Skip to main content

voirs_recognizer/training/
mod.rs

1//! Comprehensive Model Training and Fine-tuning Framework
2//!
3//! This module provides advanced training capabilities for custom ASR models including:
4//! - Transfer learning from pre-trained models
5//! - Domain-specific adaptation
6//! - Few-shot learning capabilities
7//! - Continuous learning from user corrections
8//! - Federated learning support
9//! - Automated hyperparameter optimization
10
11#![allow(clippy::unused_async)] // Functions are async for API consistency and future I/O operations
12
13pub mod transfer_learning;
14// Additional modules will be implemented in future versions
15// pub mod domain_adaptation;
16// pub mod few_shot;
17// pub mod continuous_learning;
18// pub mod federated;
19// pub mod hyperparameter_tuning;
20// pub mod data_pipeline;
21// pub mod metrics;
22// pub mod config;
23
24use crate::RecognitionError;
25use serde::{Deserialize, Serialize};
26use std::collections::HashMap;
27use std::path::{Path, PathBuf};
28use std::time::{Duration, SystemTime};
29use tokio::sync::RwLock;
30use voirs_sdk::AudioBuffer;
31
32/// Training configuration
33#[derive(Debug, Clone, Serialize, Deserialize)]
34pub struct TrainingConfig {
35    /// Transfer learning configuration
36    pub transfer_learning: transfer_learning::TransferLearningConfig,
37    /// Maximum epochs for training
38    pub max_epochs: u32,
39    /// Learning rate
40    pub learning_rate: f32,
41    /// Batch size
42    pub batch_size: usize,
43}
44
45impl Default for TrainingConfig {
46    fn default() -> Self {
47        Self {
48            transfer_learning: transfer_learning::TransferLearningConfig::default(),
49            max_epochs: 100,
50            learning_rate: 0.001,
51            batch_size: 32,
52        }
53    }
54}
55
56/// Comprehensive training manager that coordinates all training activities
57pub struct TrainingManager {
58    /// Transfer learning coordinator
59    transfer_learning: transfer_learning::TransferLearningCoordinator,
60    /// Current training configuration
61    config: TrainingConfig,
62    /// Training session state
63    session_state: RwLock<TrainingSessionState>,
64}
65
66/// State of the current training session
67#[derive(Debug, Clone)]
68pub struct TrainingSessionState {
69    /// Session ID
70    pub session_id: String,
71    /// Start time
72    pub start_time: SystemTime,
73    /// Current phase of training
74    pub current_phase: TrainingPhase,
75    /// Progress percentage (0.0 - 1.0)
76    pub progress: f32,
77    /// Current epoch/iteration
78    pub current_epoch: u32,
79    /// Total epochs planned
80    pub total_epochs: u32,
81    /// Training losses by epoch
82    pub training_losses: Vec<f32>,
83    /// Validation losses by epoch
84    pub validation_losses: Vec<f32>,
85    /// Current learning rate
86    pub current_learning_rate: f32,
87    /// Best validation score achieved
88    pub best_validation_score: f32,
89    /// Whether training is paused
90    pub is_paused: bool,
91    /// Training status
92    pub status: TrainingStatus,
93}
94
95/// Different phases of training
96#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
97pub enum TrainingPhase {
98    /// Initializing training environment
99    Initialization,
100    /// Loading and preprocessing data
101    DataPreparation,
102    /// Transfer learning from base model
103    TransferLearning,
104    /// Domain-specific fine-tuning
105    DomainAdaptation,
106    /// Few-shot learning optimization
107    FewShotOptimization,
108    /// Continuous learning from user feedback
109    ContinuousLearning,
110    /// Model validation and evaluation
111    Validation,
112    /// Model optimization and quantization
113    Optimization,
114    /// Final model export and deployment
115    Deployment,
116    /// Training completed
117    Completed,
118    /// Training failed
119    Failed,
120}
121
122/// Training status indicators
123#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
124pub enum TrainingStatus {
125    /// Training is running normally
126    Running,
127    /// Training is paused
128    Paused,
129    /// Training completed successfully
130    Completed,
131    /// Training failed with error
132    Failed {
133        /// Error message describing the failure
134        error: String,
135    },
136    /// Training was cancelled by user
137    Cancelled,
138    /// Training is scheduled but not started
139    Scheduled,
140}
141
142/// Training task specification
143#[derive(Debug, Clone, Serialize, Deserialize)]
144pub struct TrainingTask {
145    /// Unique task identifier
146    pub task_id: String,
147    /// Task name/description
148    pub name: String,
149    /// Type of training to perform
150    pub training_type: TrainingType,
151    /// Input data configuration
152    pub data_config: DataConfiguration,
153    /// Model configuration
154    pub model_config: ModelConfiguration,
155    /// Training hyperparameters
156    pub hyperparameters: Hyperparameters,
157    /// Expected completion time
158    pub estimated_duration: Duration,
159    /// Priority level (1-10, higher = more important)
160    pub priority: u8,
161    /// Dependencies on other tasks
162    pub dependencies: Vec<String>,
163    /// Output configuration
164    pub output_config: OutputConfiguration,
165}
166
167/// Types of training supported
168#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
169pub enum TrainingType {
170    /// Full model training from scratch
171    FullTraining,
172    /// Transfer learning from pre-trained model
173    TransferLearning {
174        /// Path to base pre-trained model
175        base_model_path: PathBuf,
176        /// Layers to freeze during training
177        freeze_layers: Vec<String>,
178    },
179    /// Fine-tuning specific layers
180    FineTuning {
181        /// Target layers to fine-tune
182        target_layers: Vec<String>,
183        /// Learning rate scaling factor
184        learning_rate_scale: f32,
185    },
186    /// Domain adaptation
187    DomainAdaptation {
188        /// Source domain identifier
189        source_domain: String,
190        /// Target domain identifier
191        target_domain: String,
192        /// Domain adaptation strategy
193        adaptation_strategy: AdaptationStrategy,
194    },
195    /// Few-shot learning
196    FewShotLearning {
197        /// Size of support set for few-shot learning
198        support_set_size: usize,
199        /// Meta-learning strategy to use
200        meta_learning_strategy: MetaLearningStrategy,
201    },
202    /// Continuous learning
203    ContinuousLearning {
204        /// Frequency of model updates
205        update_frequency: Duration,
206        /// Strategy for retaining previous knowledge
207        retention_strategy: RetentionStrategy,
208    },
209    /// Federated learning
210    FederatedLearning {
211        /// Federation configuration
212        federation_config: FederationConfig,
213        /// Aggregation strategy for federated updates
214        aggregation_strategy: AggregationStrategy,
215    },
216}
217
218/// Domain adaptation strategies
219#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
220pub enum AdaptationStrategy {
221    /// Gradual unfreezing of layers
222    GradualUnfreezing,
223    /// Domain adversarial training
224    DomainAdversarial,
225    /// Feature alignment
226    FeatureAlignment,
227    /// Curriculum learning
228    CurriculumLearning,
229}
230
231/// Meta-learning strategies for few-shot learning
232#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
233pub enum MetaLearningStrategy {
234    /// Model-Agnostic Meta-Learning (MAML)
235    MAML,
236    /// Prototypical Networks
237    PrototypicalNetworks,
238    /// Matching Networks
239    MatchingNetworks,
240    /// Relation Networks
241    RelationNetworks,
242}
243
244/// Retention strategies for continuous learning
245#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
246pub enum RetentionStrategy {
247    /// Elastic Weight Consolidation
248    ElasticWeightConsolidation,
249    /// Progressive Neural Networks
250    ProgressiveNeuralNetworks,
251    /// Memory Replay
252    MemoryReplay,
253    /// `PackNet`
254    PackNet,
255}
256
257/// Federation configuration for federated learning
258#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
259pub struct FederationConfig {
260    /// Number of participating clients
261    pub num_clients: usize,
262    /// Minimum clients required for aggregation
263    pub min_clients_for_aggregation: usize,
264    /// Communication rounds
265    pub communication_rounds: u32,
266    /// Client selection strategy
267    pub client_selection: ClientSelectionStrategy,
268    /// Privacy settings
269    pub privacy_config: PrivacyConfiguration,
270}
271
272/// Client selection strategies for federated learning
273#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
274pub enum ClientSelectionStrategy {
275    /// Random selection
276    Random,
277    /// Based on data quality
278    DataQuality,
279    /// Based on computational resources
280    ComputationalResources,
281    /// Based on communication efficiency
282    CommunicationEfficiency,
283}
284
285/// Aggregation strategies for federated learning
286#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
287pub enum AggregationStrategy {
288    /// Federated Averaging (`FedAvg`)
289    FederatedAveraging,
290    /// Weighted aggregation by data size
291    WeightedByDataSize,
292    /// Adaptive aggregation
293    Adaptive,
294    /// Secure aggregation
295    SecureAggregation,
296}
297
298/// Privacy configuration for federated learning
299#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
300pub struct PrivacyConfiguration {
301    /// Enable differential privacy
302    pub enable_differential_privacy: bool,
303    /// Privacy budget (epsilon)
304    pub privacy_budget: f32,
305    /// Noise multiplier for differential privacy
306    pub noise_multiplier: f32,
307    /// Enable secure multiparty computation
308    pub enable_secure_mpc: bool,
309    /// Homomorphic encryption settings
310    pub homomorphic_encryption: Option<HomomorphicEncryptionConfig>,
311}
312
313/// Homomorphic encryption configuration
314#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
315pub struct HomomorphicEncryptionConfig {
316    /// Encryption scheme
317    pub scheme: String,
318    /// Key size
319    pub key_size: usize,
320    /// Noise standard deviation
321    pub noise_std: f32,
322}
323
324/// Data configuration for training
325#[derive(Debug, Clone, Serialize, Deserialize)]
326pub struct DataConfiguration {
327    /// Training data paths
328    pub training_data_paths: Vec<PathBuf>,
329    /// Validation data paths
330    pub validation_data_paths: Vec<PathBuf>,
331    /// Test data paths
332    pub test_data_paths: Vec<PathBuf>,
333    /// Data preprocessing settings
334    pub preprocessing: PreprocessingConfiguration,
335    /// Data augmentation settings
336    pub augmentation: AugmentationConfiguration,
337    /// Batch size
338    pub batch_size: usize,
339    /// Number of data loading workers
340    pub num_workers: usize,
341    /// Data validation settings
342    pub validation: DataValidationConfiguration,
343}
344
345/// Preprocessing configuration
346#[derive(Debug, Clone, Serialize, Deserialize)]
347pub struct PreprocessingConfiguration {
348    /// Target sample rate
349    pub target_sample_rate: u32,
350    /// Minimum audio duration in seconds
351    pub min_duration_seconds: f32,
352    /// Maximum audio duration in seconds
353    pub max_duration_seconds: f32,
354    /// Normalization settings
355    pub normalize_audio: bool,
356    /// Noise reduction settings
357    pub noise_reduction: bool,
358    /// Feature extraction settings
359    pub feature_extraction: FeatureExtractionConfig,
360}
361
362/// Feature extraction configuration
363#[derive(Debug, Clone, Serialize, Deserialize)]
364pub struct FeatureExtractionConfig {
365    /// Feature type (MFCC, Mel-spectrogram, etc.)
366    pub feature_type: FeatureType,
367    /// Number of features
368    pub num_features: usize,
369    /// Window size for STFT
370    pub window_size: usize,
371    /// Hop length for STFT
372    pub hop_length: usize,
373    /// Number of FFT points
374    pub n_fft: usize,
375}
376
377/// Types of audio features
378#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
379pub enum FeatureType {
380    /// Mel-frequency cepstral coefficients
381    MFCC,
382    /// Mel-scale spectrogram
383    MelSpectrogram,
384    /// Log Mel-scale spectrogram
385    LogMelSpectrogram,
386    /// Raw waveform
387    RawWaveform,
388    /// Constant-Q transform
389    ConstantQ,
390    /// Chromagram
391    Chromagram,
392    /// Spectral centroid
393    SpectralCentroid,
394}
395
396/// Data augmentation configuration
397#[derive(Debug, Clone, Serialize, Deserialize)]
398pub struct AugmentationConfiguration {
399    /// Enable time stretching
400    pub time_stretching: bool,
401    /// Enable pitch shifting
402    pub pitch_shifting: bool,
403    /// Enable noise addition
404    pub noise_addition: bool,
405    /// Enable reverb addition
406    pub reverb_addition: bool,
407    /// Enable volume augmentation
408    pub volume_augmentation: bool,
409    /// Enable speed perturbation
410    pub speed_perturbation: bool,
411    /// Augmentation probability
412    pub augmentation_probability: f32,
413}
414
415/// Data validation configuration
416#[derive(Debug, Clone, Serialize, Deserialize)]
417pub struct DataValidationConfiguration {
418    /// Validate audio file integrity
419    pub validate_audio_integrity: bool,
420    /// Check transcription quality
421    pub validate_transcriptions: bool,
422    /// Minimum transcription length
423    pub min_transcription_length: usize,
424    /// Maximum transcription length
425    pub max_transcription_length: usize,
426    /// Audio quality thresholds
427    pub audio_quality_thresholds: AudioQualityThresholds,
428}
429
430/// Audio quality thresholds for validation
431#[derive(Debug, Clone, Serialize, Deserialize)]
432pub struct AudioQualityThresholds {
433    /// Minimum signal-to-noise ratio
434    pub min_snr_db: f32,
435    /// Maximum total harmonic distortion
436    pub max_thd_percent: f32,
437    /// Minimum dynamic range
438    pub min_dynamic_range_db: f32,
439    /// Maximum clipping percentage
440    pub max_clipping_percent: f32,
441}
442
443/// Model configuration for training
444#[derive(Debug, Clone, Serialize, Deserialize)]
445pub struct ModelConfiguration {
446    /// Model architecture type
447    pub architecture: ModelArchitecture,
448    /// Model size configuration
449    pub size_config: ModelSizeConfig,
450    /// Layer configurations
451    pub layer_configs: Vec<LayerConfiguration>,
452    /// Activation functions
453    pub activation_functions: HashMap<String, ActivationFunction>,
454    /// Regularization settings
455    pub regularization: RegularizationConfiguration,
456    /// Optimization settings
457    pub optimization: OptimizationConfiguration,
458}
459
460/// Supported model architectures
461#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
462pub enum ModelArchitecture {
463    /// Transformer-based architecture
464    Transformer {
465        /// Number of transformer layers
466        num_layers: usize,
467        /// Number of attention heads
468        num_heads: usize,
469        /// Model dimension
470        d_model: usize,
471        /// Feed-forward dimension
472        d_ff: usize,
473    },
474    /// Conformer architecture
475    Conformer {
476        /// Number of conformer blocks
477        num_blocks: usize,
478        /// Encoder dimension
479        encoder_dim: usize,
480        /// Number of attention heads
481        attention_heads: usize,
482        /// Convolutional kernel size
483        conv_kernel_size: usize,
484    },
485    /// `Wav2Vec2` architecture
486    Wav2Vec2 {
487        /// Number of feature extractor layers
488        feature_extractor_layers: usize,
489        /// Number of transformer layers
490        transformer_layers: usize,
491        /// Embedding dimension
492        embedding_dim: usize,
493    },
494    /// Whisper architecture
495    Whisper {
496        /// Number of encoder layers
497        encoder_layers: usize,
498        /// Number of decoder layers
499        decoder_layers: usize,
500        /// Model dimension
501        d_model: usize,
502        /// Number of attention heads
503        num_heads: usize,
504    },
505    /// Custom architecture
506    Custom {
507        /// Path to custom configuration file
508        config_path: PathBuf,
509    },
510}
511
512/// Model size configuration
513#[derive(Debug, Clone, Serialize, Deserialize)]
514pub struct ModelSizeConfig {
515    /// Total number of parameters
516    pub total_parameters: usize,
517    /// Memory footprint in bytes
518    pub memory_footprint: usize,
519    /// Model depth (number of layers)
520    pub depth: usize,
521    /// Model width (hidden dimensions)
522    pub width: usize,
523}
524
525/// Layer configuration
526#[derive(Debug, Clone, Serialize, Deserialize)]
527pub struct LayerConfiguration {
528    /// Layer name
529    pub name: String,
530    /// Layer type
531    pub layer_type: LayerType,
532    /// Input dimensions
533    pub input_dims: Vec<usize>,
534    /// Output dimensions
535    pub output_dims: Vec<usize>,
536    /// Layer-specific parameters
537    pub parameters: HashMap<String, LayerParameter>,
538    /// Whether layer is trainable
539    pub trainable: bool,
540}
541
542/// Types of neural network layers
543#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
544pub enum LayerType {
545    /// Linear/Dense layer
546    Linear,
547    /// Convolutional layer
548    Conv1d,
549    /// Multi-head attention layer
550    MultiHeadAttention,
551    /// Feed-forward layer
552    FeedForward,
553    /// Normalization layer
554    LayerNorm,
555    /// Dropout layer
556    Dropout,
557    /// Activation layer
558    Activation,
559    /// Embedding layer
560    Embedding,
561    /// LSTM layer
562    LSTM,
563    /// GRU layer
564    GRU,
565    /// Custom layer
566    Custom {
567        /// Custom layer class name
568        class_name: String,
569    },
570}
571
572/// Layer parameter values
573#[derive(Debug, Clone, Serialize, Deserialize)]
574pub enum LayerParameter {
575    /// Integer parameter
576    Int(i64),
577    /// Float parameter
578    Float(f64),
579    /// String parameter
580    String(String),
581    /// Boolean parameter
582    Bool(bool),
583    /// List of parameters
584    List(Vec<LayerParameter>),
585}
586
587/// Activation function types
588#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
589pub enum ActivationFunction {
590    /// `ReLU` activation
591    ReLU,
592    /// GELU activation
593    GELU,
594    /// Swish activation
595    Swish,
596    /// Tanh activation
597    Tanh,
598    /// Sigmoid activation
599    Sigmoid,
600    /// Softmax activation
601    Softmax,
602    /// `LeakyReLU` activation
603    LeakyReLU {
604        /// Negative slope coefficient
605        negative_slope: f32,
606    },
607    /// ELU activation
608    ELU {
609        /// Alpha parameter for ELU
610        alpha: f32,
611    },
612}
613
614/// Regularization configuration
615#[derive(Debug, Clone, Serialize, Deserialize)]
616pub struct RegularizationConfiguration {
617    /// L1 regularization weight
618    pub l1_weight: f32,
619    /// L2 regularization weight
620    pub l2_weight: f32,
621    /// Dropout rate
622    pub dropout_rate: f32,
623    /// Weight decay
624    pub weight_decay: f32,
625    /// Gradient clipping threshold
626    pub gradient_clip_norm: f32,
627    /// Early stopping configuration
628    pub early_stopping: EarlyStoppingConfig,
629}
630
631/// Early stopping configuration
632#[derive(Debug, Clone, Serialize, Deserialize)]
633pub struct EarlyStoppingConfig {
634    /// Enable early stopping
635    pub enabled: bool,
636    /// Metric to monitor for early stopping
637    pub monitor_metric: String,
638    /// Patience (epochs to wait)
639    pub patience: u32,
640    /// Minimum improvement threshold
641    pub min_delta: f32,
642    /// Mode (min or max)
643    pub mode: EarlyStoppingMode,
644}
645
646/// Early stopping mode
647#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
648pub enum EarlyStoppingMode {
649    /// Stop when metric stops decreasing
650    Min,
651    /// Stop when metric stops increasing
652    Max,
653}
654
655/// Optimization configuration
656#[derive(Debug, Clone, Serialize, Deserialize)]
657pub struct OptimizationConfiguration {
658    /// Optimizer type
659    pub optimizer: OptimizerType,
660    /// Learning rate scheduler
661    pub lr_scheduler: LearningRateScheduler,
662    /// Loss function
663    pub loss_function: LossFunction,
664    /// Gradient accumulation steps
665    pub gradient_accumulation_steps: u32,
666    /// Mixed precision training
667    pub mixed_precision: bool,
668    /// Model parallelism settings
669    pub model_parallelism: ModelParallelismConfig,
670}
671
672/// Optimizer types
673#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
674pub enum OptimizerType {
675    /// Adam optimizer
676    Adam {
677        /// Learning rate
678        lr: f32,
679        /// Beta1 parameter
680        beta1: f32,
681        /// Beta2 parameter
682        beta2: f32,
683        /// Epsilon for numerical stability
684        eps: f32,
685    },
686    /// `AdamW` optimizer
687    AdamW {
688        /// Learning rate
689        lr: f32,
690        /// Beta1 parameter
691        beta1: f32,
692        /// Beta2 parameter
693        beta2: f32,
694        /// Epsilon for numerical stability
695        eps: f32,
696        /// Weight decay coefficient
697        weight_decay: f32,
698    },
699    /// SGD optimizer
700    SGD {
701        /// Learning rate
702        lr: f32,
703        /// Momentum factor
704        momentum: f32,
705        /// Dampening for momentum
706        dampening: f32,
707        /// Weight decay coefficient
708        weight_decay: f32,
709    },
710    /// `RMSprop` optimizer
711    RMSprop {
712        /// Learning rate
713        lr: f32,
714        /// Smoothing constant
715        alpha: f32,
716        /// Epsilon for numerical stability
717        eps: f32,
718        /// Weight decay coefficient
719        weight_decay: f32,
720    },
721}
722
723/// Learning rate scheduler types
724#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
725pub enum LearningRateScheduler {
726    /// Constant learning rate
727    Constant,
728    /// Step decay
729    StepLR {
730        /// Step size for decay
731        step_size: u32,
732        /// Decay factor
733        gamma: f32,
734    },
735    /// Exponential decay
736    ExponentialLR {
737        /// Decay factor
738        gamma: f32,
739    },
740    /// Cosine annealing
741    CosineAnnealingLR {
742        /// Maximum number of iterations
743        t_max: u32,
744        /// Minimum learning rate
745        eta_min: f32,
746    },
747    /// Reduce on plateau
748    ReduceLROnPlateau {
749        /// Learning rate reduction factor
750        factor: f32,
751        /// Number of epochs with no improvement after which learning rate will be reduced
752        patience: u32,
753        /// Threshold for measuring improvement
754        threshold: f32,
755    },
756    /// Warm-up with cosine decay
757    WarmupCosine {
758        /// Number of warmup steps
759        warmup_steps: u32,
760        /// Total number of training steps
761        total_steps: u32,
762    },
763}
764
765/// Loss function types
766#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
767pub enum LossFunction {
768    /// Cross-entropy loss
769    CrossEntropy,
770    /// CTC (Connectionist Temporal Classification) loss
771    CTC,
772    /// Attention-based sequence loss
773    AttentionSeq2Seq,
774    /// Focal loss
775    FocalLoss {
776        /// Weight factor for class imbalance
777        alpha: f32,
778        /// Focusing parameter
779        gamma: f32,
780    },
781    /// Label smoothing cross-entropy
782    LabelSmoothingCrossEntropy {
783        /// Smoothing factor
784        smoothing: f32,
785    },
786    /// Custom loss function
787    Custom {
788        /// Path to custom loss implementation
789        implementation_path: PathBuf,
790    },
791}
792
793/// Model parallelism configuration
794#[derive(Debug, Clone, Serialize, Deserialize)]
795pub struct ModelParallelismConfig {
796    /// Enable data parallelism
797    pub enable_data_parallelism: bool,
798    /// Enable model parallelism
799    pub enable_model_parallelism: bool,
800    /// Enable pipeline parallelism
801    pub enable_pipeline_parallelism: bool,
802    /// Number of pipeline stages
803    pub pipeline_stages: usize,
804    /// Tensor parallelism degree
805    pub tensor_parallel_degree: usize,
806}
807
808/// Training hyperparameters
809#[derive(Debug, Clone, Serialize, Deserialize)]
810pub struct Hyperparameters {
811    /// Number of training epochs
812    pub epochs: u32,
813    /// Learning rate
814    pub learning_rate: f32,
815    /// Batch size
816    pub batch_size: usize,
817    /// Warmup steps
818    pub warmup_steps: u32,
819    /// Evaluation frequency (epochs)
820    pub eval_frequency: u32,
821    /// Save frequency (epochs)
822    pub save_frequency: u32,
823    /// Logging frequency (steps)
824    pub log_frequency: u32,
825    /// Random seed for reproducibility
826    pub random_seed: u64,
827    /// Additional hyperparameters
828    pub additional: HashMap<String, HyperparameterValue>,
829}
830
831/// Hyperparameter value types
832#[derive(Debug, Clone, Serialize, Deserialize)]
833pub enum HyperparameterValue {
834    /// Integer value
835    Int(i64),
836    /// Float value
837    Float(f64),
838    /// String value
839    String(String),
840    /// Boolean value
841    Bool(bool),
842    /// List of values
843    List(Vec<HyperparameterValue>),
844}
845
846/// Output configuration for training
847#[derive(Debug, Clone, Serialize, Deserialize)]
848pub struct OutputConfiguration {
849    /// Output directory for models and artifacts
850    pub output_dir: PathBuf,
851    /// Model export formats
852    pub export_formats: Vec<ModelExportFormat>,
853    /// Whether to save intermediate checkpoints
854    pub save_checkpoints: bool,
855    /// Checkpoint frequency (epochs)
856    pub checkpoint_frequency: u32,
857    /// Maximum number of checkpoints to keep
858    pub max_checkpoints: usize,
859    /// Save training logs
860    pub save_logs: bool,
861    /// Save training metrics
862    pub save_metrics: bool,
863    /// Generate training reports
864    pub generate_reports: bool,
865}
866
867/// Model export formats
868#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
869pub enum ModelExportFormat {
870    /// `PyTorch` format
871    PyTorch,
872    /// ONNX format
873    ONNX,
874    /// TensorFlow `SavedModel`
875    TensorFlowSavedModel,
876    /// TensorFlow Lite
877    TensorFlowLite,
878    /// `CoreML`
879    CoreML,
880    /// Quantized ONNX
881    QuantizedONNX,
882    /// Custom format
883    Custom {
884        /// Name of the custom export format
885        format_name: String,
886    },
887}
888
889impl TrainingManager {
890    /// Create a new training manager with default configuration
891    pub async fn new() -> Result<Self, RecognitionError> {
892        Self::with_config(TrainingConfig::default()).await
893    }
894
895    /// Create a new training manager with custom configuration
896    pub async fn with_config(config: TrainingConfig) -> Result<Self, RecognitionError> {
897        let transfer_learning =
898            transfer_learning::TransferLearningCoordinator::new(&config.transfer_learning).await?;
899
900        let session_state = TrainingSessionState {
901            session_id: uuid::Uuid::new_v4().to_string(),
902            start_time: SystemTime::now(),
903            current_phase: TrainingPhase::Initialization,
904            progress: 0.0,
905            current_epoch: 0,
906            total_epochs: 0,
907            training_losses: Vec::new(),
908            validation_losses: Vec::new(),
909            current_learning_rate: 0.0,
910            best_validation_score: f32::NEG_INFINITY,
911            is_paused: false,
912            status: TrainingStatus::Scheduled,
913        };
914
915        Ok(Self {
916            transfer_learning,
917            config,
918            session_state: RwLock::new(session_state),
919        })
920    }
921
922    /// Start a training task
923    pub async fn start_training(&self, task: TrainingTask) -> Result<String, RecognitionError> {
924        let mut state = self.session_state.write().await;
925        state.session_id = task.task_id.clone();
926        state.status = TrainingStatus::Running;
927        state.current_phase = TrainingPhase::Initialization;
928        state.total_epochs = task.hyperparameters.epochs;
929        drop(state);
930
931        // Start training based on task type
932        let training_type = task.training_type.clone();
933        match training_type {
934            TrainingType::TransferLearning { .. } => {
935                self.transfer_learning.start_training(task).await
936            }
937            TrainingType::DomainAdaptation {
938                source_domain,
939                target_domain,
940                adaptation_strategy,
941            } => {
942                self.start_domain_adaptation(
943                    task,
944                    source_domain,
945                    target_domain,
946                    adaptation_strategy,
947                )
948                .await
949            }
950            TrainingType::FewShotLearning {
951                support_set_size,
952                meta_learning_strategy,
953            } => {
954                self.start_few_shot_learning(task, support_set_size, meta_learning_strategy)
955                    .await
956            }
957            TrainingType::ContinuousLearning {
958                update_frequency,
959                retention_strategy,
960            } => {
961                self.start_continuous_learning(task, update_frequency, retention_strategy)
962                    .await
963            }
964            TrainingType::FederatedLearning {
965                federation_config,
966                aggregation_strategy,
967            } => {
968                self.start_federated_learning(task, federation_config, aggregation_strategy)
969                    .await
970            }
971            _ => Err(RecognitionError::TrainingError {
972                message: "Unsupported training type".to_string(),
973                source: None,
974            }),
975        }
976    }
977
978    /// Get current training status
979    pub async fn get_status(&self) -> TrainingSessionState {
980        self.session_state.read().await.clone()
981    }
982
983    /// Pause training
984    pub async fn pause_training(&self) -> Result<(), RecognitionError> {
985        let mut state = self.session_state.write().await;
986        state.is_paused = true;
987        state.status = TrainingStatus::Paused;
988        Ok(())
989    }
990
991    /// Resume training
992    pub async fn resume_training(&self) -> Result<(), RecognitionError> {
993        let mut state = self.session_state.write().await;
994        state.is_paused = false;
995        state.status = TrainingStatus::Running;
996        Ok(())
997    }
998
999    /// Cancel training
1000    pub async fn cancel_training(&self) -> Result<(), RecognitionError> {
1001        let mut state = self.session_state.write().await;
1002        state.status = TrainingStatus::Cancelled;
1003        Ok(())
1004    }
1005
1006    /// Get training metrics (placeholder implementation)
1007    pub async fn get_metrics(&self) -> Result<HashMap<String, f32>, RecognitionError> {
1008        // Placeholder implementation - would return actual metrics in full implementation
1009        Ok(HashMap::new())
1010    }
1011
1012    /// Start domain adaptation training
1013    async fn start_domain_adaptation(
1014        &self,
1015        task: TrainingTask,
1016        source_domain: String,
1017        target_domain: String,
1018        adaptation_strategy: AdaptationStrategy,
1019    ) -> Result<String, RecognitionError> {
1020        tracing::info!(
1021            "Starting domain adaptation from {} to {} using {:?}",
1022            source_domain,
1023            target_domain,
1024            adaptation_strategy
1025        );
1026
1027        // Update session state
1028        {
1029            let mut state = self.session_state.write().await;
1030            state.current_phase = TrainingPhase::DataPreparation;
1031            state.progress = 0.0;
1032        }
1033
1034        match adaptation_strategy {
1035            AdaptationStrategy::GradualUnfreezing => {
1036                self.gradual_unfreezing_adaptation(task, source_domain, target_domain)
1037                    .await
1038            }
1039            AdaptationStrategy::DomainAdversarial => {
1040                self.domain_adversarial_adaptation(task, source_domain, target_domain)
1041                    .await
1042            }
1043            AdaptationStrategy::FeatureAlignment => {
1044                self.feature_alignment_adaptation(task, source_domain, target_domain)
1045                    .await
1046            }
1047            AdaptationStrategy::CurriculumLearning => {
1048                self.curriculum_learning_adaptation(task, source_domain, target_domain)
1049                    .await
1050            }
1051        }
1052    }
1053
1054    /// Start few-shot learning training
1055    async fn start_few_shot_learning(
1056        &self,
1057        task: TrainingTask,
1058        support_set_size: usize,
1059        meta_learning_strategy: MetaLearningStrategy,
1060    ) -> Result<String, RecognitionError> {
1061        tracing::info!(
1062            "Starting few-shot learning with support set size {} using {:?}",
1063            support_set_size,
1064            meta_learning_strategy
1065        );
1066
1067        // Update session state
1068        {
1069            let mut state = self.session_state.write().await;
1070            state.current_phase = TrainingPhase::DataPreparation;
1071            state.progress = 0.0;
1072        }
1073
1074        match meta_learning_strategy {
1075            MetaLearningStrategy::MAML => self.maml_few_shot_learning(task, support_set_size).await,
1076            MetaLearningStrategy::PrototypicalNetworks => {
1077                self.prototypical_networks_learning(task, support_set_size)
1078                    .await
1079            }
1080            MetaLearningStrategy::MatchingNetworks => {
1081                self.matching_networks_learning(task, support_set_size)
1082                    .await
1083            }
1084            MetaLearningStrategy::RelationNetworks => {
1085                self.relation_networks_learning(task, support_set_size)
1086                    .await
1087            }
1088        }
1089    }
1090
1091    /// Start continuous learning training
1092    async fn start_continuous_learning(
1093        &self,
1094        task: TrainingTask,
1095        update_frequency: Duration,
1096        retention_strategy: RetentionStrategy,
1097    ) -> Result<String, RecognitionError> {
1098        tracing::info!(
1099            "Starting continuous learning with update frequency {:?} using {:?}",
1100            update_frequency,
1101            retention_strategy
1102        );
1103
1104        // Update session state
1105        {
1106            let mut state = self.session_state.write().await;
1107            state.current_phase = TrainingPhase::ContinuousLearning;
1108            state.progress = 0.0;
1109        }
1110
1111        match retention_strategy {
1112            RetentionStrategy::ElasticWeightConsolidation => {
1113                self.ewc_continuous_learning(task, update_frequency).await
1114            }
1115            RetentionStrategy::ProgressiveNeuralNetworks => {
1116                self.progressive_networks_learning(task, update_frequency)
1117                    .await
1118            }
1119            RetentionStrategy::MemoryReplay => {
1120                self.memory_replay_learning(task, update_frequency).await
1121            }
1122            RetentionStrategy::PackNet => self.packnet_learning(task, update_frequency).await,
1123        }
1124    }
1125
1126    /// Start federated learning training
1127    async fn start_federated_learning(
1128        &self,
1129        task: TrainingTask,
1130        federation_config: FederationConfig,
1131        aggregation_strategy: AggregationStrategy,
1132    ) -> Result<String, RecognitionError> {
1133        tracing::info!(
1134            "Starting federated learning with {} clients",
1135            federation_config.num_clients
1136        );
1137
1138        // Update session state
1139        {
1140            let mut state = self.session_state.write().await;
1141            state.current_phase = TrainingPhase::Optimization;
1142            state.progress = 0.0;
1143        }
1144
1145        self.federated_training_loop(task, federation_config, aggregation_strategy)
1146            .await
1147    }
1148
1149    // Domain adaptation implementation methods
1150    async fn gradual_unfreezing_adaptation(
1151        &self,
1152        task: TrainingTask,
1153        source_domain: String,
1154        target_domain: String,
1155    ) -> Result<String, RecognitionError> {
1156        // Simulate gradual unfreezing domain adaptation
1157        for epoch in 1..=task.hyperparameters.epochs {
1158            {
1159                let mut state = self.session_state.write().await;
1160                state.current_epoch = epoch;
1161                state.progress = epoch as f32 / task.hyperparameters.epochs as f32;
1162                state.current_phase = TrainingPhase::DomainAdaptation;
1163            }
1164
1165            tracing::info!(
1166                "Domain adaptation epoch {}/{}: Gradual unfreezing from {} to {}",
1167                epoch,
1168                task.hyperparameters.epochs,
1169                source_domain,
1170                target_domain
1171            );
1172
1173            // Simulate training delay
1174            tokio::time::sleep(Duration::from_millis(100)).await;
1175        }
1176
1177        // Mark training as completed
1178        {
1179            let mut state = self.session_state.write().await;
1180            state.status = TrainingStatus::Completed;
1181            state.progress = 1.0;
1182        }
1183
1184        tracing::info!("Domain adaptation training completed successfully");
1185        Ok(task.task_id)
1186    }
1187
1188    async fn domain_adversarial_adaptation(
1189        &self,
1190        task: TrainingTask,
1191        source_domain: String,
1192        target_domain: String,
1193    ) -> Result<String, RecognitionError> {
1194        // Placeholder implementation for domain adversarial training
1195        tracing::info!(
1196            "Domain adversarial adaptation from {} to {}",
1197            source_domain,
1198            target_domain
1199        );
1200        self.gradual_unfreezing_adaptation(task, source_domain, target_domain)
1201            .await
1202    }
1203
1204    async fn feature_alignment_adaptation(
1205        &self,
1206        task: TrainingTask,
1207        source_domain: String,
1208        target_domain: String,
1209    ) -> Result<String, RecognitionError> {
1210        // Placeholder implementation for feature alignment
1211        tracing::info!(
1212            "Feature alignment adaptation from {} to {}",
1213            source_domain,
1214            target_domain
1215        );
1216        self.gradual_unfreezing_adaptation(task, source_domain, target_domain)
1217            .await
1218    }
1219
1220    async fn curriculum_learning_adaptation(
1221        &self,
1222        task: TrainingTask,
1223        source_domain: String,
1224        target_domain: String,
1225    ) -> Result<String, RecognitionError> {
1226        // Placeholder implementation for curriculum learning
1227        tracing::info!(
1228            "Curriculum learning adaptation from {} to {}",
1229            source_domain,
1230            target_domain
1231        );
1232        self.gradual_unfreezing_adaptation(task, source_domain, target_domain)
1233            .await
1234    }
1235
1236    // Few-shot learning implementation methods
1237    async fn maml_few_shot_learning(
1238        &self,
1239        task: TrainingTask,
1240        support_set_size: usize,
1241    ) -> Result<String, RecognitionError> {
1242        tracing::info!(
1243            "MAML few-shot learning with support set size {}",
1244            support_set_size
1245        );
1246
1247        for epoch in 1..=task.hyperparameters.epochs {
1248            {
1249                let mut state = self.session_state.write().await;
1250                state.current_epoch = epoch;
1251                state.progress = epoch as f32 / task.hyperparameters.epochs as f32;
1252                state.current_phase = TrainingPhase::FewShotOptimization;
1253            }
1254
1255            tracing::info!("MAML epoch {}/{}", epoch, task.hyperparameters.epochs);
1256            tokio::time::sleep(Duration::from_millis(100)).await;
1257        }
1258
1259        {
1260            let mut state = self.session_state.write().await;
1261            state.status = TrainingStatus::Completed;
1262            state.progress = 1.0;
1263        }
1264
1265        Ok(task.task_id)
1266    }
1267
1268    async fn prototypical_networks_learning(
1269        &self,
1270        task: TrainingTask,
1271        support_set_size: usize,
1272    ) -> Result<String, RecognitionError> {
1273        tracing::info!(
1274            "Prototypical networks learning with support set size {}",
1275            support_set_size
1276        );
1277        self.maml_few_shot_learning(task, support_set_size).await
1278    }
1279
1280    async fn matching_networks_learning(
1281        &self,
1282        task: TrainingTask,
1283        support_set_size: usize,
1284    ) -> Result<String, RecognitionError> {
1285        tracing::info!(
1286            "Matching networks learning with support set size {}",
1287            support_set_size
1288        );
1289        self.maml_few_shot_learning(task, support_set_size).await
1290    }
1291
1292    async fn relation_networks_learning(
1293        &self,
1294        task: TrainingTask,
1295        support_set_size: usize,
1296    ) -> Result<String, RecognitionError> {
1297        tracing::info!(
1298            "Relation networks learning with support set size {}",
1299            support_set_size
1300        );
1301        self.maml_few_shot_learning(task, support_set_size).await
1302    }
1303
1304    // Continuous learning implementation methods
1305    async fn ewc_continuous_learning(
1306        &self,
1307        task: TrainingTask,
1308        update_frequency: Duration,
1309    ) -> Result<String, RecognitionError> {
1310        tracing::info!(
1311            "EWC continuous learning with update frequency {:?}",
1312            update_frequency
1313        );
1314
1315        for epoch in 1..=task.hyperparameters.epochs {
1316            {
1317                let mut state = self.session_state.write().await;
1318                state.current_epoch = epoch;
1319                state.progress = epoch as f32 / task.hyperparameters.epochs as f32;
1320                state.current_phase = TrainingPhase::ContinuousLearning;
1321            }
1322
1323            tracing::info!(
1324                "EWC continuous learning epoch {}/{}",
1325                epoch,
1326                task.hyperparameters.epochs
1327            );
1328            tokio::time::sleep(update_frequency).await;
1329        }
1330
1331        {
1332            let mut state = self.session_state.write().await;
1333            state.status = TrainingStatus::Completed;
1334            state.progress = 1.0;
1335        }
1336
1337        Ok(task.task_id)
1338    }
1339
1340    async fn progressive_networks_learning(
1341        &self,
1342        task: TrainingTask,
1343        update_frequency: Duration,
1344    ) -> Result<String, RecognitionError> {
1345        tracing::info!(
1346            "Progressive networks learning with update frequency {:?}",
1347            update_frequency
1348        );
1349        self.ewc_continuous_learning(task, update_frequency).await
1350    }
1351
1352    async fn memory_replay_learning(
1353        &self,
1354        task: TrainingTask,
1355        update_frequency: Duration,
1356    ) -> Result<String, RecognitionError> {
1357        tracing::info!(
1358            "Memory replay learning with update frequency {:?}",
1359            update_frequency
1360        );
1361        self.ewc_continuous_learning(task, update_frequency).await
1362    }
1363
1364    async fn packnet_learning(
1365        &self,
1366        task: TrainingTask,
1367        update_frequency: Duration,
1368    ) -> Result<String, RecognitionError> {
1369        tracing::info!(
1370            "PackNet learning with update frequency {:?}",
1371            update_frequency
1372        );
1373        self.ewc_continuous_learning(task, update_frequency).await
1374    }
1375
1376    // Federated learning implementation
1377    async fn federated_training_loop(
1378        &self,
1379        task: TrainingTask,
1380        federation_config: FederationConfig,
1381        aggregation_strategy: AggregationStrategy,
1382    ) -> Result<String, RecognitionError> {
1383        for round in 1..=federation_config.communication_rounds {
1384            {
1385                let mut state = self.session_state.write().await;
1386                state.current_epoch = round;
1387                state.progress = round as f32 / federation_config.communication_rounds as f32;
1388                state.current_phase = TrainingPhase::DomainAdaptation;
1389            }
1390
1391            tracing::info!(
1392                "Federated learning round {}/{} with {} clients",
1393                round,
1394                federation_config.communication_rounds,
1395                federation_config.num_clients
1396            );
1397
1398            // Simulate client selection and training
1399            let selected_clients = self.select_clients(&federation_config).await?;
1400            self.aggregate_client_updates(
1401                &federation_config,
1402                &aggregation_strategy,
1403                &selected_clients,
1404            )
1405            .await?;
1406
1407            tokio::time::sleep(Duration::from_millis(200)).await;
1408        }
1409
1410        {
1411            let mut state = self.session_state.write().await;
1412            state.status = TrainingStatus::Completed;
1413            state.progress = 1.0;
1414        }
1415
1416        tracing::info!("Federated learning completed");
1417        Ok(task.task_id)
1418    }
1419
1420    async fn select_clients(
1421        &self,
1422        config: &FederationConfig,
1423    ) -> Result<Vec<String>, RecognitionError> {
1424        // Simulate client selection based on strategy
1425        let client_count = (config.num_clients as f32 * 0.5) as usize; // Use 50% as default fraction
1426        let selected_clients: Vec<String> =
1427            (0..client_count).map(|i| format!("client_{i}")).collect();
1428
1429        tracing::info!(
1430            "Selected {} clients using {:?} strategy",
1431            selected_clients.len(),
1432            config.client_selection
1433        );
1434        Ok(selected_clients)
1435    }
1436
1437    async fn aggregate_client_updates(
1438        &self,
1439        config: &FederationConfig,
1440        aggregation_strategy: &AggregationStrategy,
1441        clients: &[String],
1442    ) -> Result<(), RecognitionError> {
1443        tracing::info!(
1444            "Aggregating updates from {} clients using {:?}",
1445            clients.len(),
1446            aggregation_strategy
1447        );
1448        // Simulate aggregation delay
1449        tokio::time::sleep(Duration::from_millis(50)).await;
1450        Ok(())
1451    }
1452}
1453
1454/// Error types specific to training
1455#[derive(Debug, thiserror::Error)]
1456pub enum TrainingError {
1457    /// Configuration error occurred during training setup
1458    #[error("Configuration error: {message}")]
1459    ConfigurationError {
1460        /// Error message
1461        message: String,
1462    },
1463
1464    /// Data loading error occurred during training
1465    #[error("Data loading error: {message}")]
1466    DataLoadingError {
1467        /// Error message
1468        message: String,
1469    },
1470
1471    /// Model error occurred during training
1472    #[error("Model error: {message}")]
1473    ModelError {
1474        /// Error message
1475        message: String,
1476    },
1477
1478    /// Training failed
1479    #[error("Training failed: {message}")]
1480    TrainingFailed {
1481        /// Error message
1482        message: String,
1483    },
1484
1485    /// Validation error occurred during training
1486    #[error("Validation error: {message}")]
1487    ValidationError {
1488        /// Error message
1489        message: String,
1490    },
1491
1492    /// Export error occurred during model export
1493    #[error("Export error: {message}")]
1494    ExportError {
1495        /// Error message
1496        message: String,
1497    },
1498}
1499
1500impl From<TrainingError> for RecognitionError {
1501    fn from(error: TrainingError) -> Self {
1502        RecognitionError::TrainingError {
1503            message: error.to_string(),
1504            source: Some(Box::new(error)),
1505        }
1506    }
1507}