter());
    let f2 = ring.from_terms([
        (1, Monomial::new([0, 3, 1])),
        (1, Monomial::new([0, 0, 3])),
        (1, Monomial::new([1, 1, 0]))
    ].into_iter());
    let f3 = ring.from_terms([
        (1, Monomial::new([1, 0, 2])),
        (1, Monomial::new([1, 0, 1])),
        (2, Monomial::new([0, 1, 1])),
        (7, Monomial::new([0, 0, 0]))
    ].into_iter());

    let actual = f4::<_, _, true>(&ring, vec![ring.clone_el(&f1), ring.clone_el(&f2), ring.clone_el(&f3)], order, u16::MAX);

    let g1 = ring.from_terms([
        (1, Monomial::new([0, 4, 0])),
        (8, Monomial::new([0, 3, 1])),
        (12, Monomial::new([0, 1, 3])),
        (6, Monomial::new([0, 0, 4])),
        (1, Monomial::new([0, 3, 0])),
        (13, Monomial::new([0, 2, 1])),
        (11, Monomial::new([0, 1, 2])),
        (10, Monomial::new([0, 0, 3])),
        (11, Monomial::new([0, 2, 0])),
        (12, Monomial::new([0, 1, 1])),
        (6, Monomial::new([0, 0, 2])),
        (6, Monomial::new([0, 1, 0])),
        (13, Monomial::new([0, 0, 1])),
        (9, Monomial::new([0, 0, 0]))
    ].into_iter());

    assert_el_eq!(&ring, &ring.zero(), &multivariate_division(&ring, g1, &actual, order));
}

#[test]
fn test_f4_larger_elim() {
    let order = BlockLexDegRevLex::new(..1, 1..);
    let base = zn_static::F17;
    let ring: MultivariatePolyRingImpl<_, _, _, 3> = MultivariatePolyRingImpl::new(base, order, default_memory_provider!());

    let f1 = ring.from_terms([
        (1, Monomial::new([2, 1, 1])),
        (1, Monomial::new([0, 2, 0])),
        (1, Monomial::new([1, 0, 1])),
        (2, Monomial::new([1, 0, 0])),
        (1, Monomial::new([0, 0, 0]))
    ].into_iter());
    let f2 = ring.from_terms([
        (1, Monomial::new([1, 1, 0])),
        (1, Monomial::new([0, 3, 1])),
        (1, Monomial::new([0, 0, 3]))
    ].into_iter());
    let f3 = ring.from_terms([
        (1, Monomial::new([1, 0, 2])),
        (1, Monomial::new([1, 0, 1])),
        (2, Monomial::new([0, 1, 1])),
        (7, Monomial::new([0, 0, 0]))
    ].into_iter());

    let actual = f4::<_, _, true>(&ring, vec![ring.clone_el(&f1), ring.clone_el(&f2), ring.clone_el(&f3)], order, u16::MAX);

    let g1 = ring.from_terms([
        (1, Monomial::new([0, 4, 0])),
        (8, Monomial::new([0, 3, 1])),
        (12, Monomial::new([0, 1, 3])),
        (6, Monomial::new([0, 0, 4])),
        (1, Monomial::new([0, 3, 0])),
        (13, Monomial::new([0, 2, 1])),
        (11, Monomial::new([0, 1, 2])),
        (10, Monomial::new([0, 0, 3])),
        (11, Monomial::new([0, 2, 0])),
        (12, Monomial::new([0, 1, 1])),
        (6, Monomial::new([0, 0, 2])),
        (6, Monomial::new([0, 1, 0])),
        (13, Monomial::new([0, 0, 1])),
        (9, Monomial::new([0, 0, 0]))
    ].into_iter());

    assert_el_eq!(&ring, &ring.zero(), &multivariate_division(&ring, g1, &actual, order));
}

#[test]
fn test_gb_local_ring() {
    let order = DegRevLex;
    let base = zn_static::Zn::<16>::RING;
    let ring: MultivariatePolyRingImpl<_, _, _, 1> = MultivariatePolyRingImpl::new(base, order, default_memory_provider!());
    
    let f = ring.from_terms([(4, Monomial::new([1])), (1, Monomial::new([0]))].into_iter());
    let gb = f4::<_, _, true>(&ring, vec![f], order, u16::MAX);

    assert_eq!(1, gb.len());
    assert_el_eq!(&ring, &ring.one(), &gb[0]);
}

#[test]
fn test_generic_computation() {
    let order = DegRevLex;
    let base = zn_static::F17;
    let ring: MultivariatePolyRingImpl<_, _, _, 6> = MultivariatePolyRingImpl::new(base, order, default_memory_provider!());
    let poly_ring = dense_poly::DensePolyRing::new(&ring, "X");

    let X1 = poly_ring.mul(
        poly_ring.from_terms([(ring.indeterminate(0), 0), (ring.one(), 1)].into_iter()),
        poly_ring.from_terms([(ring.indeterminate(1), 0), (ring.one(), 1)].into_iter())
    );
    let X2 = poly_ring.mul(
        poly_ring.add(poly_ring.clone_el(&X1.clone()), poly_ring.from_terms([(ring.indeterminate(2), 0), (ring.indeterminate(3), 1)].into_iter())),
        poly_ring.add(poly_ring.clone_el(&X1.clone()), poly_ring.from_terms([(ring.indeterminate(4), 0), (ring.indeterminate(5), 1)].into_iter()))
    );
    let basis = vec![
        ring.sub_ref_snd(ring.int_hom().map(1), poly_ring.coefficient_at(&X2.clone(), 0)),
        ring.sub_ref_snd(ring.int_hom().map(1), poly_ring.coefficient_at(&X2.clone(), 1)),
        ring.sub_ref_snd(ring.int_hom().map(1), poly_ring.coefficient_at(&X2.clone(), 2)),
    ];

    let start = std::time::Instant::now();
    let gb1 = f4::<_, _, true>(&ring, basis.iter().map(|f| ring.clone_el(f)).collect(), order, u16::MAX);
    let end = std::time::Instant::now();

    println!("Computed GB in {} ms", (end - start).as_millis());

    assert_eq!(11, gb1.len());
}

#[ignore]
#[test]
fn test_gb_local_ring_large() {
    let order = DegRevLex;
    let base = zn_static::Zn::<16>::RING;
    let ring: MultivariatePolyRingImpl<_, _, _, 12> = MultivariatePolyRingImpl::new(base, order, default_memory_provider!());

    let Y0 = RingElementWrapper::new(&ring, ring.indeterminate(0));
    let Y1 = RingElementWrapper::new(&ring, ring.indeterminate(1));
    let Y2 = RingElementWrapper::new(&ring, ring.indeterminate(2));
    let Y3 = RingElementWrapper::new(&ring, ring.indeterminate(3));
    let Y4 = RingElementWrapper::new(&ring, ring.indeterminate(4));
    let Y5 = RingElementWrapper::new(&ring, ring.indeterminate(5));
    let Y6 = RingElementWrapper::new(&ring, ring.indeterminate(6));
    let Y7 = RingElementWrapper::new(&ring, ring.indeterminate(7));
    let Y8 = RingElementWrapper::new(&ring, ring.indeterminate(8));
    let Y9 = RingElementWrapper::new(&ring, ring.indeterminate(9));
    let Y10 = RingElementWrapper::new(&ring, ring.indeterminate(10));
    let Y11 = RingElementWrapper::new(&ring, ring.indeterminate(11));
    let scalar = |x: i32| RingElementWrapper::new(&ring, ring.int_hom().map(x));

    let system = [
        Y0.clone() * Y1.clone() * Y2.clone() * Y3.clone().pow(2) * Y4.clone().pow(2) + scalar(4) * Y0.clone() * Y1.clone() * Y2.clone() * Y3.clone() * Y4.clone() * Y5.clone() * Y8.clone() + Y0.clone() * Y1.clone() * Y2.clone() * Y5.clone().pow(2) * Y8.clone().pow(2) + Y0.clone() * Y2.clone() * Y3.clone() * Y4.clone() * Y6.clone() + Y0.clone() * Y1.clone() * Y3.clone() * Y4.clone() * Y7.clone() + Y0.clone() * Y2.clone() * Y5.clone() * Y6.clone() * Y8.clone() + Y0.clone() * Y1.clone() * Y5.clone() * Y7.clone() * Y8.clone() + Y0.clone() * Y2.clone() * Y3.clone() * Y5.clone() * Y10.clone() + Y0.clone() * Y1.clone() * Y3.clone() * Y5.clone() * Y11.clone() + Y0.clone() * Y6.clone() * Y7.clone() + Y3.clone() * Y5.clone() * Y9.clone() - scalar(4),
        scalar(2) * Y0.clone() * Y1.clone() * Y2.clone() * Y3.clone().pow(2) * Y4.clone() * Y5.clone() + scalar(2) * Y0.clone() * Y1.clone() * Y2.clone() * Y3.clone() * Y5.clone().pow(2) * Y8.clone() + Y0.clone() * Y2.clone() * Y3.clone() * Y5.clone() * Y6.clone() + Y0.clone() * Y1.clone() * Y3.clone() * Y5.clone() * Y7.clone() + scalar(8),
        Y0.clone() * Y1.clone() * Y2.clone() * Y3.clone().pow(2) * Y5.clone().pow(2) - scalar(5)
    ].into_iter().map(|f| f.unwrap()).collect::<Vec<_>>();

    let part_of_result = [
        scalar(4) * Y2.clone().pow(2) * Y6.clone().pow(2) - scalar(4) * Y1.clone().pow(2) * Y7.clone().pow(2),
        scalar(8) * Y2.clone() * Y6.clone() + scalar(8) * Y1.clone() * Y7.clone()
    ];

    let start = std::time::Instant::now();
    let gb = f4::<_, _, true>(&ring, system, order, u16::MAX);
    let end = std::time::Instant::now();

    println!("Computed GB in {} ms", (end - start).as_millis());

    for f in &part_of_result {
        assert!(ring.is_zero(&multivariate_division(&ring, f.clone().unwrap(), &gb, order)));
    }

    assert_eq!(93, gb.len());
}

#[test]
#[ignore]
fn test_difficult_gb() {
    let order = DegRevLex;
    let base = zn_static::Fp::<7>::RING;
    let ring: MultivariatePolyRingImpl<_, _, _, 7> = MultivariatePolyRingImpl::new(base, order, default_memory_provider!());

    let X0 = RingElementWrapper::new(&ring, ring.indeterminate(0));
    let X1 = RingElementWrapper::new(&ring, ring.indeterminate(1));
    let X2 = RingElementWrapper::new(&ring, ring.indeterminate(2));
    let X3 = RingElementWrapper::new(&ring, ring.indeterminate(3));
    let X4 = RingElementWrapper::new(&ring, ring.indeterminate(4));
    let X5 = RingElementWrapper::new(&ring, ring.indeterminate(5));
    let X6 = RingElementWrapper::new(&ring, ring.indeterminate(6));

    let i = |x: i64| RingElementWrapper::new(&ring, ring.inclusion().map(ring.base_ring().coerce(&StaticRing::<i64>::RING, x)));

    let basis = vec![
        i(6) + i(2) * X5.clone() + i(2) * X4.clone() + X6.clone() + i(4) * X0.clone() + i(5) * X6.clone() * X5.clone() + X6.clone() * X4.clone() + i(3) * X0.clone() * X4.clone() + i(6) * X0.clone() * X6.clone() + i(2) * X0.clone() * X3.clone() + X0.clone() * X2.clone() + i(4) * X0.clone() * X1.clone() + i(2) * X3.clone() * X4.clone() * X5.clone() + i(4) * X0.clone() * X6.clone() * X5.clone() + i(6) * X0.clone() * X2.clone() * X5.clone() + i(5) * X0.clone() * X6.clone() * X4.clone() + i(2) * X0.clone() * X3.clone() * X4.clone() + i(4) * X0.clone() * X1.clone() * X4.clone() + X0.clone() * X6.clone().pow(2) + i(3) * X0.clone() * X3.clone() * X6.clone() + i(5) * X0.clone() * X2.clone() * X6.clone() + i(2) * X0.clone() * X1.clone() * X6.clone() + X0.clone() * X3.clone().pow(2) + i(2) * X0.clone() * X2.clone() * X3.clone() + i(3) * X0.clone() * X3.clone() * X4.clone() * X5.clone() + i(4) * X0.clone() * X3.clone() * X6.clone() * X5.clone() + i(3) * X0.clone() * X1.clone() * X6.clone() * X5.clone() + i(3) * X0.clone() * X2.clone() * X3.clone() * X5.clone() + i(3) * X0.clone() * X3.clone() * X6.clone() * X4.clone() + i(2) * X0.clone() * X1.clone() * X6.clone() * X4.clone() + i(2) * X0.clone() * X3.clone().pow(2) * X4.clone() + i(2) * X0.clone() * X2.clone() * X3.clone() * X4.clone() + i(3) * X0.clone() * X3.clone().pow(2) * X4.clone() * X5.clone() + i(4) * X0.clone() * X1.clone() * X3.clone() * X4.clone() * X5.clone() + X0.clone() * X3.clone().pow(2) * X4.clone().pow(2),
        i(5) + i(4) * X0.clone() + i(6) * X4.clone() * X5.clone() + i(3) * X6.clone() * X5.clone() + i(4) * X0.clone() * X4.clone() + i(3) * X0.clone() * X6.clone() + i(6) * X0.clone() * X3.clone() + i(6) * X0.clone() * X2.clone() + i(6) * X6.clone() * X4.clone() * X5.clone() + i(2) * X0.clone() * X4.clone() * X5.clone() + i(4) * X0.clone() * X6.clone() * X5.clone() + i(3) * X0.clone() * X2.clone() * X5.clone() + i(3) * X0.clone() * X6.clone() * X4.clone() + i(5) * X0.clone() * X3.clone() * X4.clone() + i(6) * X0.clone() * X2.clone() * X4.clone() + i(4) * X0.clone() * X6.clone().pow(2) + i(3) * X0.clone() * X3.clone() * X6.clone() + i(3) * X0.clone() * X2.clone() * X6.clone() + i(2) * X0.clone() * X6.clone() * X4.clone() * X5.clone() + i(6) * X0.clone() * X3.clone() * X4.clone() * X5.clone() + i(5) * X0.clone() * X1.clone() * X4.clone() * X5.clone() + i(6) * X0.clone() * X6.clone().pow(2) * X5.clone() + i(2) * X0.clone() * X3.clone() * X6.clone() * X5.clone() + i(2) * X0.clone() * X2.clone() * X6.clone() * X5.clone() + i(6) * X0.clone() * X1.clone() * X6.clone() * X5.clone() + i(6) * X0.clone() * X2.clone() * X3.clone() * X5.clone() + i(6) * X0.clone() * X3.clone() * X4.clone().pow(2) + i(4) * X0.clone() * X6.clone().pow(2) * X4.clone() + i(6) * X0.clone() * X3.clone() * X6.clone() * X4.clone() + i(3) * X0.clone() * X2.clone() * X6.clone() * X4.clone() + i(4) * X0.clone() * X3.clone() * X6.clone() * X4.clone() * X5.clone() + i(5) * X0.clone() * X1.clone() * X6.clone() * X4.clone() * X5.clone() + i(6) * X0.clone() * X3.clone().pow(2) * X4.clone() * X5.clone() + i(5) * X0.clone() * X2.clone() * X3.clone() * X4.clone() * X5.clone() + i(3) * X0.clone() * X3.clone() * X6.clone() * X4.clone().pow(2) + i(6) * X0.clone() * X3.clone().pow(2) * X4.clone().pow(2) * X5.clone(),
        i(2) + i(2) * X0.clone() + i(4) * X0.clone() * X4.clone() + i(2) * X0.clone() * X6.clone() + i(5) * X0.clone() * X4.clone() * X5.clone() + i(2) * X0.clone() * X6.clone() * X5.clone() + i(4) * X0.clone() * X2.clone() * X5.clone() + i(2) * X0.clone() * X4.clone().pow(2) + i(4) * X0.clone() * X6.clone() * X4.clone() + i(4) * X0.clone() * X6.clone().pow(2) + i(2) * X6.clone() * X4.clone() * X5.clone().pow(2) + i(4) * X0.clone() * X6.clone() * X4.clone() * X5.clone() + X0.clone() * X3.clone() * X4.clone() * X5.clone() + X0.clone() * X2.clone() * X4.clone() * X5.clone() + i(3) * X0.clone() * X6.clone().pow(2) * X5.clone() + i(2) * X0.clone() * X3.clone() * X6.clone() * X5.clone() + i(4) * X0.clone() * X2.clone() * X6.clone() * X5.clone() + i(2) * X0.clone() * X6.clone() * X4.clone().pow(2) + X0.clone() * X6.clone().pow(2) * X4.clone() + i(3) * X0.clone() * X6.clone() * X4.clone() * X5.clone().pow(2) + i(2) * X0.clone() * X6.clone().pow(2) * X5.clone().pow(2) + i(3) * X0.clone() * X2.clone() * X6.clone() * X5.clone().pow(2) + X0.clone() * X3.clone() * X4.clone().pow(2) * X5.clone() + X0.clone() * X6.clone().pow(2) * X4.clone() * X5.clone() + X0.clone() * X3.clone() * X6.clone() * X4.clone() * X5.clone() + i(6) * X0.clone() * X2.clone() * X6.clone() * X4.clone() * X5.clone() + i(4) * X0.clone() * X6.clone().pow(2) * X4.clone().pow(2) + i(6) * X0.clone() * X3.clone() * X6.clone() * X4.clone() * X5.clone().pow(2) + i(4) * X0.clone() * X1.clone() * X6.clone() * X4.clone() * X5.clone().pow(2) + i(4) * X0.clone() * X2.clone() * X3.clone() * X4.clone() * X5.clone().pow(2) + i(6) * X0.clone() * X3.clone() * X6.clone() * X4.clone().pow(2) * X5.clone() + i(2) * X0.clone() * X3.clone().pow(2) * X4.clone().pow(2) * X5.clone().pow(2),
        i(4) + i(5) * X0.clone() * X4.clone() * X5.clone() + i(6) * X0.clone() * X6.clone() * X5.clone() + i(5) * X0.clone() * X4.clone().pow(2) * X5.clone() + i(3) * X0.clone() * X6.clone() * X4.clone() * X5.clone() + i(3) * X0.clone() * X6.clone().pow(2) * X5.clone() + i(6) * X0.clone() * X6.clone() * X4.clone() * X5.clone().pow(2) + i(5) * X0.clone() * X2.clone() * X4.clone() * X5.clone().pow(2) + X0.clone() * X6.clone().pow(2) * X5.clone().pow(2) + i(6) * X0.clone() * X2.clone() * X6.clone() * X5.clone().pow(2) + i(4) * X0.clone() * X6.clone() * X4.clone().pow(2) * X5.clone() + i(2) * X0.clone() * X6.clone().pow(2) * X4.clone() * X5.clone() + i(5) * X0.clone() * X3.clone() * X4.clone().pow(2) * X5.clone().pow(2) + i(3) * X0.clone() * X6.clone().pow(2) * X4.clone() * X5.clone().pow(2) + i(5) * X0.clone() * X3.clone() * X6.clone() * X4.clone() * X5.clone().pow(2) + i(4) * X0.clone() * X2.clone() * X6.clone() * X4.clone() * X5.clone().pow(2) + i(6) * X0.clone() * X6.clone().pow(2) * X4.clone().pow(2) * X5.clone() + i(4) * X0.clone() * X3.clone() * X6.clone() * X4.clone().pow(2) * X5.clone().pow(2),
        i(4) + i(4) * X0.clone() * X4.clone().pow(2) * X5.clone().pow(2) + X0.clone() * X6.clone() * X4.clone() * X5.clone().pow(2) + X0.clone() * X6.clone().pow(2) * X5.clone().pow(2) + i(5) * X0.clone() * X6.clone() * X4.clone().pow(2) * X5.clone().pow(2) + i(6) * X0.clone() * X6.clone().pow(2) * X4.clone() * X5.clone().pow(2) + i(3) * X0.clone() * X6.clone().pow(2) * X4.clone() * X5.clone().pow(3) + i(4) * X0.clone() * X2.clone() * X6.clone() * X4.clone() * X5.clone().pow(3) + i(6) * X0.clone() * X6.clone().pow(2) * X4.clone().pow(2) * X5.clone().pow(2) + i(4) * X0.clone() * X3.clone() * X6.clone() * X4.clone().pow(2) * X5.clone().pow(3),
        i(5) * X0.clone() * X6.clone() * X4.clone().pow(2) * X5.clone().pow(3) + i(6) * X0.clone() * X6.clone().pow(2) * X4.clone() * X5.clone().pow(3) + i(5) * X0.clone() * X6.clone().pow(2) * X4.clone().pow(2) * X5.clone().pow(3),
        i(2) * X0.clone() * X6.clone().pow(2) * X4.clone().pow(2) * X5.clone().pow(4)
    ].into_iter().map(|f| f.unwrap()).collect();

    let start = std::time::Instant::now();
    let gb = f4::<_, _, true>(ring, basis, order, u16::MAX);
    let end = std::time::Instant::now();

    println!("Computed GB in {} ms", (end - start).as_millis());

    assert_eq!(130, gb.len());
    std::hint::black_box(gb);
}