tritonserver-rs 0.4.0

Pefrorm easy and efficient ML models inference
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
// Copyright 2018-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//  * Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
//  * Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in the
//    documentation and/or other materials provided with the distribution.
//  * Neither the name of NVIDIA CORPORATION nor the names of its
//    contributors may be used to endorse or promote products derived
//    from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "memory.h"

#include "pinned_memory_manager.h"
#include "triton/common/logging.h"

#ifdef TRITON_ENABLE_GPU
#include <cuda_runtime_api.h>

#include "cuda_memory_manager.h"
#include "cuda_utils.h"
#endif  // TRITON_ENABLE_GPU

namespace triton { namespace core {

//
// MemoryReference
//
MemoryReference::MemoryReference() : Memory() {}

const char*
MemoryReference::BufferAt(
    size_t idx, size_t* byte_size, TRITONSERVER_MemoryType* memory_type,
    int64_t* memory_type_id) const
{
  if (idx >= buffer_.size()) {
    *byte_size = 0;
    *memory_type = TRITONSERVER_MEMORY_CPU;
    *memory_type_id = 0;
    return nullptr;
  }
  *memory_type = buffer_[idx].buffer_attributes_.MemoryType();
  *memory_type_id = buffer_[idx].buffer_attributes_.MemoryTypeId();
  *byte_size = buffer_[idx].buffer_attributes_.ByteSize();
  return buffer_[idx].buffer_;
}

const char*
MemoryReference::BufferAt(size_t idx, BufferAttributes** buffer_attributes)
{
  if (idx >= buffer_.size()) {
    *buffer_attributes = nullptr;
    return nullptr;
  }

  *buffer_attributes = &(buffer_[idx].buffer_attributes_);
  return buffer_[idx].buffer_;
}

size_t
MemoryReference::AddBuffer(
    const char* buffer, size_t byte_size, TRITONSERVER_MemoryType memory_type,
    int64_t memory_type_id)
{
  total_byte_size_ += byte_size;
  buffer_count_++;
  buffer_.emplace_back(buffer, byte_size, memory_type, memory_type_id);
  return buffer_.size() - 1;
}

size_t
MemoryReference::AddBuffer(
    const char* buffer, BufferAttributes* buffer_attributes)
{
  total_byte_size_ += buffer_attributes->ByteSize();
  buffer_count_++;
  buffer_.emplace_back(buffer, buffer_attributes);
  return buffer_.size() - 1;
}

size_t
MemoryReference::AddBufferFront(
    const char* buffer, size_t byte_size, TRITONSERVER_MemoryType memory_type,
    int64_t memory_type_id)
{
  total_byte_size_ += byte_size;
  buffer_count_++;
  buffer_.emplace(
      buffer_.begin(), buffer, byte_size, memory_type, memory_type_id);
  return buffer_.size() - 1;
}

//
// MutableMemory
//
MutableMemory::MutableMemory(
    char* buffer, size_t byte_size, TRITONSERVER_MemoryType memory_type,
    int64_t memory_type_id)
    : Memory(), buffer_(buffer),
      buffer_attributes_(
          BufferAttributes(byte_size, memory_type, memory_type_id, nullptr))
{
  total_byte_size_ = byte_size;
  buffer_count_ = (byte_size == 0) ? 0 : 1;
}

const char*
MutableMemory::BufferAt(
    size_t idx, size_t* byte_size, TRITONSERVER_MemoryType* memory_type,
    int64_t* memory_type_id) const
{
  if (idx != 0) {
    *byte_size = 0;
    *memory_type = TRITONSERVER_MEMORY_CPU;
    *memory_type_id = 0;
    return nullptr;
  }
  *byte_size = total_byte_size_;
  *memory_type = buffer_attributes_.MemoryType();
  *memory_type_id = buffer_attributes_.MemoryTypeId();
  return buffer_;
}

const char*
MutableMemory::BufferAt(size_t idx, BufferAttributes** buffer_attributes)
{
  if (idx != 0) {
    *buffer_attributes = nullptr;
    return nullptr;
  }

  *buffer_attributes = &buffer_attributes_;
  return buffer_;
}

char*
MutableMemory::MutableBuffer(
    TRITONSERVER_MemoryType* memory_type, int64_t* memory_type_id)
{
  if (memory_type != nullptr) {
    *memory_type = buffer_attributes_.MemoryType();
  }
  if (memory_type_id != nullptr) {
    *memory_type_id = buffer_attributes_.MemoryTypeId();
  }

  return buffer_;
}

Status
MutableMemory::SetMemory(unsigned char value)
{
  if (buffer_attributes_.MemoryType() == TRITONSERVER_MEMORY_GPU) {
#ifdef TRITON_ENABLE_GPU
    ScopedSetDevice scoped_set_device(buffer_attributes_.MemoryTypeId());
    RETURN_IF_CUDA_ERR(
        cudaMemset(buffer_, value, TotalByteSize()),
        std::string("failed to set the data to zero."));
#else
    return Status(
        Status::Code::INVALID_ARG,
        "Server is compiled with TRITON_ENABLE_GPU=OFF. It doesn't support "
        "setting cuda memory to zero.");
#endif

  } else if (
      buffer_attributes_.MemoryType() == TRITONSERVER_MEMORY_CPU ||
      buffer_attributes_.MemoryType() == TRITONSERVER_MEMORY_CPU_PINNED) {
    memset(buffer_, value, TotalByteSize());
  } else {
    return Status(Status::Code::INVALID_ARG, "Unsupported memory type");
  }

  return Status::Success;
}

//
// AllocatedMemory
//
AllocatedMemory::AllocatedMemory(
    size_t byte_size, TRITONSERVER_MemoryType memory_type,
    int64_t memory_type_id)
    : MutableMemory(nullptr, byte_size, memory_type, memory_type_id)
{
  if (total_byte_size_ != 0) {
    // Allocate memory with the following fallback policy:
    // CUDA memory -> pinned system memory -> non-pinned system memory
    switch (buffer_attributes_.MemoryType()) {
#ifdef TRITON_ENABLE_GPU
      case TRITONSERVER_MEMORY_GPU: {
        auto status = CudaMemoryManager::Alloc(
            (void**)&buffer_, total_byte_size_,
            buffer_attributes_.MemoryTypeId());
        if (!status.IsOk()) {
          static bool warning_logged = false;
          if (!warning_logged) {
            LOG_WARNING << status.Message()
                        << ", falling back to pinned system memory";
            warning_logged = true;
          }

          goto pinned_memory_allocation;
        }
        break;
      }
      pinned_memory_allocation:
#endif  // TRITON_ENABLE_GPU
      default: {
        TRITONSERVER_MemoryType memory_type = buffer_attributes_.MemoryType();
        auto status = PinnedMemoryManager::Alloc(
            (void**)&buffer_, total_byte_size_, &memory_type, true);
        buffer_attributes_.SetMemoryType(memory_type);
        if (!status.IsOk()) {
          LOG_ERROR << status.Message();
          buffer_ = nullptr;
        }
        break;
      }
    }
  }
  total_byte_size_ = (buffer_ == nullptr) ? 0 : total_byte_size_;
}

AllocatedMemory::~AllocatedMemory()
{
  if (buffer_ != nullptr) {
    switch (buffer_attributes_.MemoryType()) {
      case TRITONSERVER_MEMORY_GPU: {
#ifdef TRITON_ENABLE_GPU
        auto status =
            CudaMemoryManager::Free(buffer_, buffer_attributes_.MemoryTypeId());
        if (!status.IsOk()) {
          LOG_ERROR << status.Message();
        }
#endif  // TRITON_ENABLE_GPU
        break;
      }

      default: {
        auto status = PinnedMemoryManager::Free(buffer_);
        if (!status.IsOk()) {
          LOG_ERROR << status.Message();
          buffer_ = nullptr;
        }
        break;
      }
    }
    buffer_ = nullptr;
  }
}

#ifdef TRITON_ENABLE_GPU
GrowableMemory::GrowableMemory(
    size_t byte_size, TRITONSERVER_MemoryType memory_type,
    int64_t memory_type_id, std::unique_ptr<Allocation>&& allocation,
    size_t virtual_address_size)
    : MutableMemory(nullptr, byte_size, memory_type, memory_type_id)
{
  allocation_prop_.type = CU_MEM_ALLOCATION_TYPE_PINNED;
  allocation_prop_.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
  allocation_prop_.location.id = memory_type_id;

  access_desc_.location = allocation_prop_.location;
  access_desc_.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;

  virtual_address_size_ = virtual_address_size;
  allocation_ = std::move(allocation);
  virtual_address_offset_ = 0;
}
#endif

Status
GrowableMemory::Create(
    std::unique_ptr<GrowableMemory>& growable_memory, size_t byte_size,
    TRITONSERVER_MemoryType memory_type, int64_t memory_type_id,
    size_t virtual_address_size)
{
#ifdef TRITON_ENABLE_GPU
  std::unique_ptr<Allocation> allocation =
      std::make_unique<Allocation>(memory_type_id);

  // The virtual address size must be a factor of
  // cudaMinimumAllocationGranularity
  virtual_address_size =
      ((virtual_address_size + CudaBlockManager::BlockSize() - 1) /
       CudaBlockManager::BlockSize()) *
      CudaBlockManager::BlockSize();

  if (memory_type != TRITONSERVER_MEMORY_GPU) {
    return Status(
        Status::Code::INVALID_ARG,
        std::string("Only TRITONSERVER_MEMORY_GPU is supported for growable "
                    "memory."));
  }

  if (byte_size > virtual_address_size) {
    return Status(
        Status::Code::INVALID_ARG,
        std::string("'byte_size' requested for GrowableMemory cannot be smaller"
                    " than the virtual address size. byte_size: ") +
            std::to_string(byte_size) +
            ", virtual_address_size:" + std::to_string(virtual_address_size));
  }

  RETURN_IF_ERROR(
      CudaBlockManager::Allocate(byte_size, allocation, memory_type_id));

  void* buffer;
  RETURN_IF_ERROR(CudaDriverHelper::GetInstance().CuMemAddressReserve(
      reinterpret_cast<CUdeviceptr*>(&buffer), virtual_address_size,
      0 /* alignment */, 0 /* start_address */, 0 /* flags */));
  growable_memory.reset(new GrowableMemory(
      CudaBlockManager::BlockSize() * allocation->Blocks().size(), memory_type,
      memory_type_id, std::move(allocation), virtual_address_size));
  growable_memory->buffer_ = reinterpret_cast<char*>(buffer);

  for (auto& block : growable_memory->allocation_->Blocks()) {
    RETURN_IF_ERROR(growable_memory->Map(block));
  }
  return Status::Success;
#else
  return Status(
      Status::Code::INTERNAL,
      "The server was build with TRITON_ENABLE_GPU=OFF but growable memory was "
      "used.");
#endif
}

#ifdef TRITON_ENABLE_GPU
Status
GrowableMemory::Map(CUmemGenericAllocationHandle& block)
{
  RETURN_IF_ERROR(CudaDriverHelper::GetInstance().CuMemMap(
      reinterpret_cast<CUdeviceptr>(buffer_) + virtual_address_offset_,
      CudaBlockManager::BlockSize(), 0UL, block, 0UL /* flags */));
  RETURN_IF_ERROR(CudaDriverHelper::GetInstance().CuMemSetAccess(
      reinterpret_cast<CUdeviceptr>(buffer_) + virtual_address_offset_,
      CudaBlockManager::BlockSize(), &access_desc_, 1ULL /* Mapping size */));
  virtual_address_offset_ += CudaBlockManager::BlockSize();
  return Status::Success;
}
#endif

Status
GrowableMemory::Resize(size_t size)
{
#ifdef TRITON_ENABLE_GPU
  if (size > virtual_address_size_) {
    return Status(
        Status::Code::INVALID_ARG,
        std::string(
            "Failed to resize the GrowableMemory. The requested size is larger"
            " than the virtual page size. requested size: ") +
            std::to_string(size) +
            ", virtual_address_size:" + std::to_string(virtual_address_size_));
  }

  if (size < buffer_attributes_.ByteSize()) {
    return Status::Success;
  } else {
    size_t new_size = size - buffer_attributes_.ByteSize();
    std::unique_ptr<Allocation> allocation =
        std::make_unique<Allocation>(buffer_attributes_.MemoryTypeId());
    RETURN_IF_ERROR(CudaBlockManager::Allocate(
        new_size, allocation, buffer_attributes_.MemoryTypeId()));
    for (auto& block : allocation->Blocks()) {
      RETURN_IF_ERROR(Map(block));
    }
    allocation_->Merge(std::move(allocation));
  }
  buffer_attributes_.SetByteSize(
      allocation_->Blocks().size() * CudaBlockManager::BlockSize());

  return Status::Success;

#else
  return Status(
      Status::Code::INTERNAL,
      "The server was build with TRITON_ENABLE_GPU=OFF but growable memory was "
      "used.");
#endif
}

#ifdef TRITON_ENABLE_GPU
std::unique_ptr<Allocation>&
GrowableMemory::GetAllocation()
{
  return allocation_;
}
#endif

GrowableMemory::~GrowableMemory()
{
#ifdef TRITON_ENABLE_GPU
  CudaDriverHelper::GetInstance().CuMemUnmap(
      reinterpret_cast<CUdeviceptr>(buffer_), buffer_attributes_.ByteSize());
  CudaDriverHelper::GetInstance().CuMemAddressFree(
      reinterpret_cast<CUdeviceptr>(buffer_), virtual_address_size_);
#endif
}

}}  // namespace triton::core