1#![allow(clippy::unused_async)] pub mod transfer_learning;
14use crate::RecognitionError;
25use serde::{Deserialize, Serialize};
26use std::collections::HashMap;
27use std::path::{Path, PathBuf};
28use std::time::{Duration, SystemTime};
29use tokio::sync::RwLock;
30use voirs_sdk::AudioBuffer;
31
32#[derive(Debug, Clone, Serialize, Deserialize)]
34pub struct TrainingConfig {
35 pub transfer_learning: transfer_learning::TransferLearningConfig,
37 pub max_epochs: u32,
39 pub learning_rate: f32,
41 pub batch_size: usize,
43}
44
45impl Default for TrainingConfig {
46 fn default() -> Self {
47 Self {
48 transfer_learning: transfer_learning::TransferLearningConfig::default(),
49 max_epochs: 100,
50 learning_rate: 0.001,
51 batch_size: 32,
52 }
53 }
54}
55
56pub struct TrainingManager {
58 transfer_learning: transfer_learning::TransferLearningCoordinator,
60 config: TrainingConfig,
62 session_state: RwLock<TrainingSessionState>,
64}
65
66#[derive(Debug, Clone)]
68pub struct TrainingSessionState {
69 pub session_id: String,
71 pub start_time: SystemTime,
73 pub current_phase: TrainingPhase,
75 pub progress: f32,
77 pub current_epoch: u32,
79 pub total_epochs: u32,
81 pub training_losses: Vec<f32>,
83 pub validation_losses: Vec<f32>,
85 pub current_learning_rate: f32,
87 pub best_validation_score: f32,
89 pub is_paused: bool,
91 pub status: TrainingStatus,
93}
94
95#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
97pub enum TrainingPhase {
98 Initialization,
100 DataPreparation,
102 TransferLearning,
104 DomainAdaptation,
106 FewShotOptimization,
108 ContinuousLearning,
110 Validation,
112 Optimization,
114 Deployment,
116 Completed,
118 Failed,
120}
121
122#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
124pub enum TrainingStatus {
125 Running,
127 Paused,
129 Completed,
131 Failed {
133 error: String,
135 },
136 Cancelled,
138 Scheduled,
140}
141
142#[derive(Debug, Clone, Serialize, Deserialize)]
144pub struct TrainingTask {
145 pub task_id: String,
147 pub name: String,
149 pub training_type: TrainingType,
151 pub data_config: DataConfiguration,
153 pub model_config: ModelConfiguration,
155 pub hyperparameters: Hyperparameters,
157 pub estimated_duration: Duration,
159 pub priority: u8,
161 pub dependencies: Vec<String>,
163 pub output_config: OutputConfiguration,
165}
166
167#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
169pub enum TrainingType {
170 FullTraining,
172 TransferLearning {
174 base_model_path: PathBuf,
176 freeze_layers: Vec<String>,
178 },
179 FineTuning {
181 target_layers: Vec<String>,
183 learning_rate_scale: f32,
185 },
186 DomainAdaptation {
188 source_domain: String,
190 target_domain: String,
192 adaptation_strategy: AdaptationStrategy,
194 },
195 FewShotLearning {
197 support_set_size: usize,
199 meta_learning_strategy: MetaLearningStrategy,
201 },
202 ContinuousLearning {
204 update_frequency: Duration,
206 retention_strategy: RetentionStrategy,
208 },
209 FederatedLearning {
211 federation_config: FederationConfig,
213 aggregation_strategy: AggregationStrategy,
215 },
216}
217
218#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
220pub enum AdaptationStrategy {
221 GradualUnfreezing,
223 DomainAdversarial,
225 FeatureAlignment,
227 CurriculumLearning,
229}
230
231#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
233pub enum MetaLearningStrategy {
234 MAML,
236 PrototypicalNetworks,
238 MatchingNetworks,
240 RelationNetworks,
242}
243
244#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
246pub enum RetentionStrategy {
247 ElasticWeightConsolidation,
249 ProgressiveNeuralNetworks,
251 MemoryReplay,
253 PackNet,
255}
256
257#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
259pub struct FederationConfig {
260 pub num_clients: usize,
262 pub min_clients_for_aggregation: usize,
264 pub communication_rounds: u32,
266 pub client_selection: ClientSelectionStrategy,
268 pub privacy_config: PrivacyConfiguration,
270}
271
272#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
274pub enum ClientSelectionStrategy {
275 Random,
277 DataQuality,
279 ComputationalResources,
281 CommunicationEfficiency,
283}
284
285#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
287pub enum AggregationStrategy {
288 FederatedAveraging,
290 WeightedByDataSize,
292 Adaptive,
294 SecureAggregation,
296}
297
298#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
300pub struct PrivacyConfiguration {
301 pub enable_differential_privacy: bool,
303 pub privacy_budget: f32,
305 pub noise_multiplier: f32,
307 pub enable_secure_mpc: bool,
309 pub homomorphic_encryption: Option<HomomorphicEncryptionConfig>,
311}
312
313#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
315pub struct HomomorphicEncryptionConfig {
316 pub scheme: String,
318 pub key_size: usize,
320 pub noise_std: f32,
322}
323
324#[derive(Debug, Clone, Serialize, Deserialize)]
326pub struct DataConfiguration {
327 pub training_data_paths: Vec<PathBuf>,
329 pub validation_data_paths: Vec<PathBuf>,
331 pub test_data_paths: Vec<PathBuf>,
333 pub preprocessing: PreprocessingConfiguration,
335 pub augmentation: AugmentationConfiguration,
337 pub batch_size: usize,
339 pub num_workers: usize,
341 pub validation: DataValidationConfiguration,
343}
344
345#[derive(Debug, Clone, Serialize, Deserialize)]
347pub struct PreprocessingConfiguration {
348 pub target_sample_rate: u32,
350 pub min_duration_seconds: f32,
352 pub max_duration_seconds: f32,
354 pub normalize_audio: bool,
356 pub noise_reduction: bool,
358 pub feature_extraction: FeatureExtractionConfig,
360}
361
362#[derive(Debug, Clone, Serialize, Deserialize)]
364pub struct FeatureExtractionConfig {
365 pub feature_type: FeatureType,
367 pub num_features: usize,
369 pub window_size: usize,
371 pub hop_length: usize,
373 pub n_fft: usize,
375}
376
377#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
379pub enum FeatureType {
380 MFCC,
382 MelSpectrogram,
384 LogMelSpectrogram,
386 RawWaveform,
388 ConstantQ,
390 Chromagram,
392 SpectralCentroid,
394}
395
396#[derive(Debug, Clone, Serialize, Deserialize)]
398pub struct AugmentationConfiguration {
399 pub time_stretching: bool,
401 pub pitch_shifting: bool,
403 pub noise_addition: bool,
405 pub reverb_addition: bool,
407 pub volume_augmentation: bool,
409 pub speed_perturbation: bool,
411 pub augmentation_probability: f32,
413}
414
415#[derive(Debug, Clone, Serialize, Deserialize)]
417pub struct DataValidationConfiguration {
418 pub validate_audio_integrity: bool,
420 pub validate_transcriptions: bool,
422 pub min_transcription_length: usize,
424 pub max_transcription_length: usize,
426 pub audio_quality_thresholds: AudioQualityThresholds,
428}
429
430#[derive(Debug, Clone, Serialize, Deserialize)]
432pub struct AudioQualityThresholds {
433 pub min_snr_db: f32,
435 pub max_thd_percent: f32,
437 pub min_dynamic_range_db: f32,
439 pub max_clipping_percent: f32,
441}
442
443#[derive(Debug, Clone, Serialize, Deserialize)]
445pub struct ModelConfiguration {
446 pub architecture: ModelArchitecture,
448 pub size_config: ModelSizeConfig,
450 pub layer_configs: Vec<LayerConfiguration>,
452 pub activation_functions: HashMap<String, ActivationFunction>,
454 pub regularization: RegularizationConfiguration,
456 pub optimization: OptimizationConfiguration,
458}
459
460#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
462pub enum ModelArchitecture {
463 Transformer {
465 num_layers: usize,
467 num_heads: usize,
469 d_model: usize,
471 d_ff: usize,
473 },
474 Conformer {
476 num_blocks: usize,
478 encoder_dim: usize,
480 attention_heads: usize,
482 conv_kernel_size: usize,
484 },
485 Wav2Vec2 {
487 feature_extractor_layers: usize,
489 transformer_layers: usize,
491 embedding_dim: usize,
493 },
494 Whisper {
496 encoder_layers: usize,
498 decoder_layers: usize,
500 d_model: usize,
502 num_heads: usize,
504 },
505 Custom {
507 config_path: PathBuf,
509 },
510}
511
512#[derive(Debug, Clone, Serialize, Deserialize)]
514pub struct ModelSizeConfig {
515 pub total_parameters: usize,
517 pub memory_footprint: usize,
519 pub depth: usize,
521 pub width: usize,
523}
524
525#[derive(Debug, Clone, Serialize, Deserialize)]
527pub struct LayerConfiguration {
528 pub name: String,
530 pub layer_type: LayerType,
532 pub input_dims: Vec<usize>,
534 pub output_dims: Vec<usize>,
536 pub parameters: HashMap<String, LayerParameter>,
538 pub trainable: bool,
540}
541
542#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
544pub enum LayerType {
545 Linear,
547 Conv1d,
549 MultiHeadAttention,
551 FeedForward,
553 LayerNorm,
555 Dropout,
557 Activation,
559 Embedding,
561 LSTM,
563 GRU,
565 Custom {
567 class_name: String,
569 },
570}
571
572#[derive(Debug, Clone, Serialize, Deserialize)]
574pub enum LayerParameter {
575 Int(i64),
577 Float(f64),
579 String(String),
581 Bool(bool),
583 List(Vec<LayerParameter>),
585}
586
587#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
589pub enum ActivationFunction {
590 ReLU,
592 GELU,
594 Swish,
596 Tanh,
598 Sigmoid,
600 Softmax,
602 LeakyReLU {
604 negative_slope: f32,
606 },
607 ELU {
609 alpha: f32,
611 },
612}
613
614#[derive(Debug, Clone, Serialize, Deserialize)]
616pub struct RegularizationConfiguration {
617 pub l1_weight: f32,
619 pub l2_weight: f32,
621 pub dropout_rate: f32,
623 pub weight_decay: f32,
625 pub gradient_clip_norm: f32,
627 pub early_stopping: EarlyStoppingConfig,
629}
630
631#[derive(Debug, Clone, Serialize, Deserialize)]
633pub struct EarlyStoppingConfig {
634 pub enabled: bool,
636 pub monitor_metric: String,
638 pub patience: u32,
640 pub min_delta: f32,
642 pub mode: EarlyStoppingMode,
644}
645
646#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
648pub enum EarlyStoppingMode {
649 Min,
651 Max,
653}
654
655#[derive(Debug, Clone, Serialize, Deserialize)]
657pub struct OptimizationConfiguration {
658 pub optimizer: OptimizerType,
660 pub lr_scheduler: LearningRateScheduler,
662 pub loss_function: LossFunction,
664 pub gradient_accumulation_steps: u32,
666 pub mixed_precision: bool,
668 pub model_parallelism: ModelParallelismConfig,
670}
671
672#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
674pub enum OptimizerType {
675 Adam {
677 lr: f32,
679 beta1: f32,
681 beta2: f32,
683 eps: f32,
685 },
686 AdamW {
688 lr: f32,
690 beta1: f32,
692 beta2: f32,
694 eps: f32,
696 weight_decay: f32,
698 },
699 SGD {
701 lr: f32,
703 momentum: f32,
705 dampening: f32,
707 weight_decay: f32,
709 },
710 RMSprop {
712 lr: f32,
714 alpha: f32,
716 eps: f32,
718 weight_decay: f32,
720 },
721}
722
723#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
725pub enum LearningRateScheduler {
726 Constant,
728 StepLR {
730 step_size: u32,
732 gamma: f32,
734 },
735 ExponentialLR {
737 gamma: f32,
739 },
740 CosineAnnealingLR {
742 t_max: u32,
744 eta_min: f32,
746 },
747 ReduceLROnPlateau {
749 factor: f32,
751 patience: u32,
753 threshold: f32,
755 },
756 WarmupCosine {
758 warmup_steps: u32,
760 total_steps: u32,
762 },
763}
764
765#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
767pub enum LossFunction {
768 CrossEntropy,
770 CTC,
772 AttentionSeq2Seq,
774 FocalLoss {
776 alpha: f32,
778 gamma: f32,
780 },
781 LabelSmoothingCrossEntropy {
783 smoothing: f32,
785 },
786 Custom {
788 implementation_path: PathBuf,
790 },
791}
792
793#[derive(Debug, Clone, Serialize, Deserialize)]
795pub struct ModelParallelismConfig {
796 pub enable_data_parallelism: bool,
798 pub enable_model_parallelism: bool,
800 pub enable_pipeline_parallelism: bool,
802 pub pipeline_stages: usize,
804 pub tensor_parallel_degree: usize,
806}
807
808#[derive(Debug, Clone, Serialize, Deserialize)]
810pub struct Hyperparameters {
811 pub epochs: u32,
813 pub learning_rate: f32,
815 pub batch_size: usize,
817 pub warmup_steps: u32,
819 pub eval_frequency: u32,
821 pub save_frequency: u32,
823 pub log_frequency: u32,
825 pub random_seed: u64,
827 pub additional: HashMap<String, HyperparameterValue>,
829}
830
831#[derive(Debug, Clone, Serialize, Deserialize)]
833pub enum HyperparameterValue {
834 Int(i64),
836 Float(f64),
838 String(String),
840 Bool(bool),
842 List(Vec<HyperparameterValue>),
844}
845
846#[derive(Debug, Clone, Serialize, Deserialize)]
848pub struct OutputConfiguration {
849 pub output_dir: PathBuf,
851 pub export_formats: Vec<ModelExportFormat>,
853 pub save_checkpoints: bool,
855 pub checkpoint_frequency: u32,
857 pub max_checkpoints: usize,
859 pub save_logs: bool,
861 pub save_metrics: bool,
863 pub generate_reports: bool,
865}
866
867#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
869pub enum ModelExportFormat {
870 PyTorch,
872 ONNX,
874 TensorFlowSavedModel,
876 TensorFlowLite,
878 CoreML,
880 QuantizedONNX,
882 Custom {
884 format_name: String,
886 },
887}
888
889impl TrainingManager {
890 pub async fn new() -> Result<Self, RecognitionError> {
892 Self::with_config(TrainingConfig::default()).await
893 }
894
895 pub async fn with_config(config: TrainingConfig) -> Result<Self, RecognitionError> {
897 let transfer_learning =
898 transfer_learning::TransferLearningCoordinator::new(&config.transfer_learning).await?;
899
900 let session_state = TrainingSessionState {
901 session_id: uuid::Uuid::new_v4().to_string(),
902 start_time: SystemTime::now(),
903 current_phase: TrainingPhase::Initialization,
904 progress: 0.0,
905 current_epoch: 0,
906 total_epochs: 0,
907 training_losses: Vec::new(),
908 validation_losses: Vec::new(),
909 current_learning_rate: 0.0,
910 best_validation_score: f32::NEG_INFINITY,
911 is_paused: false,
912 status: TrainingStatus::Scheduled,
913 };
914
915 Ok(Self {
916 transfer_learning,
917 config,
918 session_state: RwLock::new(session_state),
919 })
920 }
921
922 pub async fn start_training(&self, task: TrainingTask) -> Result<String, RecognitionError> {
924 let mut state = self.session_state.write().await;
925 state.session_id = task.task_id.clone();
926 state.status = TrainingStatus::Running;
927 state.current_phase = TrainingPhase::Initialization;
928 state.total_epochs = task.hyperparameters.epochs;
929 drop(state);
930
931 let training_type = task.training_type.clone();
933 match training_type {
934 TrainingType::TransferLearning { .. } => {
935 self.transfer_learning.start_training(task).await
936 }
937 TrainingType::DomainAdaptation {
938 source_domain,
939 target_domain,
940 adaptation_strategy,
941 } => {
942 self.start_domain_adaptation(
943 task,
944 source_domain,
945 target_domain,
946 adaptation_strategy,
947 )
948 .await
949 }
950 TrainingType::FewShotLearning {
951 support_set_size,
952 meta_learning_strategy,
953 } => {
954 self.start_few_shot_learning(task, support_set_size, meta_learning_strategy)
955 .await
956 }
957 TrainingType::ContinuousLearning {
958 update_frequency,
959 retention_strategy,
960 } => {
961 self.start_continuous_learning(task, update_frequency, retention_strategy)
962 .await
963 }
964 TrainingType::FederatedLearning {
965 federation_config,
966 aggregation_strategy,
967 } => {
968 self.start_federated_learning(task, federation_config, aggregation_strategy)
969 .await
970 }
971 _ => Err(RecognitionError::TrainingError {
972 message: "Unsupported training type".to_string(),
973 source: None,
974 }),
975 }
976 }
977
978 pub async fn get_status(&self) -> TrainingSessionState {
980 self.session_state.read().await.clone()
981 }
982
983 pub async fn pause_training(&self) -> Result<(), RecognitionError> {
985 let mut state = self.session_state.write().await;
986 state.is_paused = true;
987 state.status = TrainingStatus::Paused;
988 Ok(())
989 }
990
991 pub async fn resume_training(&self) -> Result<(), RecognitionError> {
993 let mut state = self.session_state.write().await;
994 state.is_paused = false;
995 state.status = TrainingStatus::Running;
996 Ok(())
997 }
998
999 pub async fn cancel_training(&self) -> Result<(), RecognitionError> {
1001 let mut state = self.session_state.write().await;
1002 state.status = TrainingStatus::Cancelled;
1003 Ok(())
1004 }
1005
1006 pub async fn get_metrics(&self) -> Result<HashMap<String, f32>, RecognitionError> {
1008 Ok(HashMap::new())
1010 }
1011
1012 async fn start_domain_adaptation(
1014 &self,
1015 task: TrainingTask,
1016 source_domain: String,
1017 target_domain: String,
1018 adaptation_strategy: AdaptationStrategy,
1019 ) -> Result<String, RecognitionError> {
1020 tracing::info!(
1021 "Starting domain adaptation from {} to {} using {:?}",
1022 source_domain,
1023 target_domain,
1024 adaptation_strategy
1025 );
1026
1027 {
1029 let mut state = self.session_state.write().await;
1030 state.current_phase = TrainingPhase::DataPreparation;
1031 state.progress = 0.0;
1032 }
1033
1034 match adaptation_strategy {
1035 AdaptationStrategy::GradualUnfreezing => {
1036 self.gradual_unfreezing_adaptation(task, source_domain, target_domain)
1037 .await
1038 }
1039 AdaptationStrategy::DomainAdversarial => {
1040 self.domain_adversarial_adaptation(task, source_domain, target_domain)
1041 .await
1042 }
1043 AdaptationStrategy::FeatureAlignment => {
1044 self.feature_alignment_adaptation(task, source_domain, target_domain)
1045 .await
1046 }
1047 AdaptationStrategy::CurriculumLearning => {
1048 self.curriculum_learning_adaptation(task, source_domain, target_domain)
1049 .await
1050 }
1051 }
1052 }
1053
1054 async fn start_few_shot_learning(
1056 &self,
1057 task: TrainingTask,
1058 support_set_size: usize,
1059 meta_learning_strategy: MetaLearningStrategy,
1060 ) -> Result<String, RecognitionError> {
1061 tracing::info!(
1062 "Starting few-shot learning with support set size {} using {:?}",
1063 support_set_size,
1064 meta_learning_strategy
1065 );
1066
1067 {
1069 let mut state = self.session_state.write().await;
1070 state.current_phase = TrainingPhase::DataPreparation;
1071 state.progress = 0.0;
1072 }
1073
1074 match meta_learning_strategy {
1075 MetaLearningStrategy::MAML => self.maml_few_shot_learning(task, support_set_size).await,
1076 MetaLearningStrategy::PrototypicalNetworks => {
1077 self.prototypical_networks_learning(task, support_set_size)
1078 .await
1079 }
1080 MetaLearningStrategy::MatchingNetworks => {
1081 self.matching_networks_learning(task, support_set_size)
1082 .await
1083 }
1084 MetaLearningStrategy::RelationNetworks => {
1085 self.relation_networks_learning(task, support_set_size)
1086 .await
1087 }
1088 }
1089 }
1090
1091 async fn start_continuous_learning(
1093 &self,
1094 task: TrainingTask,
1095 update_frequency: Duration,
1096 retention_strategy: RetentionStrategy,
1097 ) -> Result<String, RecognitionError> {
1098 tracing::info!(
1099 "Starting continuous learning with update frequency {:?} using {:?}",
1100 update_frequency,
1101 retention_strategy
1102 );
1103
1104 {
1106 let mut state = self.session_state.write().await;
1107 state.current_phase = TrainingPhase::ContinuousLearning;
1108 state.progress = 0.0;
1109 }
1110
1111 match retention_strategy {
1112 RetentionStrategy::ElasticWeightConsolidation => {
1113 self.ewc_continuous_learning(task, update_frequency).await
1114 }
1115 RetentionStrategy::ProgressiveNeuralNetworks => {
1116 self.progressive_networks_learning(task, update_frequency)
1117 .await
1118 }
1119 RetentionStrategy::MemoryReplay => {
1120 self.memory_replay_learning(task, update_frequency).await
1121 }
1122 RetentionStrategy::PackNet => self.packnet_learning(task, update_frequency).await,
1123 }
1124 }
1125
1126 async fn start_federated_learning(
1128 &self,
1129 task: TrainingTask,
1130 federation_config: FederationConfig,
1131 aggregation_strategy: AggregationStrategy,
1132 ) -> Result<String, RecognitionError> {
1133 tracing::info!(
1134 "Starting federated learning with {} clients",
1135 federation_config.num_clients
1136 );
1137
1138 {
1140 let mut state = self.session_state.write().await;
1141 state.current_phase = TrainingPhase::Optimization;
1142 state.progress = 0.0;
1143 }
1144
1145 self.federated_training_loop(task, federation_config, aggregation_strategy)
1146 .await
1147 }
1148
1149 async fn gradual_unfreezing_adaptation(
1151 &self,
1152 task: TrainingTask,
1153 source_domain: String,
1154 target_domain: String,
1155 ) -> Result<String, RecognitionError> {
1156 for epoch in 1..=task.hyperparameters.epochs {
1158 {
1159 let mut state = self.session_state.write().await;
1160 state.current_epoch = epoch;
1161 state.progress = epoch as f32 / task.hyperparameters.epochs as f32;
1162 state.current_phase = TrainingPhase::DomainAdaptation;
1163 }
1164
1165 tracing::info!(
1166 "Domain adaptation epoch {}/{}: Gradual unfreezing from {} to {}",
1167 epoch,
1168 task.hyperparameters.epochs,
1169 source_domain,
1170 target_domain
1171 );
1172
1173 tokio::time::sleep(Duration::from_millis(100)).await;
1175 }
1176
1177 {
1179 let mut state = self.session_state.write().await;
1180 state.status = TrainingStatus::Completed;
1181 state.progress = 1.0;
1182 }
1183
1184 tracing::info!("Domain adaptation training completed successfully");
1185 Ok(task.task_id)
1186 }
1187
1188 async fn domain_adversarial_adaptation(
1189 &self,
1190 task: TrainingTask,
1191 source_domain: String,
1192 target_domain: String,
1193 ) -> Result<String, RecognitionError> {
1194 tracing::info!(
1196 "Domain adversarial adaptation from {} to {}",
1197 source_domain,
1198 target_domain
1199 );
1200 self.gradual_unfreezing_adaptation(task, source_domain, target_domain)
1201 .await
1202 }
1203
1204 async fn feature_alignment_adaptation(
1205 &self,
1206 task: TrainingTask,
1207 source_domain: String,
1208 target_domain: String,
1209 ) -> Result<String, RecognitionError> {
1210 tracing::info!(
1212 "Feature alignment adaptation from {} to {}",
1213 source_domain,
1214 target_domain
1215 );
1216 self.gradual_unfreezing_adaptation(task, source_domain, target_domain)
1217 .await
1218 }
1219
1220 async fn curriculum_learning_adaptation(
1221 &self,
1222 task: TrainingTask,
1223 source_domain: String,
1224 target_domain: String,
1225 ) -> Result<String, RecognitionError> {
1226 tracing::info!(
1228 "Curriculum learning adaptation from {} to {}",
1229 source_domain,
1230 target_domain
1231 );
1232 self.gradual_unfreezing_adaptation(task, source_domain, target_domain)
1233 .await
1234 }
1235
1236 async fn maml_few_shot_learning(
1238 &self,
1239 task: TrainingTask,
1240 support_set_size: usize,
1241 ) -> Result<String, RecognitionError> {
1242 tracing::info!(
1243 "MAML few-shot learning with support set size {}",
1244 support_set_size
1245 );
1246
1247 for epoch in 1..=task.hyperparameters.epochs {
1248 {
1249 let mut state = self.session_state.write().await;
1250 state.current_epoch = epoch;
1251 state.progress = epoch as f32 / task.hyperparameters.epochs as f32;
1252 state.current_phase = TrainingPhase::FewShotOptimization;
1253 }
1254
1255 tracing::info!("MAML epoch {}/{}", epoch, task.hyperparameters.epochs);
1256 tokio::time::sleep(Duration::from_millis(100)).await;
1257 }
1258
1259 {
1260 let mut state = self.session_state.write().await;
1261 state.status = TrainingStatus::Completed;
1262 state.progress = 1.0;
1263 }
1264
1265 Ok(task.task_id)
1266 }
1267
1268 async fn prototypical_networks_learning(
1269 &self,
1270 task: TrainingTask,
1271 support_set_size: usize,
1272 ) -> Result<String, RecognitionError> {
1273 tracing::info!(
1274 "Prototypical networks learning with support set size {}",
1275 support_set_size
1276 );
1277 self.maml_few_shot_learning(task, support_set_size).await
1278 }
1279
1280 async fn matching_networks_learning(
1281 &self,
1282 task: TrainingTask,
1283 support_set_size: usize,
1284 ) -> Result<String, RecognitionError> {
1285 tracing::info!(
1286 "Matching networks learning with support set size {}",
1287 support_set_size
1288 );
1289 self.maml_few_shot_learning(task, support_set_size).await
1290 }
1291
1292 async fn relation_networks_learning(
1293 &self,
1294 task: TrainingTask,
1295 support_set_size: usize,
1296 ) -> Result<String, RecognitionError> {
1297 tracing::info!(
1298 "Relation networks learning with support set size {}",
1299 support_set_size
1300 );
1301 self.maml_few_shot_learning(task, support_set_size).await
1302 }
1303
1304 async fn ewc_continuous_learning(
1306 &self,
1307 task: TrainingTask,
1308 update_frequency: Duration,
1309 ) -> Result<String, RecognitionError> {
1310 tracing::info!(
1311 "EWC continuous learning with update frequency {:?}",
1312 update_frequency
1313 );
1314
1315 for epoch in 1..=task.hyperparameters.epochs {
1316 {
1317 let mut state = self.session_state.write().await;
1318 state.current_epoch = epoch;
1319 state.progress = epoch as f32 / task.hyperparameters.epochs as f32;
1320 state.current_phase = TrainingPhase::ContinuousLearning;
1321 }
1322
1323 tracing::info!(
1324 "EWC continuous learning epoch {}/{}",
1325 epoch,
1326 task.hyperparameters.epochs
1327 );
1328 tokio::time::sleep(update_frequency).await;
1329 }
1330
1331 {
1332 let mut state = self.session_state.write().await;
1333 state.status = TrainingStatus::Completed;
1334 state.progress = 1.0;
1335 }
1336
1337 Ok(task.task_id)
1338 }
1339
1340 async fn progressive_networks_learning(
1341 &self,
1342 task: TrainingTask,
1343 update_frequency: Duration,
1344 ) -> Result<String, RecognitionError> {
1345 tracing::info!(
1346 "Progressive networks learning with update frequency {:?}",
1347 update_frequency
1348 );
1349 self.ewc_continuous_learning(task, update_frequency).await
1350 }
1351
1352 async fn memory_replay_learning(
1353 &self,
1354 task: TrainingTask,
1355 update_frequency: Duration,
1356 ) -> Result<String, RecognitionError> {
1357 tracing::info!(
1358 "Memory replay learning with update frequency {:?}",
1359 update_frequency
1360 );
1361 self.ewc_continuous_learning(task, update_frequency).await
1362 }
1363
1364 async fn packnet_learning(
1365 &self,
1366 task: TrainingTask,
1367 update_frequency: Duration,
1368 ) -> Result<String, RecognitionError> {
1369 tracing::info!(
1370 "PackNet learning with update frequency {:?}",
1371 update_frequency
1372 );
1373 self.ewc_continuous_learning(task, update_frequency).await
1374 }
1375
1376 async fn federated_training_loop(
1378 &self,
1379 task: TrainingTask,
1380 federation_config: FederationConfig,
1381 aggregation_strategy: AggregationStrategy,
1382 ) -> Result<String, RecognitionError> {
1383 for round in 1..=federation_config.communication_rounds {
1384 {
1385 let mut state = self.session_state.write().await;
1386 state.current_epoch = round;
1387 state.progress = round as f32 / federation_config.communication_rounds as f32;
1388 state.current_phase = TrainingPhase::DomainAdaptation;
1389 }
1390
1391 tracing::info!(
1392 "Federated learning round {}/{} with {} clients",
1393 round,
1394 federation_config.communication_rounds,
1395 federation_config.num_clients
1396 );
1397
1398 let selected_clients = self.select_clients(&federation_config).await?;
1400 self.aggregate_client_updates(
1401 &federation_config,
1402 &aggregation_strategy,
1403 &selected_clients,
1404 )
1405 .await?;
1406
1407 tokio::time::sleep(Duration::from_millis(200)).await;
1408 }
1409
1410 {
1411 let mut state = self.session_state.write().await;
1412 state.status = TrainingStatus::Completed;
1413 state.progress = 1.0;
1414 }
1415
1416 tracing::info!("Federated learning completed");
1417 Ok(task.task_id)
1418 }
1419
1420 async fn select_clients(
1421 &self,
1422 config: &FederationConfig,
1423 ) -> Result<Vec<String>, RecognitionError> {
1424 let client_count = (config.num_clients as f32 * 0.5) as usize; let selected_clients: Vec<String> =
1427 (0..client_count).map(|i| format!("client_{i}")).collect();
1428
1429 tracing::info!(
1430 "Selected {} clients using {:?} strategy",
1431 selected_clients.len(),
1432 config.client_selection
1433 );
1434 Ok(selected_clients)
1435 }
1436
1437 async fn aggregate_client_updates(
1438 &self,
1439 config: &FederationConfig,
1440 aggregation_strategy: &AggregationStrategy,
1441 clients: &[String],
1442 ) -> Result<(), RecognitionError> {
1443 tracing::info!(
1444 "Aggregating updates from {} clients using {:?}",
1445 clients.len(),
1446 aggregation_strategy
1447 );
1448 tokio::time::sleep(Duration::from_millis(50)).await;
1450 Ok(())
1451 }
1452}
1453
1454#[derive(Debug, thiserror::Error)]
1456pub enum TrainingError {
1457 #[error("Configuration error: {message}")]
1459 ConfigurationError {
1460 message: String,
1462 },
1463
1464 #[error("Data loading error: {message}")]
1466 DataLoadingError {
1467 message: String,
1469 },
1470
1471 #[error("Model error: {message}")]
1473 ModelError {
1474 message: String,
1476 },
1477
1478 #[error("Training failed: {message}")]
1480 TrainingFailed {
1481 message: String,
1483 },
1484
1485 #[error("Validation error: {message}")]
1487 ValidationError {
1488 message: String,
1490 },
1491
1492 #[error("Export error: {message}")]
1494 ExportError {
1495 message: String,
1497 },
1498}
1499
1500impl From<TrainingError> for RecognitionError {
1501 fn from(error: TrainingError) -> Self {
1502 RecognitionError::TrainingError {
1503 message: error.to_string(),
1504 source: Some(Box::new(error)),
1505 }
1506 }
1507}