web-audio-api 0.28.0

A pure Rust implementation of the Web Audio API, for use in non-browser contexts
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
use std::sync::atomic::Ordering;
use std::sync::Arc;

use crate::context::{AudioContextRegistration, AudioParamId, BaseAudioContext};
use crate::param::{AudioParam, AudioParamDescriptor};
use crate::render::{AudioParamValues, AudioProcessor, AudioRenderQuantum, RenderScope};
use crate::{AtomicF32, RENDER_QUANTUM_SIZE};

use super::{AudioNode, ChannelConfig, ChannelConfigOptions};

// Converting a value 𝑣 in decibels to linear gain unit means returning 10𝑣/20.
fn db_to_lin(val: f32) -> f32 {
    (10.0_f32).powf(val / 20.)
}

// Converting a value 𝑣 in linear gain unit to decibel means executing the following steps:
// If 𝑣 is equal to zero, return -1000.
// Else, return 20log10𝑣.
fn lin_to_db(val: f32) -> f32 {
    if val == 0. {
        -1000.
    } else {
        20. * val.log10() // 20 * log10(val);
    }
}

/// Options for constructing a [`DynamicsCompressorNode`]
// https://webaudio.github.io/web-audio-api/#DynamicsCompressorOptions
// dictionary DynamicsCompressorOptions : AudioNodeOptions {
//   float attack = 0.003;
//   float knee = 30;
//   float ratio = 12;
//   float release = 0.25;
//   float threshold = -24;
// };
#[derive(Clone, Debug)]
pub struct DynamicsCompressorOptions {
    pub attack: f32,
    pub knee: f32,
    pub ratio: f32,
    pub release: f32,
    pub threshold: f32,
    pub channel_config: ChannelConfigOptions,
}

impl Default for DynamicsCompressorOptions {
    fn default() -> Self {
        Self {
            attack: 0.003,   // seconds
            knee: 30.,       // dB
            ratio: 12.,      // unit less
            release: 0.25,   // seconds
            threshold: -24., // dB
            channel_config: ChannelConfigOptions::default(),
        }
    }
}

/// `DynamicsCompressorNode` provides a compression effect.
///
/// It lowers the volume of the loudest parts of the signal and raises the volume
/// of the softest parts. Overall, a louder, richer, and fuller sound can be achieved.
/// It is especially important in games and musical applications where large numbers
/// of individual sounds are played simultaneous to control the overall signal level
/// and help avoid clipping (distorting) the audio output to the speakers.
///
/// - MDN documentation: <https://developer.mozilla.org/en-US/docs/Web/API/DynamicsCompressorNode>
/// - specification: <https://webaudio.github.io/web-audio-api/#DynamicsCompressorNode>
/// - see also: [`BaseAudioContext::create_dynamics_compressor`](crate::context::BaseAudioContext::create_dynamics_compressor)
///
/// # Usage
///
/// ```no_run
/// use std::fs::File;
/// use web_audio_api::context::{BaseAudioContext, AudioContext};
/// use web_audio_api::node::{AudioNode, AudioScheduledSourceNode};
///
/// // create an `AudioContext`
/// let context = AudioContext::default();
/// // load and decode a soundfile into an audio buffer
/// let file = File::open("samples/sample.wav").unwrap();
/// let buffer = context.decode_audio_data_sync(file).unwrap();
///
/// // create compressor and connect to destination
/// let compressor = context.create_dynamics_compressor();
/// compressor.connect(&context.destination());
///
/// // pipe the audio source in the compressor
/// let src = context.create_buffer_source();
/// src.connect(&compressor);
/// src.set_buffer(buffer.clone());
/// src.start();
/// ```
///
/// # Examples
///
/// - `cargo run --release --example compressor`
///
pub struct DynamicsCompressorNode {
    registration: AudioContextRegistration,
    channel_config: ChannelConfig,
    attack: AudioParam,
    knee: AudioParam,
    ratio: AudioParam,
    release: AudioParam,
    threshold: AudioParam,
    reduction: Arc<AtomicF32>,
}

impl AudioNode for DynamicsCompressorNode {
    fn registration(&self) -> &AudioContextRegistration {
        &self.registration
    }

    fn channel_config(&self) -> &ChannelConfig {
        &self.channel_config
    }

    fn number_of_inputs(&self) -> usize {
        1
    }

    fn number_of_outputs(&self) -> usize {
        1
    }
}

impl DynamicsCompressorNode {
    pub fn new<C: BaseAudioContext>(context: &C, options: DynamicsCompressorOptions) -> Self {
        context.register(move |registration| {
            // attack, knee, ratio, release and threshold have automation rate constraints
            // https://webaudio.github.io/web-audio-api/#audioparam-automation-rate-constraints
            let attack_param_opts = AudioParamDescriptor {
                min_value: 0.,
                max_value: 1.,
                default_value: 0.003,
                automation_rate: crate::param::AutomationRate::K,
            };
            let (mut attack_param, attack_proc) =
                context.create_audio_param(attack_param_opts, &registration);
            attack_param.set_automation_rate_constrained(true);
            attack_param.set_value(options.attack);

            let knee_param_opts = AudioParamDescriptor {
                min_value: 0.,
                max_value: 40.,
                default_value: 30.,
                automation_rate: crate::param::AutomationRate::K,
            };
            let (mut knee_param, knee_proc) =
                context.create_audio_param(knee_param_opts, &registration);
            knee_param.set_automation_rate_constrained(true);
            knee_param.set_value(options.knee);

            let ratio_param_opts = AudioParamDescriptor {
                min_value: 1.,
                max_value: 20.,
                default_value: 12.,
                automation_rate: crate::param::AutomationRate::K,
            };
            let (mut ratio_param, ratio_proc) =
                context.create_audio_param(ratio_param_opts, &registration);
            ratio_param.set_automation_rate_constrained(true);
            ratio_param.set_value(options.ratio);

            let release_param_opts = AudioParamDescriptor {
                min_value: 0.,
                max_value: 1.,
                default_value: 0.25,
                automation_rate: crate::param::AutomationRate::K,
            };
            let (mut release_param, release_proc) =
                context.create_audio_param(release_param_opts, &registration);
            release_param.set_automation_rate_constrained(true);
            release_param.set_value(options.release);

            let threshold_param_opts = AudioParamDescriptor {
                min_value: -100.,
                max_value: 0.,
                default_value: -24.,
                automation_rate: crate::param::AutomationRate::K,
            };
            let (mut threshold_param, threshold_proc) =
                context.create_audio_param(threshold_param_opts, &registration);
            threshold_param.set_automation_rate_constrained(true);
            threshold_param.set_value(options.threshold);

            let reduction = Arc::new(AtomicF32::new(0.));

            // define the number of buffers we need to have a delay line of ~6ms
            // const delay = new DelayNode(context, {delayTime: 0.006});
            let ring_buffer_size =
                (context.sample_rate() * 0.006 / RENDER_QUANTUM_SIZE as f32).ceil() as usize + 1;
            let ring_buffer = Vec::<AudioRenderQuantum>::with_capacity(ring_buffer_size);

            let render = DynamicsCompressorRenderer {
                attack: attack_proc,
                knee: knee_proc,
                ratio: ratio_proc,
                release: release_proc,
                threshold: threshold_proc,
                reduction: reduction.clone(),
                ring_buffer,
                ring_index: 0,
                prev_detector_value: 0.,
            };

            let node = DynamicsCompressorNode {
                registration,
                channel_config: options.channel_config.into(),
                attack: attack_param,
                knee: knee_param,
                ratio: ratio_param,
                release: release_param,
                threshold: threshold_param,
                reduction,
            };

            (node, Box::new(render))
        })
    }

    pub fn attack(&self) -> &AudioParam {
        &self.attack
    }

    pub fn knee(&self) -> &AudioParam {
        &self.knee
    }

    pub fn ratio(&self) -> &AudioParam {
        &self.ratio
    }

    pub fn release(&self) -> &AudioParam {
        &self.release
    }

    pub fn threshold(&self) -> &AudioParam {
        &self.threshold
    }

    pub fn reduction(&self) -> f32 {
        self.reduction.load(Ordering::SeqCst)
    }
}

struct DynamicsCompressorRenderer {
    attack: AudioParamId,
    knee: AudioParamId,
    ratio: AudioParamId,
    release: AudioParamId,
    threshold: AudioParamId,
    reduction: Arc<AtomicF32>,
    ring_buffer: Vec<AudioRenderQuantum>,
    ring_index: usize,
    prev_detector_value: f32,
}

// SAFETY:
// AudioRenderQuantums are not Send but we promise the `ring_buffer` Vec is
// empty before we ship it to the render thread.
#[allow(clippy::non_send_fields_in_send_ty)]
unsafe impl Send for DynamicsCompressorRenderer {}

// https://webaudio.github.io/web-audio-api/#DynamicsCompressorOptions-processing
// see also https://www.eecs.qmul.ac.uk/~josh/documents/2012/GiannoulisMassbergReiss-dynamicrangecompression-JAES2012.pdf
// follow Fig. 7 (c) diagram in paper
impl AudioProcessor for DynamicsCompressorRenderer {
    fn process(
        &mut self,
        inputs: &[AudioRenderQuantum],
        outputs: &mut [AudioRenderQuantum],
        params: AudioParamValues,
        scope: &RenderScope,
    ) -> bool {
        // single input/output node
        let input = inputs[0].clone();
        let output = &mut outputs[0];
        let sample_rate = scope.sample_rate;

        let ring_size = self.ring_buffer.capacity();
        // ensure ring buffer is filled with silence
        if self.ring_buffer.len() < ring_size {
            let mut silence = input.clone();
            silence.make_silent();
            self.ring_buffer.resize(ring_size, silence);
        }

        // setup values for compression curve
        // https://webaudio.github.io/web-audio-api/#compression-curve
        let threshold = params.get(&self.threshold)[0];
        let knee = params.get(&self.knee)[0];
        let ratio = params.get(&self.ratio)[0];
        // @note: if knee != 0. we shadow threshold to match definitions of knee
        //   and threshold given in https://www.eecs.qmul.ac.uk/~josh/documents/2012/
        //   where knee is centered around threshold.
        //   We can thus reuse their formula for the gain computer stage.
        // yG =
        //     xG                                      if 2(xG − T) < −W
        //     xG + (1/R − 1)(xG − T + W/2)^2 / (2W)   if 2|(xG − T)| ≤ W
        //     T + (xG − T)/R                          if 2(xG − T) > W
        // This is weird, and probably wrong because `knee` and `threshold` are not
        // independant, but matches the spec.
        let threshold = if knee > 0. {
            threshold + knee / 2.
        } else {
            threshold
        };
        let half_knee = knee / 2.;
        // pre-compute for this block the constant part of the formula of the knee
        let knee_partial = (1. / ratio - 1.) / (2. * knee);

        // compute time constants for attack and release - eq. (7) in paper
        let attack = params.get(&self.attack)[0];
        let release = params.get(&self.release)[0];
        let attack_tau = (-1. / (attack * sample_rate)).exp();
        let release_tau = (-1. / (release * sample_rate)).exp();

        // Computing the makeup gain means executing the following steps:
        // - Let full range gain be the value returned by applying the compression curve to the value 1.0.
        // - Let full range makeup gain be the inverse of full range gain.
        // - Return the result of taking the 0.6 power of full range makeup gain.
        // @note: this should be confirmed / simplified, maybe could do all this in dB
        // seems coherent with chrome implementation
        let full_range_gain = threshold + (-threshold / ratio);
        let full_range_makeup = 1. / db_to_lin(full_range_gain);
        let makeup_gain = lin_to_db(full_range_makeup.powf(0.6));

        let mut prev_detector_value = self.prev_detector_value;

        let mut reduction_gain = 0.; // dB
        let mut reduction_gains = [0.; 128]; // lin
        let mut detector_values = [0.; 128]; // lin

        for i in 0..RENDER_QUANTUM_SIZE {
            // pick highest value for this index across all input channels
            // @tbc - this seems to be what is done in chrome
            let mut max = f32::MIN;

            for channel in input.channels().iter() {
                let sample = channel[i].abs();
                if sample > max {
                    max = sample;
                }
            }

            // pick absolute value and convert to dB domain
            // var xG in paper
            let sample_db = lin_to_db(max);

            // Gain Computer stage
            // ------------------------------------------------
            // var yG - eq. 4 in paper
            // if knee == 0. (hard knee), the `else if` branch is bypassed
            let sample_attenuated = if sample_db <= threshold - half_knee {
                sample_db
            } else if sample_db <= threshold + half_knee {
                sample_db + (sample_db - threshold + half_knee).powi(2) * knee_partial
            } else {
                threshold + (sample_db - threshold) / ratio
            };
            // variable xL in paper
            let sample_attenuation = sample_db - sample_attenuated;

            // Level Detector stage
            // ------------------------------------------------
            // Branching peak detector - eq. 16 in paper - var yL
            // attack branch
            let detector_value = if sample_attenuation > prev_detector_value {
                attack_tau * prev_detector_value + (1. - attack_tau) * sample_attenuation
            // release branch
            } else {
                release_tau * prev_detector_value + (1. - release_tau) * sample_attenuation
            };

            detector_values[i] = detector_value;
            // cdB = -yL + make up gain
            reduction_gain = -1. * detector_value + makeup_gain;
            // convert to lin now, so we just to multiply samples later
            reduction_gains[i] = db_to_lin(reduction_gain);
            // update prev_detector_value for next sample
            prev_detector_value = detector_value;
        }

        // update prev_detector_value for next block
        self.prev_detector_value = prev_detector_value;
        // update reduction shared w/ main thread
        self.reduction.store(reduction_gain, Ordering::SeqCst);

        // store input in delay line
        self.ring_buffer[self.ring_index] = input;

        // apply compression to delayed signal
        let read_index = (self.ring_index + 1) % ring_size;
        let delayed = &self.ring_buffer[read_index];

        self.ring_index = read_index;

        *output = delayed.clone();

        // if delayed signal is silent, there is no compression to apply
        // thus we can consider the node has reach is tail time. (TBC)
        if output.is_silent() {
            output.make_silent(); // truncate to 1 channel if needed
            return false;
        }

        output.channels_mut().iter_mut().for_each(|channel| {
            channel
                .iter_mut()
                .zip(reduction_gains.iter())
                .for_each(|(o, g)| *o *= g);
        });

        true
    }
}

#[cfg(test)]
mod tests {
    use float_eq::assert_float_eq;

    use crate::context::OfflineAudioContext;
    use crate::node::AudioScheduledSourceNode;

    use super::*;

    #[test]
    fn test_constructor() {
        {
            let context = OfflineAudioContext::new(1, 0, 44_100.);
            let compressor = DynamicsCompressorNode::new(&context, Default::default());

            assert_float_eq!(compressor.attack().value(), 0.003, abs <= 0.);
            assert_float_eq!(compressor.knee().value(), 30., abs <= 0.);
            assert_float_eq!(compressor.ratio().value(), 12., abs <= 0.);
            assert_float_eq!(compressor.release().value(), 0.25, abs <= 0.);
            assert_float_eq!(compressor.threshold().value(), -24., abs <= 0.);
        }

        {
            let context = OfflineAudioContext::new(1, 0, 44_100.);
            let compressor = DynamicsCompressorNode::new(
                &context,
                DynamicsCompressorOptions {
                    attack: 0.5,
                    knee: 12.,
                    ratio: 1.,
                    release: 0.75,
                    threshold: -60.,
                    ..DynamicsCompressorOptions::default()
                },
            );

            assert_float_eq!(compressor.attack().value(), 0.5, abs <= 0.);
            assert_float_eq!(compressor.knee().value(), 12., abs <= 0.);
            assert_float_eq!(compressor.ratio().value(), 1., abs <= 0.);
            assert_float_eq!(compressor.release().value(), 0.75, abs <= 0.);
            assert_float_eq!(compressor.threshold().value(), -60., abs <= 0.);
        }
    }

    #[test]
    fn test_inner_delay() {
        let sample_rate = 44_100.;
        let compressor_delay = 0.006;
        // index of the first non zero sample, rounded at next block after
        // compressor theoretical delay, i.e. 3 blocks at this sample_rate
        let non_zero_index = (compressor_delay * sample_rate / RENDER_QUANTUM_SIZE as f32).ceil()
            as usize
            * RENDER_QUANTUM_SIZE;

        let context = OfflineAudioContext::new(1, 128 * 8, sample_rate);

        let compressor = DynamicsCompressorNode::new(&context, Default::default());
        compressor.connect(&context.destination());

        let mut buffer = context.create_buffer(1, 128 * 5, sample_rate);
        let signal = [1.; 128 * 5];
        buffer.copy_to_channel(&signal, 0);

        let src = context.create_buffer_source();
        src.set_buffer(buffer);
        src.connect(&compressor);
        src.start();

        let res = context.start_rendering_sync();
        let chan = res.channel_data(0).as_slice();

        // this is the delay
        assert_float_eq!(
            chan[0..non_zero_index],
            vec![0.; non_zero_index][..],
            abs_all <= 0.
        );

        // as some compresssion is applied, we just check the remaining is non zero
        for sample in chan.iter().take(128 * 8).skip(non_zero_index) {
            assert!(*sample != 0.);
        }
    }

    #[test]
    fn test_db_to_lin() {
        assert_float_eq!(db_to_lin(0.), 1., abs <= 0.);
        assert_float_eq!(db_to_lin(-20.), 0.1, abs <= 1e-8);
        assert_float_eq!(db_to_lin(-40.), 0.01, abs <= 1e-8);
        assert_float_eq!(db_to_lin(-60.), 0.001, abs <= 1e-8);
    }

    #[test]
    fn test_lin_to_db() {
        assert_float_eq!(lin_to_db(1.), 0., abs <= 0.);
        assert_float_eq!(lin_to_db(0.1), -20., abs <= 0.);
        assert_float_eq!(lin_to_db(0.01), -40., abs <= 0.);
        assert_float_eq!(lin_to_db(0.001), -60., abs <= 0.);
        // special case
        assert_float_eq!(lin_to_db(0.), -1000., abs <= 0.);
    }

    // @note: keep this, is usefull to grab some internal value to be plotted
    // #[test]
    // fn test_attenuated_values() {
    //     // threshold: -40.
    //     // knee: 0.
    //     // ratio: 12.
    //     let sample_rate = 1_000.;
    //     let context = OfflineAudioContext::new(1, 128, sample_rate);

    //     let compressor = DynamicsCompressorNode::new(&context, Default::default());
    //     compressor.knee().set_value(0.);
    //     compressor.threshold().set_value(-30.);
    //     compressor.attack().set_value(0.05);
    //     compressor.release().set_value(0.1);
    //     compressor.connect(&context.destination());

    //     let mut buffer = context.create_buffer(1, 128 * 8, sample_rate);
    //     let mut signal = [0.; 128 * 8];

    //     for (i, s) in signal.iter_mut().enumerate() {
    //         *s = if i < 300 { 1. } else { 0.3 };
    //     }

    //     // println!("{:?}", signal);
    //     buffer.copy_to_channel(&signal, 0);

    //     let src = context.create_buffer_source();
    //     src.set_buffer(buffer);
    //     src.connect(&compressor);
    //     src.start();

    //     let _res = context.start_rendering_sync();
    // }
}