1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
use core::cmp::min;
use core::marker::PhantomData;
use usb_device::{class_prelude::*, control::Request};

const USB_CLASS_APPLICATION_SPECIFIC: u8 = 0xFE;
const USB_SUBCLASS_DFU: u8 = 0x01;

#[allow(dead_code)]
const USB_PROTOCOL_RUN_TIME: u8 = 0x01;
const USB_PROTOCOL_DFU_MODE: u8 = 0x02;

#[allow(dead_code)]
const DFU_DETACH: u8 = 0x00;
const DFU_DNLOAD: u8 = 0x01;
const DFU_UPLOAD: u8 = 0x02;
const DFU_GETSTATUS: u8 = 0x03;
const DFU_CLRSTATUS: u8 = 0x04;
const DFU_GETSTATE: u8 = 0x05;
const DFU_ABORT: u8 = 0x06;

const DESC_DESCTYPE_DFU: u8 = 0x21;

const HAS_READ_UNPROTECT: bool = false;

#[repr(u8)]
#[derive(Clone, Copy, PartialEq, Eq)]
enum DFUState {
    /// Device is running its normal application.
    #[allow(dead_code)]
    AppIdle = 0,
    /// Device is running its normal application, has received the DFU_DETACH request, and is waiting for a USB reset.
    #[allow(dead_code)]
    AppDetach = 1,
    /// Device is operating in the DFU mode and is waiting for requests.
    DfuIdle = 2,
    /// Device has received a block and is waiting for the host to solicit the status via DFU_GETSTATUS.
    DfuDnloadSync = 3,
    /// Device is programming a control-write block into its nonvolatile memories.
    DfuDnBusy = 4,
    /// Device is processing a download operation. Expecting DFU_DNLOAD requests.
    DfuDnloadIdle = 5,
    /// Device has received the final block of firmware from the hostand is waiting for receipt of DFU_GETSTATUS to begin the Manifestation phase; or device has completed the Manifestation phase and is waiting for receipt of DFU_GETSTATUS. (Devices that can enter this state after the Manifestation phase set bmAttributes bit bitManifestationTolerant to 1.)
    DfuManifestSync = 6,
    /// Device is in the Manifestation phase. (Not all devices will be able to respond to DFU_GETSTATUS when in this state.)
    DfuManifest = 7,
    /// Device has programmed its memories and is waiting for a USB reset or a power on reset. (Devices that must enter this state clear bitManifestationTolerant to 0.)
    DfuManifestWaitReset = 8,
    /// The device is processing an upload operation. Expecting DFU_UPLOAD requests.
    DfuUploadIdle = 9,
    /// An error has occurred. Awaiting the DFU_CLRSTATUS request.
    DfuError = 10,
}

#[repr(u8)]
#[derive(Clone, Copy, PartialEq, Eq)]
enum DFUStatusCode {
    /// No error condition is present.
    OK = 0x00,
    /// File is not targeted for use by this device.
    ErrTarget = 0x01,
    /// File is for this device but fails some vendor-specific verification test.
    ErrFile = 0x02,
    /// Device is unable to write memory.
    ErrWrite = 0x03,
    /// Memory erase function failed.
    ErrErase = 0x04,
    /// Memory erase check failed.
    ErrCheckErased = 0x05,
    /// Program memory function failed.
    ErrProg = 0x06,
    /// Programmed memory failed verification.
    ErrVerify = 0x07,
    /// Cannot program memory due to received address that is out of range.
    ErrAddress = 0x08,
    /// Received DFU_DNLOAD with wLength = 0, but device does not think it has all of the data yet.
    ErrNotdone = 0x09,
    /// Device’s firmware is corrupt. It cannot return to run-time (non-DFU) operations.
    ErrFirmware = 0x0A,
    /// iString indicates a vendor-specific error.
    ErrVendor = 0x0B,
    /// Device detected unexpected USB reset signaling.
    ErrUsbr = 0x0C,
    /// Device detected unexpected power on reset.
    ErrPOR = 0x0D,
    /// Something went wrong, but the device does not know what it was.
    ErrUnknown = 0x0E,
    /// Device stalled an unexpected request.
    ErrStalledPkt = 0x0F,
}

#[repr(u8)]
enum DnloadCommand {
    GetCommands = 0x00,
    SetAddressPointer = 0x21,
    Erase = 0x41,
    ReadUnprotect = 0x92,
}

/// Errors that may happen when working with the memory
/// (reading, erasing, writting). These will be translated
/// to a corresponding error codes in DFU protocol.
#[repr(u8)]
pub enum DFUMemError {
    /// File is not targeted for use by this device.
    Target = DFUStatusCode::ErrTarget as u8,
    /// File is for this device but fails some vendor-specific verification test.
    File = DFUStatusCode::ErrFile as u8,
    /// Device is unable to write memory.
    Write = DFUStatusCode::ErrWrite as u8,
    /// Memory erase function failed.
    Erase = DFUStatusCode::ErrErase as u8,
    /// Memory erase check failed.
    CheckErased = DFUStatusCode::ErrCheckErased as u8,
    /// Program memory function failed.
    Prog = DFUStatusCode::ErrProg as u8,
    /// Programmed memory failed verification.
    Verify = DFUStatusCode::ErrVerify as u8,
    /// Something went wrong, but the device does not know what it was.
    Unknown = DFUStatusCode::ErrUnknown as u8,
    /// Cannot program memory due to received address that is out of range.
    Address = DFUStatusCode::ErrAddress as u8,
    /// A vendor-specific error. iString in DFU_GETSTATUS reply will always be 0.
    ErrVendor = DFUStatusCode::ErrVendor as u8,
}

/// Errors that may happen when device enter Manifestation phase
#[repr(u8)]
pub enum DFUManifestationError {
    /// File is not targeted for use by this device.
    Target = DFUStatusCode::ErrTarget as u8,
    /// File is for this device but fails some vendor-specific verification test.
    File = DFUStatusCode::ErrFile as u8,
    /// Received DFU_DNLOAD with wLength = 0, but device does not think it has all of the data yet.
    NotDone = DFUStatusCode::ErrNotdone as u8,
    /// Device’s firmware is corrupt. It cannot return to run-time (non-DFU) operations.
    Firmware = DFUStatusCode::ErrFirmware as u8,
    /// A vendor-specific error. iString in DFU_GETSTATUS reply will always be 0.
    ErrVendor = DFUStatusCode::ErrVendor as u8,
    /// Something went wrong, but the device does not know what it was.
    Unknown = DFUStatusCode::ErrUnknown as u8,
}

/// Trait that describes the abstraction used to access memory on a device. [`DFUClass`] will call corresponding
/// functions and will use provided constants to tailor DFU features and, for example time interval values that
/// are used in the protocol.
///
/// In this context we use "page" to mean the smallest region of flash memory which can be erased, and "block"
/// to mean an amount of memory which is to be used for reading or programming.
pub trait DFUMemIO {
    /// Specifies the default value of Address Pointer
    ///
    /// Usually, it's start address of a memory region.
    ///
    const INITIAL_ADDRESS_POINTER: u32;

    /// Specifies USB interface descriptor string. It should describe a memory region this interface works with.
    ///
    /// *Disclaimer*: I haven't found the specification, this is what it looks like from dfu-util sources.
    ///
    /// The string is formatted as follows:
    ///
    /// @ *name*/*address*/*area*[,*area*...]
    ///
    /// > `@` (at sign), `/` (slash), `,` (coma) symbols
    ///
    /// > *name* - Region name, e.g. "Flash"
    ///
    /// > *address* - Memory address of a regions, e.g. "0x08000000"
    ///
    /// > *area* - count of pages, page size, and supported operations for the region, e.g. 8*1Ke - 8 pages of 1024 bytes, available for reading and writing.
    ///
    /// Page size supports these suffixes: **K**, **M**, **G**, or ` ` (space) for bytes.
    ///
    /// And a letter that specifies region's supported operation:
    ///
    /// | letter | Read | Erase | Write |
    /// |--------|------|-------|-------|
    /// | **a**  |   +  |       |       |
    /// | **b**  |      |   +   |       |
    /// | **c**  |   +  |   +   |       |
    /// | **d**  |      |       |   +   |
    /// | **e**  |   +  |       |   +   |
    /// | **f**  |      |   +   |   +   |
    /// | **g**  |   +  |   +   |   +   |
    ///
    /// For example:
    /// ```text
    /// @Flash/0x08000000/16*1Ka,48*1Kg
    /// ```
    ///
    /// Denotes a memory region named "Flash", with a starting address `0x08000000`,
    /// the first 16 pages with a size 1K are available only for reading, and the next
    /// 48 1K-pages are avaiable for reading, erase, and write operations.
    const MEM_INFO_STRING: &'static str;

    /// If set, DFU descriptor will have *bitCanDnload* bit set. Default is `true`.
    ///
    /// Should be set to true if firmware download (host to device) is supported.
    const HAS_DOWNLOAD: bool = true;

    /// If set, DFU descriptor will have *bitCanUpload* bit set. Default is `true`.
    ///
    /// Should be set to true if firmware upload (device to host) is supported.
    const HAS_UPLOAD: bool = true;

    /// If set, DFU descriptor will have *bitManifestationTolerant* bit set. Default is `true`.
    ///
    /// See also [`MANIFESTATION_TIME_MS`](DFUMemIO::MANIFESTATION_TIME_MS).
    const MANIFESTATION_TOLERANT: bool = true;

    // /// Remove device's flash read protection. This operation should erase
    // /// memory contents.
    // const HAS_READ_UNPROTECT : bool = false;

    /// Time in milliseconds host must wait before issuing the next command after
    /// block program request.
    ///
    /// This is the time that program of one block or [`TRANSFER_SIZE`](DFUMemIO::TRANSFER_SIZE) bytes
    /// takes.
    ///
    /// DFU programs data as follows:
    ///
    /// > 1. Host transfers `TRANSFER_SIZE` bytes to a device
    /// > 2. Device stores this data in a buffer
    /// > 3. Host issues `DFU_GETSTATUS` command, confirms that device state is correct,
    /// >    and checks the reply for 24-bit value how much time it must wait
    /// >    before issuing the next command. Device, after submitting a reply
    /// >    starts program operation.
    /// > 4. After waiting for a specified number of milliseconds, host continues to send new commands.
    const PROGRAM_TIME_MS: u32;

    /// Similar to [`PROGRAM_TIME_MS`](DFUMemIO::PROGRAM_TIME_MS), but for a page erase operation.
    const ERASE_TIME_MS: u32;

    /// Similar to [`PROGRAM_TIME_MS`](DFUMemIO::PROGRAM_TIME_MS), but for a full erase operation.
    const FULL_ERASE_TIME_MS: u32;

    /// Time in milliseconds host must wait after submitting the final firware download
    /// (host to device) command. Default is `1` ms.
    ///
    /// DFU protocol allows the device to enter a Manifestation state when it can activate
    /// the uploaded firmware.
    ///
    /// After the activation is completed, device may need to reset (if
    /// [`MANIFESTATION_TOLERANT`](DFUMemIO::MANIFESTATION_TOLERANT) is `false`), or it can return to IDLE state
    /// (if `MANIFESTATION_TOLERANT` is `true`)
    ///
    /// See also [`PROGRAM_TIME_MS`](DFUMemIO::PROGRAM_TIME_MS).
    const MANIFESTATION_TIME_MS: u32 = 1;

    /// wDetachTimeOut field in DFU descriptor. Default value: `250` ms.
    ///
    /// Probably unused if device does not support DFU in run-time mode to
    /// handle `DFU_DETACH` command.
    ///
    /// Time in milliseconds that device will wait after receipt of `DFU_DETACH` request
    /// if USB reset request is not received before reverting to a normal operation.
    const DETACH_TIMEOUT: u16 = 250;

    /// Expected transfer size. Default value: `128` bytes.
    ///
    /// This is the maximum size of a block for [`read()`](DFUMemIO::read) and [`program()`](DFUMemIO::program) functions.
    ///
    /// This also sets `wTransferSize` in DFU Functional descriptor.
    ///
    /// Host should use exactly this transfer size for all blocks except for the last one.
    /// The last block can be shorter. If transfer size is too large, Host may choose
    /// to use a smaller block size, in this case firmware may be written incorrectly
    /// if Host is not using `Set Address Pointer` command.
    ///
    /// All DFU transfers use Control endpoint only.
    ///
    /// **Warning**: must be less or equal of `usb-device`'s control endpoint buffer size (usually `128` bytes),
    /// otherwise data transfers may fail for no obvious reason.
    const TRANSFER_SIZE: u16 = 128;

    // /// Not supported, implementation would probably need some
    // /// non-trivial locking.
    // const MEMIO_IN_USB_INTERRUPT: bool = true;

    /// Collect data which comes from USB, possibly in chunks, to a buffer in RAM.
    ///
    /// [`DFUClass`] does not have an internal memory buffer for a read/write operations,
    /// incoming data should be stored in a buffer managed by this trait's implementation.
    ///
    /// This function should not write data to Flash or trigger memory Erase.
    ///
    /// The same buffer may be shared for both write and read operations.
    /// DFU protocol will not trigger block write while sending data to host, and
    /// will ensure that buffer has valid data before program operation is requested.
    ///
    /// This function is called from `usb_dev.poll([])` (USB interrupt context).
    ///
    fn store_write_buffer(&mut self, src: &[u8]) -> Result<(), ()>;

    /// Read memory and return it to device.
    ///
    /// If Upload operation is supported ([`HAS_UPLOAD`](DFUMemIO::HAS_UPLOAD) is `true`), this function
    /// returns memory contents to a host.
    ///
    /// Implementation must check that address is in a target region and that the
    /// whole block fits in this region too.
    ///
    /// This function is called from `usb_dev.poll([])` (USB interrupt context).
    ///
    fn read(&mut self, address: u32, length: usize) -> Result<&[u8], DFUMemError>;

    /// Trigger block program.
    ///
    /// Implementation must check that address is in a target region and that the
    /// whole block fits in this region too.
    ///
    /// This function is called from `usb_dev.poll([])` (USB interrupt context).
    // / This function by default is called from USB interrupt context, depending on
    // / [`MEMIO_IN_USB_INTERRUPT`](DFUMemIO::MEMIO_IN_USB_INTERRUPT) value.
    ///
    fn program(&mut self, address: u32, length: usize) -> Result<(), DFUMemError>;

    /// Trigger page erase.
    ///
    /// Implementation must ensure that address is valid, or return an error.
    ///
    /// This function is called from `usb_dev.poll([])` (USB interrupt context).
    // / This function by default is called from USB interrupt context, depending on
    // / [`MEMIO_IN_USB_INTERRUPT`](DFUMemIO::MEMIO_IN_USB_INTERRUPT) value.
    ///
    fn erase(&mut self, address: u32) -> Result<(), DFUMemError>;

    /// Trigger full erase.
    ///
    /// This function is called from `usb_dev.poll([])` (USB interrupt context).
    // / This function by default is called from USB interrupt context, depending on
    // / [`MEMIO_IN_USB_INTERRUPT`](DFUMemIO::MEMIO_IN_USB_INTERRUPT) value.
    ///
    fn erase_all(&mut self) -> Result<(), DFUMemError>;

    /// Finish writing firmware to a persistent storage, and optionally activate it.
    ///
    /// This funciton should return if [`MANIFESTATION_TOLERANT`](DFUMemIO::MANIFESTATION_TOLERANT) is `true`.
    ///
    /// This funciton should not return `Ok()` if `MANIFESTATION_TOLERANT` is `false`.
    /// Instead device should activate and start new main firmware.
    ///
    /// This function is called from `usb_dev.poll([])` (USB interrupt context).
    // / This function by default is called from USB interrupt context, depending on
    // / [`MEMIO_IN_USB_INTERRUPT`](DFUMemIO::MEMIO_IN_USB_INTERRUPT) value.
    ///
    fn manifestation(&mut self) -> Result<(), DFUManifestationError>;

    /// Called every time when USB is reset.
    ///
    /// After firmware update is done, device should switch to an application
    /// firmware if it's possible and this function should not return.
    ///
    /// Handler will need to distinguish between actual host resets and
    /// when the device connects the first time at startup to avoid
    /// device reset and revert to main firmware at boot.
    ///
    /// If firmware is corrupt, this funciton should return and DFU will switch
    /// to ERROR state so host could try to recover. This is the default.
    ///
    /// This function is called from `usb_dev.poll([])` (USB interrupt context).
    ///
    fn usb_reset(&mut self) {}
}

impl From<DFUMemError> for DFUStatusCode {
    fn from(e: DFUMemError) -> Self {
        match e {
            DFUMemError::File => DFUStatusCode::ErrFile,
            DFUMemError::Target => DFUStatusCode::ErrTarget,
            DFUMemError::Address => DFUStatusCode::ErrAddress,
            DFUMemError::CheckErased => DFUStatusCode::ErrCheckErased,
            DFUMemError::Erase => DFUStatusCode::ErrErase,
            DFUMemError::Write => DFUStatusCode::ErrWrite,
            DFUMemError::Prog => DFUStatusCode::ErrProg,
            DFUMemError::Verify => DFUStatusCode::ErrVerify,
            DFUMemError::Unknown => DFUStatusCode::ErrUnknown,
            DFUMemError::ErrVendor => DFUStatusCode::ErrVendor,
        }
    }
}

impl From<DFUManifestationError> for DFUStatusCode {
    fn from(e: DFUManifestationError) -> Self {
        match e {
            DFUManifestationError::NotDone => DFUStatusCode::ErrNotdone,
            DFUManifestationError::Firmware => DFUStatusCode::ErrFirmware,
            DFUManifestationError::Unknown => DFUStatusCode::ErrUnknown,
            DFUManifestationError::ErrVendor => DFUStatusCode::ErrVendor,
            DFUManifestationError::File => DFUStatusCode::ErrFile,
            DFUManifestationError::Target => DFUStatusCode::ErrTarget,
        }
    }
}

/// DFU protocol USB class implementation for usb-device library.
pub struct DFUClass<B: UsbBus, M: DFUMemIO> {
    if_num: InterfaceNumber,
    status: DFUStatus,
    interface_string: StringIndex,
    _bus: PhantomData<B>,
    mem: M,
}

#[derive(Clone, Copy, PartialEq, Eq)]
enum Command {
    None,
    EraseAll,
    Erase(u32),
    SetAddressPointer(u32),
    ReadUnprotect,
    WriteMemory { block_num: u16, len: u16 },
    LeaveDFU,
}

#[derive(Clone, Copy)]
struct DFUStatus {
    status: DFUStatusCode,
    poll_timeout: u32,
    state: DFUState,
    address_pointer: u32,
    command: Command,
    pending: Command,
}

impl DFUStatus {
    pub fn new(addr: u32) -> Self {
        Self {
            status: DFUStatusCode::OK,
            poll_timeout: 0,
            state: DFUState::DfuIdle,
            address_pointer: addr,
            command: Command::None,
            pending: Command::None,
        }
    }

    fn new_state_ok(&mut self, state: DFUState) {
        self.new_state_status(state, DFUStatusCode::OK);
    }

    fn new_state_status(&mut self, state: DFUState, status: DFUStatusCode) {
        self.status = status;
        self.state = state;
    }

    fn state(&self) -> DFUState {
        self.state
    }
}

impl From<DFUStatus> for [u8; 6] {
    fn from(dfu: DFUStatus) -> Self {
        [
            // bStatus
            dfu.status as u8,
            // bwPollTimeout
            (dfu.poll_timeout & 0xff) as u8,
            ((dfu.poll_timeout >> 8) & 0xff) as u8,
            ((dfu.poll_timeout >> 16) & 0xff) as u8,
            // bState
            dfu.state as u8,
            // iString: Index of status description in string table.
            0,
        ]
    }
}

impl<B: UsbBus, M: DFUMemIO> UsbClass<B> for DFUClass<B, M> {
    fn get_configuration_descriptors(
        &self,
        writer: &mut DescriptorWriter,
    ) -> usb_device::Result<()> {
        writer.interface_alt(
            self.if_num,
            0,
            USB_CLASS_APPLICATION_SPECIFIC,
            USB_SUBCLASS_DFU,
            USB_PROTOCOL_DFU_MODE,
            Some(self.interface_string),
        )?;

        // DFU Functional descriptor
        writer.write(
            DESC_DESCTYPE_DFU,
            &[
                // bmAttributes
                // Bit 7: bitAcceleratedST
                (if false {0x80} else {0}) |
                    // Bit 4-6: Reserved
                    // Bit 3: bitWillDetach
                    (if true {0x8} else {0}) |
                    // Bit 2: bitManifestationTolerant
                    (if M::MANIFESTATION_TOLERANT {0x4} else {0}) |
                    // Bit 1: bitCanUpload
                    (if M::HAS_UPLOAD {0x2} else {0}) |
                    // Bit 0: bitCanDnload
                    (if M::HAS_DOWNLOAD {0x1} else {0}),
                // wDetachTimeOut
                (M::DETACH_TIMEOUT & 0xff) as u8,
                (M::DETACH_TIMEOUT >> 8) as u8,
                // wTransferSize
                (M::TRANSFER_SIZE & 0xff) as u8,
                (M::TRANSFER_SIZE >> 8) as u8,
                // bcdDFUVersion
                0x1a,
                0x01,
            ],
        )?;

        //

        Ok(())
    }

    fn get_string(&self, index: StringIndex, lang_id: u16) -> Option<&str> {
        if (lang_id == usb_device::descriptor::lang_id::ENGLISH_US || lang_id == 0)
            && (index == self.interface_string)
        {
            return Some(M::MEM_INFO_STRING);
        }
        None
    }

    // Handle control requests to the host.
    fn control_in(&mut self, xfer: ControlIn<B>) {
        let req = *xfer.request();

        if req.request_type != control::RequestType::Class {
            return;
        }

        if req.recipient != control::Recipient::Interface {
            return;
        }

        if req.index != u8::from(self.if_num) as u16 {
            return;
        }

        match req.request {
            DFU_UPLOAD => {
                self.upload(xfer, req);
            }
            DFU_GETSTATUS => {
                self.get_status(xfer, req);
            }
            DFU_GETSTATE => {
                self.get_state(xfer, req);
            }
            _ => {
                xfer.reject().ok();
            }
        }
    }

    // Handle a control request from the host.
    fn control_out(&mut self, xfer: ControlOut<B>) {
        let req = *xfer.request();

        if req.request_type != control::RequestType::Class {
            return;
        }

        if req.recipient != control::Recipient::Interface {
            return;
        }

        if req.index != u8::from(self.if_num) as u16 {
            return;
        }

        match req.request {
            //DFU_DETACH => {},
            DFU_DNLOAD => {
                self.download(xfer, req);
            }
            DFU_CLRSTATUS => {
                self.clear_status(xfer);
            }
            DFU_ABORT => {
                self.abort(xfer);
            }
            _ => {
                xfer.reject().ok();
            }
        }
    }

    fn reset(&mut self) {
        // may not return
        self.mem.usb_reset();

        // Try to signal possible error to a host.
        // Not exactly clear what status should be.
        match self.status.state() {
            DFUState::DfuUploadIdle
            | DFUState::DfuDnloadIdle
            | DFUState::DfuDnloadSync
            | DFUState::DfuDnBusy
            | DFUState::DfuError
            | DFUState::DfuManifest
            | DFUState::DfuManifestSync => {
                self.status
                    .new_state_status(DFUState::DfuError, DFUStatusCode::ErrUsbr);
            }
            DFUState::DfuIdle
            | DFUState::AppDetach
            | DFUState::AppIdle
            | DFUState::DfuManifestWaitReset => {}
        }
    }

    fn poll(&mut self) {
        self.update_impl();
    }
}

impl<B: UsbBus, M: DFUMemIO> DFUClass<B, M> {
    /// Creates a new DFUClass with the provided UsbBus and
    /// DFUMemIO
    pub fn new(alloc: &UsbBusAllocator<B>, mem: M) -> Self {
        Self {
            if_num: alloc.interface(),
            status: DFUStatus::new(M::INITIAL_ADDRESS_POINTER),
            interface_string: alloc.string(),
            _bus: PhantomData,
            mem,
        }
    }

    /// This function will consume self and return the owned memory
    /// argument that was moved in the call to new()
    pub fn release(self) -> M {
        self.mem
    }

    /// This function may be called just after `DFUClass::new()` to
    /// set DFU error state to "Device detected unexpected power on reset"
    /// instead of the usual `dfuIdle`.
    pub fn set_unexpected_reset_state(&mut self) {
        self.status
            .new_state_status(DFUState::DfuError, DFUStatusCode::ErrPOR);
    }

    /// This function may be called just after `DFUClass::new()` to
    /// set DFU error state to "Device’s firmware is corrupt. It cannot return to run-time (non-DFU) operations"
    /// instead of the usual `dfuIdle`.
    pub fn set_firmware_corrupted_state(&mut self) {
        self.status
            .new_state_status(DFUState::DfuError, DFUStatusCode::ErrFirmware);
    }

    /// Return current Address Pointer value.
    pub fn get_address_pointer(&self) -> u32 {
        self.status.address_pointer
    }

    fn clear_status(&mut self, xfer: ControlOut<B>) {
        match self.status.state() {
            DFUState::DfuError => {
                self.status.command = Command::None;
                self.status.pending = Command::None;
                self.status.new_state_ok(DFUState::DfuIdle);
                xfer.accept().ok();
            }
            _ => {
                self.status
                    .new_state_status(DFUState::DfuError, DFUStatusCode::ErrStalledPkt);
                xfer.reject().ok();
            }
        }
    }

    fn abort(&mut self, xfer: ControlOut<B>) {
        match self.status.state() {
            DFUState::DfuIdle
            | DFUState::DfuUploadIdle
            | DFUState::DfuDnloadIdle
            | DFUState::DfuDnloadSync
            | DFUState::DfuManifestSync => {
                self.status.command = Command::None;
                self.status.pending = Command::None;
                self.status.new_state_ok(DFUState::DfuIdle);
                xfer.accept().ok();
            }
            DFUState::AppDetach
            | DFUState::AppIdle
            | DFUState::DfuDnBusy
            | DFUState::DfuManifest
            | DFUState::DfuManifestWaitReset
            | DFUState::DfuError => {
                xfer.reject().ok();
            }
        }
    }

    fn download(&mut self, xfer: ControlOut<B>, req: Request) {
        let initial_state = self.status.state();

        if initial_state != DFUState::DfuIdle && initial_state != DFUState::DfuDnloadIdle {
            self.status
                .new_state_status(DFUState::DfuError, DFUStatusCode::ErrStalledPkt);
            xfer.reject().ok();
            return;
        }

        if req.length == 0 {
            self.status.command = Command::LeaveDFU;
            self.status.new_state_ok(DFUState::DfuManifestSync);
            xfer.accept().ok();
            return;
        }

        if req.value > 1 {
            let data = xfer.data();
            if !data.is_empty() {
                // store the whole buffer, chunked operation in not supported
                match self.mem.store_write_buffer(data) {
                    Err(_) => {
                        self.status
                            .new_state_status(DFUState::DfuError, DFUStatusCode::ErrStalledPkt);
                        xfer.reject().ok();
                    }
                    Ok(_) => {
                        let block_num = req.value - 2;
                        self.status.command = Command::WriteMemory {
                            block_num,
                            len: data.len() as u16,
                        };
                        self.status.new_state_ok(DFUState::DfuDnloadSync);
                        xfer.accept().ok();
                    }
                }
                return;
            }
        } else if req.value == 0 {
            let data = xfer.data();
            if req.length >= 1 {
                let command = data[0];

                if command == DnloadCommand::SetAddressPointer as u8 {
                    if req.length == 5 {
                        let addr = (data[1] as u32)
                            | ((data[2] as u32) << 8)
                            | ((data[3] as u32) << 16)
                            | ((data[4] as u32) << 24);
                        self.status.command = Command::SetAddressPointer(addr);
                        self.status.new_state_ok(DFUState::DfuDnloadSync);
                        xfer.accept().ok();
                        return;
                    }
                } else if command == DnloadCommand::Erase as u8 {
                    if req.length == 5 {
                        let addr = (data[1] as u32)
                            | ((data[2] as u32) << 8)
                            | ((data[3] as u32) << 16)
                            | ((data[4] as u32) << 24);
                        self.status.command = Command::Erase(addr);
                        self.status.new_state_ok(DFUState::DfuDnloadSync);
                        xfer.accept().ok();
                        return;
                    } else if req.length == 1 {
                        self.status.command = Command::EraseAll;
                        self.status.new_state_ok(DFUState::DfuDnloadSync);
                        xfer.accept().ok();
                        return;
                    }
                } else if HAS_READ_UNPROTECT && command == DnloadCommand::ReadUnprotect as u8 {
                    self.status.command = Command::ReadUnprotect;
                    self.status.new_state_ok(DFUState::DfuDnloadSync);
                    xfer.accept().ok();
                    return;
                }
            }
        }

        self.status
            .new_state_status(DFUState::DfuError, DFUStatusCode::ErrStalledPkt);
        xfer.reject().ok();
    }

    fn upload(&mut self, xfer: ControlIn<B>, req: Request) {
        let initial_state = self.status.state();

        if initial_state != DFUState::DfuIdle && initial_state != DFUState::DfuUploadIdle {
            self.status
                .new_state_status(DFUState::DfuError, DFUStatusCode::ErrStalledPkt);
            xfer.reject().ok();
            return;
        }

        if req.value == 0 {
            // Get command
            let commands = [
                DnloadCommand::GetCommands as u8,
                DnloadCommand::SetAddressPointer as u8,
                DnloadCommand::Erase as u8,
                // XXX read unprotect
            ];

            if req.length as usize >= commands.len() {
                self.status.new_state_ok(DFUState::DfuIdle);
                xfer.accept_with(&commands).ok();
                return;
            }
        } else if req.value > 1 {
            // upload command
            let block_num = req.value - 2;
            let transfer_size = min(M::TRANSFER_SIZE, req.length);

            if let Some(address) = self
                .status
                .address_pointer
                .checked_add((block_num as u32) * (M::TRANSFER_SIZE as u32))
            {
                match self.mem.read(address, transfer_size as usize) {
                    Ok(b) => {
                        if b.len() < M::TRANSFER_SIZE as usize {
                            // short frame, back to idle
                            self.status.new_state_ok(DFUState::DfuIdle);
                        } else {
                            self.status.new_state_ok(DFUState::DfuUploadIdle);
                        }
                        xfer.accept_with(&b).ok();
                        return;
                    }
                    Err(e) => {
                        self.status.new_state_status(DFUState::DfuError, e.into());
                        xfer.reject().ok();
                        return;
                    }
                }
            } else {
                // overflow
                self.status
                    .new_state_status(DFUState::DfuError, DFUStatusCode::ErrAddress);
                xfer.reject().ok();
                return;
            }
        }

        self.status
            .new_state_status(DFUState::DfuError, DFUStatusCode::ErrStalledPkt);
        xfer.reject().ok();
    }

    fn get_state(&mut self, xfer: ControlIn<B>, req: Request) {
        // return current state, without any state transition
        if req.length > 0 {
            let v = self.status.state() as u8;
            xfer.accept_with(&[v]).ok();
        } else {
            self.status
                .new_state_status(DFUState::DfuError, DFUStatusCode::ErrStalledPkt);
            xfer.reject().ok();
        }
    }

    fn get_status(&mut self, xfer: ControlIn<B>, req: Request) {
        if req.length >= 6 && self.process() {
            self.status.poll_timeout = self.expected_timeout();
            let v: [u8; 6] = self.status.into();
            xfer.accept_with(&v).ok();
            return;
        }

        self.status
            .new_state_status(DFUState::DfuError, DFUStatusCode::ErrStalledPkt);
        xfer.reject().ok();
    }

    fn expected_timeout(&self) -> u32 {
        match self.status.pending {
            Command::WriteMemory {
                block_num: _,
                len: _,
            } => M::PROGRAM_TIME_MS,
            Command::EraseAll => M::FULL_ERASE_TIME_MS,
            Command::Erase(_) => M::ERASE_TIME_MS,
            Command::LeaveDFU => M::MANIFESTATION_TIME_MS,
            _ => 0,
        }
    }

    // ///
    // /// Handle some DFU state transitions, and call `DFUMemIO`'s erase, program,
    // /// and manifestation functions.
    // ///
    // /// This function will be called internally by if [`M::MEMIO_IN_USB_INTERRUPT`](DFUMemIO::MEMIO_IN_USB_INTERRUPT)
    // /// is `true` (default) as one of a final steps of `usb_dev.poll([...])` which is itself usually called
    // /// from USB interrupt.
    // ///
    // /// This function must be called if [`M::MEMIO_IN_USB_INTERRUPT`](DFUMemIO::MEMIO_IN_USB_INTERRUPT) is `false`
    // /// and erase, program, and manifestation should be called from a different context than `usb_dev.poll([...])`.
    // ///
    // pub fn update(&mut self) {
    //     debug_assert!(!M::MEMIO_IN_USB_INTERRUPT, "not requried with MEMIO_IN_USB_INTERRUPT");
    //     if !M::MEMIO_IN_USB_INTERRUPT {
    //         self.update_impl()
    //     }
    // }

    // /// Returns `true` if [`update()`](DFUClass::update) needs to be called to
    // /// process a pending operation.
    // pub fn update_pending(&self) -> bool {
    //     match self.status.pending {
    //         Command::None => false,
    //         _ => true,
    //     }
    // }

    fn update_impl(&mut self) {
        match self.status.pending {
            Command::EraseAll => match self.mem.erase_all() {
                Err(e) => self.status.new_state_status(DFUState::DfuError, e.into()),
                Ok(_) => self.status.new_state_ok(DFUState::DfuDnloadSync),
            },
            Command::Erase(b) => match self.mem.erase(b) {
                Err(e) => self.status.new_state_status(DFUState::DfuError, e.into()),
                Ok(_) => self.status.new_state_ok(DFUState::DfuDnloadSync),
            },
            Command::LeaveDFU => {
                // may not return
                let mr = self.mem.manifestation();

                match mr {
                    Err(e) => self.status.new_state_status(DFUState::DfuError, e.into()),
                    Ok(_) => {
                        if M::MANIFESTATION_TOLERANT {
                            self.status.new_state_ok(DFUState::DfuManifestSync)
                        } else {
                            self.status.new_state_ok(DFUState::DfuManifestWaitReset)
                        }
                    }
                }
            }
            Command::ReadUnprotect => {
                // XXX not implemented
                // self.status.state = DFUState::DfuDnloadSync;
                self.status
                    .new_state_status(DFUState::DfuError, DFUStatusCode::ErrStalledPkt)
            }
            Command::WriteMemory { block_num, len } => {
                if let Some(pointer) = self
                    .status
                    .address_pointer
                    .checked_add((block_num as u32) * (M::TRANSFER_SIZE as u32))
                {
                    match self.mem.program(pointer, len as usize) {
                        Err(e) => self.status.new_state_status(DFUState::DfuError, e.into()),
                        Ok(_) => self.status.new_state_ok(DFUState::DfuDnloadSync),
                    }
                } else {
                    // overflow
                    self.status
                        .new_state_status(DFUState::DfuError, DFUStatusCode::ErrAddress);
                }
            }
            Command::SetAddressPointer(p) => {
                self.status.address_pointer = p;
                self.status.new_state_ok(DFUState::DfuDnloadSync)
            }
            Command::None => {}
        }
        self.status.pending = Command::None;
    }

    fn process(&mut self) -> bool {
        let initial_state = self.status.state();
        if initial_state == DFUState::DfuDnloadSync {
            match self.status.command {
                Command::WriteMemory {
                    block_num: _,
                    len: _,
                }
                | Command::SetAddressPointer(_)
                | Command::ReadUnprotect
                | Command::EraseAll
                | Command::Erase(_) => {
                    self.status.pending = self.status.command;
                    self.status.command = Command::None;
                    self.status.new_state_ok(DFUState::DfuDnBusy);
                }
                //Command::None => {}
                _ => {
                    self.status.new_state_ok(DFUState::DfuDnloadIdle);
                }
            }
        } else if initial_state == DFUState::DfuManifestSync {
            match self.status.command {
                Command::None => {
                    if M::MANIFESTATION_TOLERANT {
                        // Leave manifestation, back to Idle
                        self.status.command = Command::None;
                        self.status.new_state_ok(DFUState::DfuIdle);
                    }
                }
                _ => {
                    // Start manifestation
                    self.status.pending = self.status.command;
                    self.status.command = Command::None;
                    self.status.new_state_ok(DFUState::DfuManifest);
                }
            }
        } else if initial_state == DFUState::DfuDnBusy {
            return false;
        }

        true
    }
}