1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
use core::cmp::min;
use core::marker::PhantomData;
use usb_device::{class_prelude::*, control::Request};
const USB_CLASS_APPLICATION_SPECIFIC: u8 = 0xFE;
const USB_SUBCLASS_DFU: u8 = 0x01;
#[allow(dead_code)]
const USB_PROTOCOL_RUN_TIME: u8 = 0x01;
const USB_PROTOCOL_DFU_MODE: u8 = 0x02;
#[allow(dead_code)]
const DFU_DETACH: u8 = 0x00;
const DFU_DNLOAD: u8 = 0x01;
const DFU_UPLOAD: u8 = 0x02;
const DFU_GETSTATUS: u8 = 0x03;
const DFU_CLRSTATUS: u8 = 0x04;
const DFU_GETSTATE: u8 = 0x05;
const DFU_ABORT: u8 = 0x06;
const DESC_DESCTYPE_DFU: u8 = 0x21;
const HAS_READ_UNPROTECT: bool = false;
#[repr(u8)]
#[derive(Clone, Copy, PartialEq, Eq)]
enum DFUState {
/// Device is running its normal application.
#[allow(dead_code)]
AppIdle = 0,
/// Device is running its normal application, has received the DFU_DETACH request, and is waiting for a USB reset.
#[allow(dead_code)]
AppDetach = 1,
/// Device is operating in the DFU mode and is waiting for requests.
DfuIdle = 2,
/// Device has received a block and is waiting for the host to solicit the status via DFU_GETSTATUS.
DfuDnloadSync = 3,
/// Device is programming a control-write block into its nonvolatile memories.
DfuDnBusy = 4,
/// Device is processing a download operation. Expecting DFU_DNLOAD requests.
DfuDnloadIdle = 5,
/// Device has received the final block of firmware from the hostand is waiting for receipt of DFU_GETSTATUS to begin the Manifestation phase; or device has completed the Manifestation phase and is waiting for receipt of DFU_GETSTATUS. (Devices that can enter this state after the Manifestation phase set bmAttributes bit bitManifestationTolerant to 1.)
DfuManifestSync = 6,
/// Device is in the Manifestation phase. (Not all devices will be able to respond to DFU_GETSTATUS when in this state.)
DfuManifest = 7,
/// Device has programmed its memories and is waiting for a USB reset or a power on reset. (Devices that must enter this state clear bitManifestationTolerant to 0.)
DfuManifestWaitReset = 8,
/// The device is processing an upload operation. Expecting DFU_UPLOAD requests.
DfuUploadIdle = 9,
/// An error has occurred. Awaiting the DFU_CLRSTATUS request.
DfuError = 10,
}
#[repr(u8)]
#[derive(Clone, Copy, PartialEq, Eq)]
enum DFUStatusCode {
/// No error condition is present.
OK = 0x00,
/// File is not targeted for use by this device.
ErrTarget = 0x01,
/// File is for this device but fails some vendor-specific verification test.
ErrFile = 0x02,
/// Device is unable to write memory.
ErrWrite = 0x03,
/// Memory erase function failed.
ErrErase = 0x04,
/// Memory erase check failed.
ErrCheckErased = 0x05,
/// Program memory function failed.
ErrProg = 0x06,
/// Programmed memory failed verification.
ErrVerify = 0x07,
/// Cannot program memory due to received address that is out of range.
ErrAddress = 0x08,
/// Received DFU_DNLOAD with wLength = 0, but device does not think it has all of the data yet.
ErrNotdone = 0x09,
/// Device’s firmware is corrupt. It cannot return to run-time (non-DFU) operations.
ErrFirmware = 0x0A,
/// iString indicates a vendor-specific error.
ErrVendor = 0x0B,
/// Device detected unexpected USB reset signaling.
ErrUsbr = 0x0C,
/// Device detected unexpected power on reset.
ErrPOR = 0x0D,
/// Something went wrong, but the device does not know what it was.
ErrUnknown = 0x0E,
/// Device stalled an unexpected request.
ErrStalledPkt = 0x0F,
}
#[repr(u8)]
enum DnloadCommand {
GetCommands = 0x00,
SetAddressPointer = 0x21,
Erase = 0x41,
ReadUnprotect = 0x92,
}
/// Errors that may happen when working with the memory
/// (reading, erasing, writting). These will be translated
/// to a corresponding error codes in DFU protocol.
#[repr(u8)]
pub enum DFUMemError {
/// File is not targeted for use by this device.
Target = DFUStatusCode::ErrTarget as u8,
/// File is for this device but fails some vendor-specific verification test.
File = DFUStatusCode::ErrFile as u8,
/// Device is unable to write memory.
Write = DFUStatusCode::ErrWrite as u8,
/// Memory erase function failed.
Erase = DFUStatusCode::ErrErase as u8,
/// Memory erase check failed.
CheckErased = DFUStatusCode::ErrCheckErased as u8,
/// Program memory function failed.
Prog = DFUStatusCode::ErrProg as u8,
/// Programmed memory failed verification.
Verify = DFUStatusCode::ErrVerify as u8,
/// Something went wrong, but the device does not know what it was.
Unknown = DFUStatusCode::ErrUnknown as u8,
/// Cannot program memory due to received address that is out of range.
Address = DFUStatusCode::ErrAddress as u8,
/// A vendor-specific error. iString in DFU_GETSTATUS reply will always be 0.
ErrVendor = DFUStatusCode::ErrVendor as u8,
}
/// Errors that may happen when device enter Manifestation phase
#[repr(u8)]
pub enum DFUManifestationError {
/// File is not targeted for use by this device.
Target = DFUStatusCode::ErrTarget as u8,
/// File is for this device but fails some vendor-specific verification test.
File = DFUStatusCode::ErrFile as u8,
/// Received DFU_DNLOAD with wLength = 0, but device does not think it has all of the data yet.
NotDone = DFUStatusCode::ErrNotdone as u8,
/// Device’s firmware is corrupt. It cannot return to run-time (non-DFU) operations.
Firmware = DFUStatusCode::ErrFirmware as u8,
/// A vendor-specific error. iString in DFU_GETSTATUS reply will always be 0.
ErrVendor = DFUStatusCode::ErrVendor as u8,
/// Something went wrong, but the device does not know what it was.
Unknown = DFUStatusCode::ErrUnknown as u8,
}
/// Trait that describes the abstraction used to access memory on a device. [`DFUClass`] will call corresponding
/// functions and will use provided constants to tailor DFU features and, for example time interval values that
/// are used in the protocol.
///
/// In this context we use "page" to mean the smallest region of flash memory which can be erased, and "block"
/// to mean an amount of memory which is to be used for reading or programming.
pub trait DFUMemIO {
/// Specifies the default value of Address Pointer
///
/// Usually, it's start address of a memory region.
///
const INITIAL_ADDRESS_POINTER: u32;
/// Specifies USB interface descriptor string. It should describe a memory region this interface works with.
///
/// *Disclaimer*: I haven't found the specification, this is what it looks like from dfu-util sources.
///
/// The string is formatted as follows:
///
/// @ *name*/*address*/*area*[,*area*...]
///
/// > `@` (at sign), `/` (slash), `,` (coma) symbols
///
/// > *name* - Region name, e.g. "Flash"
///
/// > *address* - Memory address of a regions, e.g. "0x08000000"
///
/// > *area* - count of pages, page size, and supported operations for the region, e.g. 8*1Ke - 8 pages of 1024 bytes, available for reading and writing.
///
/// Page size supports these suffixes: **K**, **M**, **G**, or ` ` (space) for bytes.
///
/// And a letter that specifies region's supported operation:
///
/// | letter | Read | Erase | Write |
/// |--------|------|-------|-------|
/// | **a** | + | | |
/// | **b** | | + | |
/// | **c** | + | + | |
/// | **d** | | | + |
/// | **e** | + | | + |
/// | **f** | | + | + |
/// | **g** | + | + | + |
///
/// For example:
/// ```text
/// @Flash/0x08000000/16*1Ka,48*1Kg
/// ```
///
/// Denotes a memory region named "Flash", with a starting address `0x08000000`,
/// the first 16 pages with a size 1K are available only for reading, and the next
/// 48 1K-pages are avaiable for reading, erase, and write operations.
const MEM_INFO_STRING: &'static str;
/// If set, DFU descriptor will have *bitCanDnload* bit set. Default is `true`.
///
/// Should be set to true if firmware download (host to device) is supported.
const HAS_DOWNLOAD: bool = true;
/// If set, DFU descriptor will have *bitCanUpload* bit set. Default is `true`.
///
/// Should be set to true if firmware upload (device to host) is supported.
const HAS_UPLOAD: bool = true;
/// If set, DFU descriptor will have *bitManifestationTolerant* bit set. Default is `true`.
///
/// See also [`MANIFESTATION_TIME_MS`](DFUMemIO::MANIFESTATION_TIME_MS).
const MANIFESTATION_TOLERANT: bool = true;
// /// Remove device's flash read protection. This operation should erase
// /// memory contents.
// const HAS_READ_UNPROTECT : bool = false;
/// Time in milliseconds host must wait before issuing the next command after
/// block program request.
///
/// This is the time that program of one block or [`TRANSFER_SIZE`](DFUMemIO::TRANSFER_SIZE) bytes
/// takes.
///
/// DFU programs data as follows:
///
/// > 1. Host transfers `TRANSFER_SIZE` bytes to a device
/// > 2. Device stores this data in a buffer
/// > 3. Host issues `DFU_GETSTATUS` command, confirms that device state is correct,
/// > and checks the reply for 24-bit value how much time it must wait
/// > before issuing the next command. Device, after submitting a reply
/// > starts program operation.
/// > 4. After waiting for a specified number of milliseconds, host continues to send new commands.
const PROGRAM_TIME_MS: u32;
/// Similar to [`PROGRAM_TIME_MS`](DFUMemIO::PROGRAM_TIME_MS), but for a page erase operation.
const ERASE_TIME_MS: u32;
/// Similar to [`PROGRAM_TIME_MS`](DFUMemIO::PROGRAM_TIME_MS), but for a full erase operation.
const FULL_ERASE_TIME_MS: u32;
/// Time in milliseconds host must wait after submitting the final firware download
/// (host to device) command. Default is `1` ms.
///
/// DFU protocol allows the device to enter a Manifestation state when it can activate
/// the uploaded firmware.
///
/// After the activation is completed, device may need to reset (if
/// [`MANIFESTATION_TOLERANT`](DFUMemIO::MANIFESTATION_TOLERANT) is `false`), or it can return to IDLE state
/// (if `MANIFESTATION_TOLERANT` is `true`)
///
/// See also [`PROGRAM_TIME_MS`](DFUMemIO::PROGRAM_TIME_MS).
const MANIFESTATION_TIME_MS: u32 = 1;
/// wDetachTimeOut field in DFU descriptor. Default value: `250` ms.
///
/// Probably unused if device does not support DFU in run-time mode to
/// handle `DFU_DETACH` command.
///
/// Time in milliseconds that device will wait after receipt of `DFU_DETACH` request
/// if USB reset request is not received before reverting to a normal operation.
const DETACH_TIMEOUT: u16 = 250;
/// Expected transfer size. Default value: `128` bytes.
///
/// This is the maximum size of a block for [`read()`](DFUMemIO::read) and [`program()`](DFUMemIO::program) functions.
///
/// This also sets `wTransferSize` in DFU Functional descriptor.
///
/// Host should use exactly this transfer size for all blocks except for the last one.
/// The last block can be shorter. If transfer size is too large, Host may choose
/// to use a smaller block size, in this case firmware may be written incorrectly
/// if Host is not using `Set Address Pointer` command.
///
/// All DFU transfers use Control endpoint only.
///
/// **Warning**: must be less or equal of `usb-device`'s control endpoint buffer size (usually `128` bytes),
/// otherwise data transfers may fail for no obvious reason.
const TRANSFER_SIZE: u16 = 128;
// /// Not supported, implementation would probably need some
// /// non-trivial locking.
// const MEMIO_IN_USB_INTERRUPT: bool = true;
/// Collect data which comes from USB, possibly in chunks, to a buffer in RAM.
///
/// [`DFUClass`] does not have an internal memory buffer for a read/write operations,
/// incoming data should be stored in a buffer managed by this trait's implementation.
///
/// This function should not write data to Flash or trigger memory Erase.
///
/// The same buffer may be shared for both write and read operations.
/// DFU protocol will not trigger block write while sending data to host, and
/// will ensure that buffer has valid data before program operation is requested.
///
/// This function is called from `usb_dev.poll([])` (USB interrupt context).
///
fn store_write_buffer(&mut self, src: &[u8]) -> Result<(), ()>;
/// Read memory and return it to device.
///
/// If Upload operation is supported ([`HAS_UPLOAD`](DFUMemIO::HAS_UPLOAD) is `true`), this function
/// returns memory contents to a host.
///
/// Implementation must check that address is in a target region and that the
/// whole block fits in this region too.
///
/// This function is called from `usb_dev.poll([])` (USB interrupt context).
///
fn read(&mut self, address: u32, length: usize) -> Result<&[u8], DFUMemError>;
/// Trigger block program.
///
/// Implementation must check that address is in a target region and that the
/// whole block fits in this region too.
///
/// This function is called from `usb_dev.poll([])` (USB interrupt context).
// / This function by default is called from USB interrupt context, depending on
// / [`MEMIO_IN_USB_INTERRUPT`](DFUMemIO::MEMIO_IN_USB_INTERRUPT) value.
///
fn program(&mut self, address: u32, length: usize) -> Result<(), DFUMemError>;
/// Trigger page erase.
///
/// Implementation must ensure that address is valid, or return an error.
///
/// This function is called from `usb_dev.poll([])` (USB interrupt context).
// / This function by default is called from USB interrupt context, depending on
// / [`MEMIO_IN_USB_INTERRUPT`](DFUMemIO::MEMIO_IN_USB_INTERRUPT) value.
///
fn erase(&mut self, address: u32) -> Result<(), DFUMemError>;
/// Trigger full erase.
///
/// This function is called from `usb_dev.poll([])` (USB interrupt context).
// / This function by default is called from USB interrupt context, depending on
// / [`MEMIO_IN_USB_INTERRUPT`](DFUMemIO::MEMIO_IN_USB_INTERRUPT) value.
///
fn erase_all(&mut self) -> Result<(), DFUMemError>;
/// Finish writing firmware to a persistent storage, and optionally activate it.
///
/// This funciton should return if [`MANIFESTATION_TOLERANT`](DFUMemIO::MANIFESTATION_TOLERANT) is `true`.
///
/// This funciton should not return `Ok()` if `MANIFESTATION_TOLERANT` is `false`.
/// Instead device should activate and start new main firmware.
///
/// This function is called from `usb_dev.poll([])` (USB interrupt context).
// / This function by default is called from USB interrupt context, depending on
// / [`MEMIO_IN_USB_INTERRUPT`](DFUMemIO::MEMIO_IN_USB_INTERRUPT) value.
///
fn manifestation(&mut self) -> Result<(), DFUManifestationError>;
/// Called every time when USB is reset.
///
/// After firmware update is done, device should switch to an application
/// firmware if it's possible and this function should not return.
///
/// Handler will need to distinguish between actual host resets and
/// when the device connects the first time at startup to avoid
/// device reset and revert to main firmware at boot.
///
/// If firmware is corrupt, this funciton should return and DFU will switch
/// to ERROR state so host could try to recover. This is the default.
///
/// This function is called from `usb_dev.poll([])` (USB interrupt context).
///
fn usb_reset(&mut self) {}
}
impl From<DFUMemError> for DFUStatusCode {
fn from(e: DFUMemError) -> Self {
match e {
DFUMemError::File => DFUStatusCode::ErrFile,
DFUMemError::Target => DFUStatusCode::ErrTarget,
DFUMemError::Address => DFUStatusCode::ErrAddress,
DFUMemError::CheckErased => DFUStatusCode::ErrCheckErased,
DFUMemError::Erase => DFUStatusCode::ErrErase,
DFUMemError::Write => DFUStatusCode::ErrWrite,
DFUMemError::Prog => DFUStatusCode::ErrProg,
DFUMemError::Verify => DFUStatusCode::ErrVerify,
DFUMemError::Unknown => DFUStatusCode::ErrUnknown,
DFUMemError::ErrVendor => DFUStatusCode::ErrVendor,
}
}
}
impl From<DFUManifestationError> for DFUStatusCode {
fn from(e: DFUManifestationError) -> Self {
match e {
DFUManifestationError::NotDone => DFUStatusCode::ErrNotdone,
DFUManifestationError::Firmware => DFUStatusCode::ErrFirmware,
DFUManifestationError::Unknown => DFUStatusCode::ErrUnknown,
DFUManifestationError::ErrVendor => DFUStatusCode::ErrVendor,
DFUManifestationError::File => DFUStatusCode::ErrFile,
DFUManifestationError::Target => DFUStatusCode::ErrTarget,
}
}
}
/// DFU protocol USB class implementation for usb-device library.
pub struct DFUClass<B: UsbBus, M: DFUMemIO> {
if_num: InterfaceNumber,
status: DFUStatus,
interface_string: StringIndex,
_bus: PhantomData<B>,
mem: M,
}
#[derive(Clone, Copy, PartialEq, Eq)]
enum Command {
None,
EraseAll,
Erase(u32),
SetAddressPointer(u32),
ReadUnprotect,
WriteMemory { block_num: u16, len: u16 },
LeaveDFU,
}
#[derive(Clone, Copy)]
struct DFUStatus {
status: DFUStatusCode,
poll_timeout: u32,
state: DFUState,
address_pointer: u32,
command: Command,
pending: Command,
}
impl DFUStatus {
pub fn new(addr: u32) -> Self {
Self {
status: DFUStatusCode::OK,
poll_timeout: 0,
state: DFUState::DfuIdle,
address_pointer: addr,
command: Command::None,
pending: Command::None,
}
}
fn new_state_ok(&mut self, state: DFUState) {
self.new_state_status(state, DFUStatusCode::OK);
}
fn new_state_status(&mut self, state: DFUState, status: DFUStatusCode) {
self.status = status;
self.state = state;
}
fn state(&self) -> DFUState {
self.state
}
}
impl From<DFUStatus> for [u8; 6] {
fn from(dfu: DFUStatus) -> Self {
[
// bStatus
dfu.status as u8,
// bwPollTimeout
(dfu.poll_timeout & 0xff) as u8,
((dfu.poll_timeout >> 8) & 0xff) as u8,
((dfu.poll_timeout >> 16) & 0xff) as u8,
// bState
dfu.state as u8,
// iString: Index of status description in string table.
0,
]
}
}
impl<B: UsbBus, M: DFUMemIO> UsbClass<B> for DFUClass<B, M> {
fn get_configuration_descriptors(
&self,
writer: &mut DescriptorWriter,
) -> usb_device::Result<()> {
writer.interface_alt(
self.if_num,
0,
USB_CLASS_APPLICATION_SPECIFIC,
USB_SUBCLASS_DFU,
USB_PROTOCOL_DFU_MODE,
Some(self.interface_string),
)?;
// DFU Functional descriptor
writer.write(
DESC_DESCTYPE_DFU,
&[
// bmAttributes
// Bit 7: bitAcceleratedST
(if false {0x80} else {0}) |
// Bit 4-6: Reserved
// Bit 3: bitWillDetach
(if true {0x8} else {0}) |
// Bit 2: bitManifestationTolerant
(if M::MANIFESTATION_TOLERANT {0x4} else {0}) |
// Bit 1: bitCanUpload
(if M::HAS_UPLOAD {0x2} else {0}) |
// Bit 0: bitCanDnload
(if M::HAS_DOWNLOAD {0x1} else {0}),
// wDetachTimeOut
(M::DETACH_TIMEOUT & 0xff) as u8,
(M::DETACH_TIMEOUT >> 8) as u8,
// wTransferSize
(M::TRANSFER_SIZE & 0xff) as u8,
(M::TRANSFER_SIZE >> 8) as u8,
// bcdDFUVersion
0x1a,
0x01,
],
)?;
//
Ok(())
}
fn get_string(&self, index: StringIndex, lang_id: u16) -> Option<&str> {
if (lang_id == usb_device::descriptor::lang_id::ENGLISH_US || lang_id == 0)
&& (index == self.interface_string)
{
return Some(M::MEM_INFO_STRING);
}
None
}
// Handle control requests to the host.
fn control_in(&mut self, xfer: ControlIn<B>) {
let req = *xfer.request();
if req.request_type != control::RequestType::Class {
return;
}
if req.recipient != control::Recipient::Interface {
return;
}
if req.index != u8::from(self.if_num) as u16 {
return;
}
match req.request {
DFU_UPLOAD => {
self.upload(xfer, req);
}
DFU_GETSTATUS => {
self.get_status(xfer, req);
}
DFU_GETSTATE => {
self.get_state(xfer, req);
}
_ => {
xfer.reject().ok();
}
}
}
// Handle a control request from the host.
fn control_out(&mut self, xfer: ControlOut<B>) {
let req = *xfer.request();
if req.request_type != control::RequestType::Class {
return;
}
if req.recipient != control::Recipient::Interface {
return;
}
if req.index != u8::from(self.if_num) as u16 {
return;
}
match req.request {
//DFU_DETACH => {},
DFU_DNLOAD => {
self.download(xfer, req);
}
DFU_CLRSTATUS => {
self.clear_status(xfer);
}
DFU_ABORT => {
self.abort(xfer);
}
_ => {
xfer.reject().ok();
}
}
}
fn reset(&mut self) {
// may not return
self.mem.usb_reset();
// Try to signal possible error to a host.
// Not exactly clear what status should be.
match self.status.state() {
DFUState::DfuUploadIdle
| DFUState::DfuDnloadIdle
| DFUState::DfuDnloadSync
| DFUState::DfuDnBusy
| DFUState::DfuError
| DFUState::DfuManifest
| DFUState::DfuManifestSync => {
self.status
.new_state_status(DFUState::DfuError, DFUStatusCode::ErrUsbr);
}
DFUState::DfuIdle
| DFUState::AppDetach
| DFUState::AppIdle
| DFUState::DfuManifestWaitReset => {}
}
}
fn poll(&mut self) {
self.update_impl();
}
}
impl<B: UsbBus, M: DFUMemIO> DFUClass<B, M> {
/// Creates a new DFUClass with the provided UsbBus and
/// DFUMemIO
pub fn new(alloc: &UsbBusAllocator<B>, mem: M) -> Self {
Self {
if_num: alloc.interface(),
status: DFUStatus::new(M::INITIAL_ADDRESS_POINTER),
interface_string: alloc.string(),
_bus: PhantomData,
mem,
}
}
/// This function will consume self and return the owned memory
/// argument that was moved in the call to new()
pub fn release(self) -> M {
self.mem
}
/// This function may be called just after `DFUClass::new()` to
/// set DFU error state to "Device detected unexpected power on reset"
/// instead of the usual `dfuIdle`.
pub fn set_unexpected_reset_state(&mut self) {
self.status
.new_state_status(DFUState::DfuError, DFUStatusCode::ErrPOR);
}
/// This function may be called just after `DFUClass::new()` to
/// set DFU error state to "Device’s firmware is corrupt. It cannot return to run-time (non-DFU) operations"
/// instead of the usual `dfuIdle`.
pub fn set_firmware_corrupted_state(&mut self) {
self.status
.new_state_status(DFUState::DfuError, DFUStatusCode::ErrFirmware);
}
/// Return current Address Pointer value.
pub fn get_address_pointer(&self) -> u32 {
self.status.address_pointer
}
fn clear_status(&mut self, xfer: ControlOut<B>) {
match self.status.state() {
DFUState::DfuError => {
self.status.command = Command::None;
self.status.pending = Command::None;
self.status.new_state_ok(DFUState::DfuIdle);
xfer.accept().ok();
}
_ => {
self.status
.new_state_status(DFUState::DfuError, DFUStatusCode::ErrStalledPkt);
xfer.reject().ok();
}
}
}
fn abort(&mut self, xfer: ControlOut<B>) {
match self.status.state() {
DFUState::DfuIdle
| DFUState::DfuUploadIdle
| DFUState::DfuDnloadIdle
| DFUState::DfuDnloadSync
| DFUState::DfuManifestSync => {
self.status.command = Command::None;
self.status.pending = Command::None;
self.status.new_state_ok(DFUState::DfuIdle);
xfer.accept().ok();
}
DFUState::AppDetach
| DFUState::AppIdle
| DFUState::DfuDnBusy
| DFUState::DfuManifest
| DFUState::DfuManifestWaitReset
| DFUState::DfuError => {
xfer.reject().ok();
}
}
}
fn download(&mut self, xfer: ControlOut<B>, req: Request) {
let initial_state = self.status.state();
if initial_state != DFUState::DfuIdle && initial_state != DFUState::DfuDnloadIdle {
self.status
.new_state_status(DFUState::DfuError, DFUStatusCode::ErrStalledPkt);
xfer.reject().ok();
return;
}
if req.length == 0 {
self.status.command = Command::LeaveDFU;
self.status.new_state_ok(DFUState::DfuManifestSync);
xfer.accept().ok();
return;
}
if req.value > 1 {
let data = xfer.data();
if !data.is_empty() {
// store the whole buffer, chunked operation in not supported
match self.mem.store_write_buffer(data) {
Err(_) => {
self.status
.new_state_status(DFUState::DfuError, DFUStatusCode::ErrStalledPkt);
xfer.reject().ok();
}
Ok(_) => {
let block_num = req.value - 2;
self.status.command = Command::WriteMemory {
block_num,
len: data.len() as u16,
};
self.status.new_state_ok(DFUState::DfuDnloadSync);
xfer.accept().ok();
}
}
return;
}
} else if req.value == 0 {
let data = xfer.data();
if req.length >= 1 {
let command = data[0];
if command == DnloadCommand::SetAddressPointer as u8 {
if req.length == 5 {
let addr = (data[1] as u32)
| ((data[2] as u32) << 8)
| ((data[3] as u32) << 16)
| ((data[4] as u32) << 24);
self.status.command = Command::SetAddressPointer(addr);
self.status.new_state_ok(DFUState::DfuDnloadSync);
xfer.accept().ok();
return;
}
} else if command == DnloadCommand::Erase as u8 {
if req.length == 5 {
let addr = (data[1] as u32)
| ((data[2] as u32) << 8)
| ((data[3] as u32) << 16)
| ((data[4] as u32) << 24);
self.status.command = Command::Erase(addr);
self.status.new_state_ok(DFUState::DfuDnloadSync);
xfer.accept().ok();
return;
} else if req.length == 1 {
self.status.command = Command::EraseAll;
self.status.new_state_ok(DFUState::DfuDnloadSync);
xfer.accept().ok();
return;
}
} else if HAS_READ_UNPROTECT && command == DnloadCommand::ReadUnprotect as u8 {
self.status.command = Command::ReadUnprotect;
self.status.new_state_ok(DFUState::DfuDnloadSync);
xfer.accept().ok();
return;
}
}
}
self.status
.new_state_status(DFUState::DfuError, DFUStatusCode::ErrStalledPkt);
xfer.reject().ok();
}
fn upload(&mut self, xfer: ControlIn<B>, req: Request) {
let initial_state = self.status.state();
if initial_state != DFUState::DfuIdle && initial_state != DFUState::DfuUploadIdle {
self.status
.new_state_status(DFUState::DfuError, DFUStatusCode::ErrStalledPkt);
xfer.reject().ok();
return;
}
if req.value == 0 {
// Get command
let commands = [
DnloadCommand::GetCommands as u8,
DnloadCommand::SetAddressPointer as u8,
DnloadCommand::Erase as u8,
// XXX read unprotect
];
if req.length as usize >= commands.len() {
self.status.new_state_ok(DFUState::DfuIdle);
xfer.accept_with(&commands).ok();
return;
}
} else if req.value > 1 {
// upload command
let block_num = req.value - 2;
let transfer_size = min(M::TRANSFER_SIZE, req.length);
if let Some(address) = self
.status
.address_pointer
.checked_add((block_num as u32) * (M::TRANSFER_SIZE as u32))
{
match self.mem.read(address, transfer_size as usize) {
Ok(b) => {
if b.len() < M::TRANSFER_SIZE as usize {
// short frame, back to idle
self.status.new_state_ok(DFUState::DfuIdle);
} else {
self.status.new_state_ok(DFUState::DfuUploadIdle);
}
xfer.accept_with(&b).ok();
return;
}
Err(e) => {
self.status.new_state_status(DFUState::DfuError, e.into());
xfer.reject().ok();
return;
}
}
} else {
// overflow
self.status
.new_state_status(DFUState::DfuError, DFUStatusCode::ErrAddress);
xfer.reject().ok();
return;
}
}
self.status
.new_state_status(DFUState::DfuError, DFUStatusCode::ErrStalledPkt);
xfer.reject().ok();
}
fn get_state(&mut self, xfer: ControlIn<B>, req: Request) {
// return current state, without any state transition
if req.length > 0 {
let v = self.status.state() as u8;
xfer.accept_with(&[v]).ok();
} else {
self.status
.new_state_status(DFUState::DfuError, DFUStatusCode::ErrStalledPkt);
xfer.reject().ok();
}
}
fn get_status(&mut self, xfer: ControlIn<B>, req: Request) {
if req.length >= 6 && self.process() {
self.status.poll_timeout = self.expected_timeout();
let v: [u8; 6] = self.status.into();
xfer.accept_with(&v).ok();
return;
}
self.status
.new_state_status(DFUState::DfuError, DFUStatusCode::ErrStalledPkt);
xfer.reject().ok();
}
fn expected_timeout(&self) -> u32 {
match self.status.pending {
Command::WriteMemory {
block_num: _,
len: _,
} => M::PROGRAM_TIME_MS,
Command::EraseAll => M::FULL_ERASE_TIME_MS,
Command::Erase(_) => M::ERASE_TIME_MS,
Command::LeaveDFU => M::MANIFESTATION_TIME_MS,
_ => 0,
}
}
// ///
// /// Handle some DFU state transitions, and call `DFUMemIO`'s erase, program,
// /// and manifestation functions.
// ///
// /// This function will be called internally by if [`M::MEMIO_IN_USB_INTERRUPT`](DFUMemIO::MEMIO_IN_USB_INTERRUPT)
// /// is `true` (default) as one of a final steps of `usb_dev.poll([...])` which is itself usually called
// /// from USB interrupt.
// ///
// /// This function must be called if [`M::MEMIO_IN_USB_INTERRUPT`](DFUMemIO::MEMIO_IN_USB_INTERRUPT) is `false`
// /// and erase, program, and manifestation should be called from a different context than `usb_dev.poll([...])`.
// ///
// pub fn update(&mut self) {
// debug_assert!(!M::MEMIO_IN_USB_INTERRUPT, "not requried with MEMIO_IN_USB_INTERRUPT");
// if !M::MEMIO_IN_USB_INTERRUPT {
// self.update_impl()
// }
// }
// /// Returns `true` if [`update()`](DFUClass::update) needs to be called to
// /// process a pending operation.
// pub fn update_pending(&self) -> bool {
// match self.status.pending {
// Command::None => false,
// _ => true,
// }
// }
fn update_impl(&mut self) {
match self.status.pending {
Command::EraseAll => match self.mem.erase_all() {
Err(e) => self.status.new_state_status(DFUState::DfuError, e.into()),
Ok(_) => self.status.new_state_ok(DFUState::DfuDnloadSync),
},
Command::Erase(b) => match self.mem.erase(b) {
Err(e) => self.status.new_state_status(DFUState::DfuError, e.into()),
Ok(_) => self.status.new_state_ok(DFUState::DfuDnloadSync),
},
Command::LeaveDFU => {
// may not return
let mr = self.mem.manifestation();
match mr {
Err(e) => self.status.new_state_status(DFUState::DfuError, e.into()),
Ok(_) => {
if M::MANIFESTATION_TOLERANT {
self.status.new_state_ok(DFUState::DfuManifestSync)
} else {
self.status.new_state_ok(DFUState::DfuManifestWaitReset)
}
}
}
}
Command::ReadUnprotect => {
// XXX not implemented
// self.status.state = DFUState::DfuDnloadSync;
self.status
.new_state_status(DFUState::DfuError, DFUStatusCode::ErrStalledPkt)
}
Command::WriteMemory { block_num, len } => {
if let Some(pointer) = self
.status
.address_pointer
.checked_add((block_num as u32) * (M::TRANSFER_SIZE as u32))
{
match self.mem.program(pointer, len as usize) {
Err(e) => self.status.new_state_status(DFUState::DfuError, e.into()),
Ok(_) => self.status.new_state_ok(DFUState::DfuDnloadSync),
}
} else {
// overflow
self.status
.new_state_status(DFUState::DfuError, DFUStatusCode::ErrAddress);
}
}
Command::SetAddressPointer(p) => {
self.status.address_pointer = p;
self.status.new_state_ok(DFUState::DfuDnloadSync)
}
Command::None => {}
}
self.status.pending = Command::None;
}
fn process(&mut self) -> bool {
let initial_state = self.status.state();
if initial_state == DFUState::DfuDnloadSync {
match self.status.command {
Command::WriteMemory {
block_num: _,
len: _,
}
| Command::SetAddressPointer(_)
| Command::ReadUnprotect
| Command::EraseAll
| Command::Erase(_) => {
self.status.pending = self.status.command;
self.status.command = Command::None;
self.status.new_state_ok(DFUState::DfuDnBusy);
}
//Command::None => {}
_ => {
self.status.new_state_ok(DFUState::DfuDnloadIdle);
}
}
} else if initial_state == DFUState::DfuManifestSync {
match self.status.command {
Command::None => {
if M::MANIFESTATION_TOLERANT {
// Leave manifestation, back to Idle
self.status.command = Command::None;
self.status.new_state_ok(DFUState::DfuIdle);
}
}
_ => {
// Start manifestation
self.status.pending = self.status.command;
self.status.command = Command::None;
self.status.new_state_ok(DFUState::DfuManifest);
}
}
} else if initial_state == DFUState::DfuDnBusy {
return false;
}
true
}
}