tree-sitter 0.20.1

Rust bindings to the Tree-sitter parsing library
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
#include "tree_sitter/api.h"
#include "./alloc.h"
#include "./array.h"
#include "./language.h"
#include "./point.h"
#include "./tree_cursor.h"
#include "./unicode.h"
#include <wctype.h>

// #define DEBUG_ANALYZE_QUERY
// #define DEBUG_EXECUTE_QUERY

#define MAX_STEP_CAPTURE_COUNT 3
#define MAX_STATE_PREDECESSOR_COUNT 100
#define MAX_ANALYSIS_STATE_DEPTH 8
#define MAX_NEGATED_FIELD_COUNT 8

/*
 * Stream - A sequence of unicode characters derived from a UTF8 string.
 * This struct is used in parsing queries from S-expressions.
 */
typedef struct {
  const char *input;
  const char *start;
  const char *end;
  int32_t next;
  uint8_t next_size;
} Stream;

/*
 * QueryStep - A step in the process of matching a query. Each node within
 * a query S-expression corresponds to one of these steps. An entire pattern
 * is represented as a sequence of these steps. The basic properties of a
 * node are represented by these fields:
 * - `symbol` - The grammar symbol to match. A zero value represents the
 *    wildcard symbol, '_'.
 * - `field` - The field name to match. A zero value means that a field name
 *    was not specified.
 * - `capture_ids` - An array of integers representing the names of captures
 *    associated with this node in the pattern, terminated by a `NONE` value.
 * - `depth` - The depth where this node occurs in the pattern. The root node
 *    of the pattern has depth zero.
 * - `negated_field_list_id` - An id representing a set of fields that must
 *    that must not be present on a node matching this step.
 *
 * Steps have some additional fields in order to handle the `.` (or "anchor") operator,
 * which forbids additional child nodes:
 * - `is_immediate` - Indicates that the node matching this step cannot be preceded
 *   by other sibling nodes that weren't specified in the pattern.
 * - `is_last_child` - Indicates that the node matching this step cannot have any
 *   subsequent named siblings.
 *
 * For simple patterns, steps are matched in sequential order. But in order to
 * handle alternative/repeated/optional sub-patterns, query steps are not always
 * structured as a linear sequence; they sometimes need to split and merge. This
 * is done using the following fields:
 *  - `alternative_index` - The index of a different query step that serves as
 *    an alternative to this step. A `NONE` value represents no alternative.
 *    When a query state reaches a step with an alternative index, the state
 *    is duplicated, with one copy remaining at the original step, and one copy
 *    moving to the alternative step. The alternative may have its own alternative
 *    step, so this splitting is an iterative process.
 * - `is_dead_end` - Indicates that this state cannot be passed directly, and
 *    exists only in order to redirect to an alternative index, with no splitting.
 * - `is_pass_through` - Indicates that state has no matching logic of its own,
 *    and exists only to split a state. One copy of the state advances immediately
 *    to the next step, and one moves to the alternative step.
 * - `alternative_is_immediate` - Indicates that this step's alternative step
 *    should be treated as if `is_immediate` is true.
 *
 * Steps also store some derived state that summarizes how they relate to other
 * steps within the same pattern. This is used to optimize the matching process:
 *  - `contains_captures` - Indicates that this step or one of its child steps
 *     has a non-empty `capture_ids` list.
 *  - `parent_pattern_guaranteed` - Indicates that if this step is reached, then
 *     it and all of its subsequent sibling steps within the same parent pattern
 *     are guaranteed to match.
 *  - `root_pattern_guaranteed` - Similar to `parent_pattern_guaranteed`, but
 *     for the entire top-level pattern. When iterating through a query's
 *     captures using `ts_query_cursor_next_capture`, this field is used to
 *     detect that a capture can safely be returned from a match that has not
 *     even completed  yet.
 */
typedef struct {
  TSSymbol symbol;
  TSSymbol supertype_symbol;
  TSFieldId field;
  uint16_t capture_ids[MAX_STEP_CAPTURE_COUNT];
  uint16_t depth;
  uint16_t alternative_index;
  uint16_t negated_field_list_id;
  bool is_named: 1;
  bool is_immediate: 1;
  bool is_last_child: 1;
  bool is_pass_through: 1;
  bool is_dead_end: 1;
  bool alternative_is_immediate: 1;
  bool contains_captures: 1;
  bool root_pattern_guaranteed: 1;
  bool parent_pattern_guaranteed: 1;
} QueryStep;

/*
 * Slice - A slice of an external array. Within a query, capture names,
 * literal string values, and predicate step informations are stored in three
 * contiguous arrays. Individual captures, string values, and predicates are
 * represented as slices of these three arrays.
 */
typedef struct {
  uint32_t offset;
  uint32_t length;
} Slice;

/*
 * SymbolTable - a two-way mapping of strings to ids.
 */
typedef struct {
  Array(char) characters;
  Array(Slice) slices;
} SymbolTable;

/*
 * PatternEntry - Information about the starting point for matching a particular
 * pattern. These entries are stored in a 'pattern map' - a sorted array that
 * makes it possible to efficiently lookup patterns based on the symbol for their
 * first step. The entry consists of the following fields:
 * - `pattern_index` - the index of the pattern within the query
 * - `step_index` - the index of the pattern's first step in the shared `steps` array
 * - `is_rooted` - whether or not the pattern has a single root node. This property
 *   affects decisions about whether or not to start the pattern for nodes outside
 *   of a QueryCursor's range restriction.
 */
typedef struct {
  uint16_t step_index;
  uint16_t pattern_index;
  bool is_rooted;
} PatternEntry;

typedef struct {
  Slice steps;
  Slice predicate_steps;
  uint32_t start_byte;
} QueryPattern;

typedef struct {
  uint32_t byte_offset;
  uint16_t step_index;
} StepOffset;

/*
 * QueryState - The state of an in-progress match of a particular pattern
 * in a query. While executing, a `TSQueryCursor` must keep track of a number
 * of possible in-progress matches. Each of those possible matches is
 * represented as one of these states. Fields:
 * - `id` - A numeric id that is exposed to the public API. This allows the
 *    caller to remove a given match, preventing any more of its captures
 *    from being returned.
 * - `start_depth` - The depth in the tree where the first step of the state's
 *    pattern was matched.
 * - `pattern_index` - The pattern that the state is matching.
 * - `consumed_capture_count` - The number of captures from this match that
 *    have already been returned.
 * - `capture_list_id` - A numeric id that can be used to retrieve the state's
 *    list of captures from the `CaptureListPool`.
 * - `seeking_immediate_match` - A flag that indicates that the state's next
 *    step must be matched by the very next sibling. This is used when
 *    processing repetitions.
 * - `has_in_progress_alternatives` - A flag that indicates that there is are
 *    other states that have the same captures as this state, but are at
 *    different steps in their pattern. This means that in order to obey the
 *    'longest-match' rule, this state should not be returned as a match until
 *    it is clear that there can be no other alternative match with more captures.
 */
typedef struct {
  uint32_t id;
  uint32_t capture_list_id;
  uint16_t start_depth;
  uint16_t step_index;
  uint16_t pattern_index;
  uint16_t consumed_capture_count: 12;
  bool seeking_immediate_match: 1;
  bool has_in_progress_alternatives: 1;
  bool dead: 1;
  bool needs_parent: 1;
} QueryState;

typedef Array(TSQueryCapture) CaptureList;

/*
 * CaptureListPool - A collection of *lists* of captures. Each query state needs
 * to maintain its own list of captures. To avoid repeated allocations, this struct
 * maintains a fixed set of capture lists, and keeps track of which ones are
 * currently in use by a query state.
 */
typedef struct {
  Array(CaptureList) list;
  CaptureList empty_list;
  // The maximum number of capture lists that we are allowed to allocate. We
  // never allow `list` to allocate more entries than this, dropping pending
  // matches if needed to stay under the limit.
  uint32_t max_capture_list_count;
  // The number of capture lists allocated in `list` that are not currently in
  // use. We reuse those existing-but-unused capture lists before trying to
  // allocate any new ones. We use an invalid value (UINT32_MAX) for a capture
  // list's length to indicate that it's not in use.
  uint32_t free_capture_list_count;
} CaptureListPool;

/*
 * AnalysisState - The state needed for walking the parse table when analyzing
 * a query pattern, to determine at which steps the pattern might fail to match.
 */
typedef struct {
  TSStateId parse_state;
  TSSymbol parent_symbol;
  uint16_t child_index;
  TSFieldId field_id: 15;
  bool done: 1;
} AnalysisStateEntry;

typedef struct {
  AnalysisStateEntry stack[MAX_ANALYSIS_STATE_DEPTH];
  uint16_t depth;
  uint16_t step_index;
} AnalysisState;

typedef Array(AnalysisState) AnalysisStateSet;

/*
 * AnalysisSubgraph - A subset of the states in the parse table that are used
 * in constructing nodes with a certain symbol. Each state is accompanied by
 * some information about the possible node that could be produced in
 * downstream states.
 */
typedef struct {
  TSStateId state;
  uint8_t production_id;
  uint8_t child_index: 7;
  bool done: 1;
} AnalysisSubgraphNode;

typedef struct {
  TSSymbol symbol;
  Array(TSStateId) start_states;
  Array(AnalysisSubgraphNode) nodes;
} AnalysisSubgraph;

/*
 * StatePredecessorMap - A map that stores the predecessors of each parse state.
 * This is used during query analysis to determine which parse states can lead
 * to which reduce actions.
 */
typedef struct {
  TSStateId *contents;
} StatePredecessorMap;

/*
 * TSQuery - A tree query, compiled from a string of S-expressions. The query
 * itself is immutable. The mutable state used in the process of executing the
 * query is stored in a `TSQueryCursor`.
 */
struct TSQuery {
  SymbolTable captures;
  SymbolTable predicate_values;
  Array(QueryStep) steps;
  Array(PatternEntry) pattern_map;
  Array(TSQueryPredicateStep) predicate_steps;
  Array(QueryPattern) patterns;
  Array(StepOffset) step_offsets;
  Array(TSFieldId) negated_fields;
  Array(char) string_buffer;
  const TSLanguage *language;
  uint16_t wildcard_root_pattern_count;
};

/*
 * TSQueryCursor - A stateful struct used to execute a query on a tree.
 */
struct TSQueryCursor {
  const TSQuery *query;
  TSTreeCursor cursor;
  Array(QueryState) states;
  Array(QueryState) finished_states;
  CaptureListPool capture_list_pool;
  uint32_t depth;
  uint32_t start_byte;
  uint32_t end_byte;
  TSPoint start_point;
  TSPoint end_point;
  uint32_t next_state_id;
  bool ascending;
  bool halted;
  bool did_exceed_match_limit;
};

static const TSQueryError PARENT_DONE = -1;
static const uint16_t PATTERN_DONE_MARKER = UINT16_MAX;
static const uint16_t NONE = UINT16_MAX;
static const TSSymbol WILDCARD_SYMBOL = 0;

/**********
 * Stream
 **********/

// Advance to the next unicode code point in the stream.
static bool stream_advance(Stream *self) {
  self->input += self->next_size;
  if (self->input < self->end) {
    uint32_t size = ts_decode_utf8(
      (const uint8_t *)self->input,
      self->end - self->input,
      &self->next
    );
    if (size > 0) {
      self->next_size = size;
      return true;
    }
  } else {
    self->next_size = 0;
    self->next = '\0';
  }
  return false;
}

// Reset the stream to the given input position, represented as a pointer
// into the input string.
static void stream_reset(Stream *self, const char *input) {
  self->input = input;
  self->next_size = 0;
  stream_advance(self);
}

static Stream stream_new(const char *string, uint32_t length) {
  Stream self = {
    .next = 0,
    .input = string,
    .start = string,
    .end = string + length,
  };
  stream_advance(&self);
  return self;
}

static void stream_skip_whitespace(Stream *self) {
  for (;;) {
    if (iswspace(self->next)) {
      stream_advance(self);
    } else if (self->next == ';') {
      // skip over comments
      stream_advance(self);
      while (self->next && self->next != '\n') {
        if (!stream_advance(self)) break;
      }
    } else {
      break;
    }
  }
}

static bool stream_is_ident_start(Stream *self) {
  return iswalnum(self->next) || self->next == '_' || self->next == '-';
}

static void stream_scan_identifier(Stream *stream) {
  do {
    stream_advance(stream);
  } while (
    iswalnum(stream->next) ||
    stream->next == '_' ||
    stream->next == '-' ||
    stream->next == '.' ||
    stream->next == '?' ||
    stream->next == '!'
  );
}

static uint32_t stream_offset(Stream *self) {
  return self->input - self->start;
}

/******************
 * CaptureListPool
 ******************/

static CaptureListPool capture_list_pool_new(void) {
  return (CaptureListPool) {
    .list = array_new(),
    .empty_list = array_new(),
    .max_capture_list_count = UINT32_MAX,
    .free_capture_list_count = 0,
  };
}

static void capture_list_pool_reset(CaptureListPool *self) {
  for (uint16_t i = 0; i < self->list.size; i++) {
    // This invalid size means that the list is not in use.
    self->list.contents[i].size = UINT32_MAX;
  }
  self->free_capture_list_count = self->list.size;
}

static void capture_list_pool_delete(CaptureListPool *self) {
  for (uint16_t i = 0; i < self->list.size; i++) {
    array_delete(&self->list.contents[i]);
  }
  array_delete(&self->list);
}

static const CaptureList *capture_list_pool_get(const CaptureListPool *self, uint16_t id) {
  if (id >= self->list.size) return &self->empty_list;
  return &self->list.contents[id];
}

static CaptureList *capture_list_pool_get_mut(CaptureListPool *self, uint16_t id) {
  assert(id < self->list.size);
  return &self->list.contents[id];
}

static bool capture_list_pool_is_empty(const CaptureListPool *self) {
  // The capture list pool is empty if all allocated lists are in use, and we
  // have reached the maximum allowed number of allocated lists.
  return self->free_capture_list_count == 0 && self->list.size >= self->max_capture_list_count;
}

static uint16_t capture_list_pool_acquire(CaptureListPool *self) {
  // First see if any already allocated capture list is currently unused.
  if (self->free_capture_list_count > 0) {
    for (uint16_t i = 0; i < self->list.size; i++) {
      if (self->list.contents[i].size == UINT32_MAX) {
        array_clear(&self->list.contents[i]);
        self->free_capture_list_count--;
        return i;
      }
    }
  }

  // Otherwise allocate and initialize a new capture list, as long as that
  // doesn't put us over the requested maximum.
  uint32_t i = self->list.size;
  if (i >= self->max_capture_list_count) {
    return NONE;
  }
  CaptureList list;
  array_init(&list);
  array_push(&self->list, list);
  return i;
}

static void capture_list_pool_release(CaptureListPool *self, uint16_t id) {
  if (id >= self->list.size) return;
  self->list.contents[id].size = UINT32_MAX;
  self->free_capture_list_count++;
}

/**************
 * SymbolTable
 **************/

static SymbolTable symbol_table_new(void) {
  return (SymbolTable) {
    .characters = array_new(),
    .slices = array_new(),
  };
}

static void symbol_table_delete(SymbolTable *self) {
  array_delete(&self->characters);
  array_delete(&self->slices);
}

static int symbol_table_id_for_name(
  const SymbolTable *self,
  const char *name,
  uint32_t length
) {
  for (unsigned i = 0; i < self->slices.size; i++) {
    Slice slice = self->slices.contents[i];
    if (
      slice.length == length &&
      !strncmp(&self->characters.contents[slice.offset], name, length)
    ) return i;
  }
  return -1;
}

static const char *symbol_table_name_for_id(
  const SymbolTable *self,
  uint16_t id,
  uint32_t *length
) {
  Slice slice = self->slices.contents[id];
  *length = slice.length;
  return &self->characters.contents[slice.offset];
}

static uint16_t symbol_table_insert_name(
  SymbolTable *self,
  const char *name,
  uint32_t length
) {
  int id = symbol_table_id_for_name(self, name, length);
  if (id >= 0) return (uint16_t)id;
  Slice slice = {
    .offset = self->characters.size,
    .length = length,
  };
  array_grow_by(&self->characters, length + 1);
  memcpy(&self->characters.contents[slice.offset], name, length);
  self->characters.contents[self->characters.size - 1] = 0;
  array_push(&self->slices, slice);
  return self->slices.size - 1;
}

/************
 * QueryStep
 ************/

static QueryStep query_step__new(
  TSSymbol symbol,
  uint16_t depth,
  bool is_immediate
) {
  return (QueryStep) {
    .symbol = symbol,
    .depth = depth,
    .field = 0,
    .capture_ids = {NONE, NONE, NONE},
    .alternative_index = NONE,
    .negated_field_list_id = 0,
    .contains_captures = false,
    .is_last_child = false,
    .is_named = false,
    .is_pass_through = false,
    .is_dead_end = false,
    .root_pattern_guaranteed = false,
    .is_immediate = is_immediate,
    .alternative_is_immediate = false,
  };
}

static void query_step__add_capture(QueryStep *self, uint16_t capture_id) {
  for (unsigned i = 0; i < MAX_STEP_CAPTURE_COUNT; i++) {
    if (self->capture_ids[i] == NONE) {
      self->capture_ids[i] = capture_id;
      break;
    }
  }
}

static void query_step__remove_capture(QueryStep *self, uint16_t capture_id) {
  for (unsigned i = 0; i < MAX_STEP_CAPTURE_COUNT; i++) {
    if (self->capture_ids[i] == capture_id) {
      self->capture_ids[i] = NONE;
      while (i + 1 < MAX_STEP_CAPTURE_COUNT) {
        if (self->capture_ids[i + 1] == NONE) break;
        self->capture_ids[i] = self->capture_ids[i + 1];
        self->capture_ids[i + 1] = NONE;
        i++;
      }
      break;
    }
  }
}

/**********************
 * StatePredecessorMap
 **********************/

static inline StatePredecessorMap state_predecessor_map_new(
  const TSLanguage *language
) {
  return (StatePredecessorMap) {
    .contents = ts_calloc(
      language->state_count * (MAX_STATE_PREDECESSOR_COUNT + 1),
      sizeof(TSStateId)
    ),
  };
}

static inline void state_predecessor_map_delete(StatePredecessorMap *self) {
  ts_free(self->contents);
}

static inline void state_predecessor_map_add(
  StatePredecessorMap *self,
  TSStateId state,
  TSStateId predecessor
) {
  unsigned index = state * (MAX_STATE_PREDECESSOR_COUNT + 1);
  TSStateId *count = &self->contents[index];
  if (
    *count == 0 ||
    (*count < MAX_STATE_PREDECESSOR_COUNT && self->contents[index + *count] != predecessor)
  ) {
    (*count)++;
    self->contents[index + *count] = predecessor;
  }
}

static inline const TSStateId *state_predecessor_map_get(
  const StatePredecessorMap *self,
  TSStateId state,
  unsigned *count
) {
  unsigned index = state * (MAX_STATE_PREDECESSOR_COUNT + 1);
  *count = self->contents[index];
  return &self->contents[index + 1];
}

/****************
 * AnalysisState
 ****************/

static unsigned analysis_state__recursion_depth(const AnalysisState *self) {
  unsigned result = 0;
  for (unsigned i = 0; i < self->depth; i++) {
    TSSymbol symbol = self->stack[i].parent_symbol;
    for (unsigned j = 0; j < i; j++) {
      if (self->stack[j].parent_symbol == symbol) {
        result++;
        break;
      }
    }
  }
  return result;
}

static inline int analysis_state__compare_position(
  const AnalysisState *self,
  const AnalysisState *other
) {
  for (unsigned i = 0; i < self->depth; i++) {
    if (i >= other->depth) return -1;
    if (self->stack[i].child_index < other->stack[i].child_index) return -1;
    if (self->stack[i].child_index > other->stack[i].child_index) return 1;
  }
  if (self->depth < other->depth) return 1;
  return 0;
}

static inline int analysis_state__compare(
  const AnalysisState *self,
  const AnalysisState *other
) {
  int result = analysis_state__compare_position(self, other);
  if (result != 0) return result;
  for (unsigned i = 0; i < self->depth; i++) {
    if (self->stack[i].parent_symbol < other->stack[i].parent_symbol) return -1;
    if (self->stack[i].parent_symbol > other->stack[i].parent_symbol) return 1;
    if (self->stack[i].parse_state < other->stack[i].parse_state) return -1;
    if (self->stack[i].parse_state > other->stack[i].parse_state) return 1;
    if (self->stack[i].field_id < other->stack[i].field_id) return -1;
    if (self->stack[i].field_id > other->stack[i].field_id) return 1;
  }
  if (self->step_index < other->step_index) return -1;
  if (self->step_index > other->step_index) return 1;
  return 0;
}

static inline AnalysisStateEntry *analysis_state__top(AnalysisState *self) {
  return &self->stack[self->depth - 1];
}

static inline bool analysis_state__has_supertype(AnalysisState *self, TSSymbol symbol) {
  for (unsigned i = 0; i < self->depth; i++) {
    if (self->stack[i].parent_symbol == symbol) return true;
  }
  return false;
}

/***********************
 * AnalysisSubgraphNode
 ***********************/

static inline int analysis_subgraph_node__compare(const AnalysisSubgraphNode *self, const AnalysisSubgraphNode *other) {
  if (self->state < other->state) return -1;
  if (self->state > other->state) return 1;
  if (self->child_index < other->child_index) return -1;
  if (self->child_index > other->child_index) return 1;
  if (self->done < other->done) return -1;
  if (self->done > other->done) return 1;
  if (self->production_id < other->production_id) return -1;
  if (self->production_id > other->production_id) return 1;
  return 0;
}

/*********
 * Query
 *********/

// The `pattern_map` contains a mapping from TSSymbol values to indices in the
// `steps` array. For a given syntax node, the `pattern_map` makes it possible
// to quickly find the starting steps of all of the patterns whose root matches
// that node. Each entry has two fields: a `pattern_index`, which identifies one
// of the patterns in the query, and a `step_index`, which indicates the start
// offset of that pattern's steps within the `steps` array.
//
// The entries are sorted by the patterns' root symbols, and lookups use a
// binary search. This ensures that the cost of this initial lookup step
// scales logarithmically with the number of patterns in the query.
//
// This returns `true` if the symbol is present and `false` otherwise.
// If the symbol is not present `*result` is set to the index where the
// symbol should be inserted.
static inline bool ts_query__pattern_map_search(
  const TSQuery *self,
  TSSymbol needle,
  uint32_t *result
) {
  uint32_t base_index = self->wildcard_root_pattern_count;
  uint32_t size = self->pattern_map.size - base_index;
  if (size == 0) {
    *result = base_index;
    return false;
  }
  while (size > 1) {
    uint32_t half_size = size / 2;
    uint32_t mid_index = base_index + half_size;
    TSSymbol mid_symbol = self->steps.contents[
      self->pattern_map.contents[mid_index].step_index
    ].symbol;
    if (needle > mid_symbol) base_index = mid_index;
    size -= half_size;
  }

  TSSymbol symbol = self->steps.contents[
    self->pattern_map.contents[base_index].step_index
  ].symbol;

  if (needle > symbol) {
    base_index++;
    if (base_index < self->pattern_map.size) {
      symbol = self->steps.contents[
        self->pattern_map.contents[base_index].step_index
      ].symbol;
    }
  }

  *result = base_index;
  return needle == symbol;
}

// Insert a new pattern's start index into the pattern map, maintaining
// the pattern map's ordering invariant.
static inline void ts_query__pattern_map_insert(
  TSQuery *self,
  TSSymbol symbol,
  PatternEntry new_entry
) {
  uint32_t index;
  ts_query__pattern_map_search(self, symbol, &index);

  // Ensure that the entries are sorted not only by symbol, but also
  // by pattern_index. This way, states for earlier patterns will be
  // initiated first, which allows the ordering of the states array
  // to be maintained more efficiently.
  while (index < self->pattern_map.size) {
    PatternEntry *entry = &self->pattern_map.contents[index];
    if (
      self->steps.contents[entry->step_index].symbol == symbol &&
      entry->pattern_index < new_entry.pattern_index
    ) {
      index++;
    } else {
      break;
    }
  }

  array_insert(&self->pattern_map, index, new_entry);
}

static bool ts_query__analyze_patterns(TSQuery *self, unsigned *error_offset) {
  // Walk forward through all of the steps in the query, computing some
  // basic information about each step. Mark all of the steps that contain
  // captures, and record the indices of all of the steps that have child steps.
  Array(uint32_t) parent_step_indices = array_new();
  for (unsigned i = 0; i < self->steps.size; i++) {
    QueryStep *step = &self->steps.contents[i];
    if (step->depth == PATTERN_DONE_MARKER) {
      step->parent_pattern_guaranteed = true;
      step->root_pattern_guaranteed = true;
      continue;
    }

    bool has_children = false;
    bool is_wildcard = step->symbol == WILDCARD_SYMBOL;
    step->contains_captures = step->capture_ids[0] != NONE;
    for (unsigned j = i + 1; j < self->steps.size; j++) {
      QueryStep *next_step = &self->steps.contents[j];
      if (
        next_step->depth == PATTERN_DONE_MARKER ||
        next_step->depth <= step->depth
      ) break;
      if (next_step->capture_ids[0] != NONE) {
        step->contains_captures = true;
      }
      if (!is_wildcard) {
        next_step->root_pattern_guaranteed = true;
        next_step->parent_pattern_guaranteed = true;
      }
      has_children = true;
    }

    if (has_children && !is_wildcard) {
      array_push(&parent_step_indices, i);
    }
  }

  // For every parent symbol in the query, initialize an 'analysis subgraph'.
  // This subgraph lists all of the states in the parse table that are directly
  // involved in building subtrees for this symbol.
  //
  // In addition to the parent symbols in the query, construct subgraphs for all
  // of the hidden symbols in the grammar, because these might occur within
  // one of the parent nodes, such that their children appear to belong to the
  // parent.
  Array(AnalysisSubgraph) subgraphs = array_new();
  for (unsigned i = 0; i < parent_step_indices.size; i++) {
    uint32_t parent_step_index = parent_step_indices.contents[i];
    TSSymbol parent_symbol = self->steps.contents[parent_step_index].symbol;
    AnalysisSubgraph subgraph = { .symbol = parent_symbol };
    array_insert_sorted_by(&subgraphs, .symbol, subgraph);
  }
  for (TSSymbol sym = self->language->token_count; sym < self->language->symbol_count; sym++) {
    if (!ts_language_symbol_metadata(self->language, sym).visible) {
      AnalysisSubgraph subgraph = { .symbol = sym };
      array_insert_sorted_by(&subgraphs, .symbol, subgraph);
    }
  }

  // Scan the parse table to find the data needed to populate these subgraphs.
  // Collect three things during this scan:
  //   1) All of the parse states where one of these symbols can start.
  //   2) All of the parse states where one of these symbols can end, along
  //      with information about the node that would be created.
  //   3) A list of predecessor states for each state.
  StatePredecessorMap predecessor_map = state_predecessor_map_new(self->language);
  for (TSStateId state = 1; state < self->language->state_count; state++) {
    unsigned subgraph_index, exists;
    LookaheadIterator lookahead_iterator = ts_language_lookaheads(self->language, state);
    while (ts_lookahead_iterator_next(&lookahead_iterator)) {
      if (lookahead_iterator.action_count) {
        for (unsigned i = 0; i < lookahead_iterator.action_count; i++) {
          const TSParseAction *action = &lookahead_iterator.actions[i];
          if (action->type == TSParseActionTypeReduce) {
            const TSSymbol *aliases, *aliases_end;
            ts_language_aliases_for_symbol(
              self->language,
              action->reduce.symbol,
              &aliases,
              &aliases_end
            );
            for (const TSSymbol *symbol = aliases; symbol < aliases_end; symbol++) {
              array_search_sorted_by(
                &subgraphs,
                .symbol,
                *symbol,
                &subgraph_index,
                &exists
              );
              if (exists) {
                AnalysisSubgraph *subgraph = &subgraphs.contents[subgraph_index];
                if (subgraph->nodes.size == 0 || array_back(&subgraph->nodes)->state != state) {
                  array_push(&subgraph->nodes, ((AnalysisSubgraphNode) {
                    .state = state,
                    .production_id = action->reduce.production_id,
                    .child_index = action->reduce.child_count,
                    .done = true,
                  }));
                }
              }
            }
          } else if (action->type == TSParseActionTypeShift && !action->shift.extra) {
            TSStateId next_state = action->shift.state;
            state_predecessor_map_add(&predecessor_map, next_state, state);
          }
        }
      } else if (lookahead_iterator.next_state != 0) {
        if (lookahead_iterator.next_state != state) {
          state_predecessor_map_add(&predecessor_map, lookahead_iterator.next_state, state);
        }
        const TSSymbol *aliases, *aliases_end;
        ts_language_aliases_for_symbol(
          self->language,
          lookahead_iterator.symbol,
          &aliases,
          &aliases_end
        );
        for (const TSSymbol *symbol = aliases; symbol < aliases_end; symbol++) {
          array_search_sorted_by(
            &subgraphs,
            .symbol,
            *symbol,
            &subgraph_index,
            &exists
          );
          if (exists) {
            AnalysisSubgraph *subgraph = &subgraphs.contents[subgraph_index];
            if (
              subgraph->start_states.size == 0 ||
              *array_back(&subgraph->start_states) != state
            )
            array_push(&subgraph->start_states, state);
          }
        }
      }
    }
  }

  // For each subgraph, compute the preceding states by walking backward
  // from the end states using the predecessor map.
  Array(AnalysisSubgraphNode) next_nodes = array_new();
  for (unsigned i = 0; i < subgraphs.size; i++) {
    AnalysisSubgraph *subgraph = &subgraphs.contents[i];
    if (subgraph->nodes.size == 0) {
      array_delete(&subgraph->start_states);
      array_erase(&subgraphs, i);
      i--;
      continue;
    }
    array_assign(&next_nodes, &subgraph->nodes);
    while (next_nodes.size > 0) {
      AnalysisSubgraphNode node = array_pop(&next_nodes);
      if (node.child_index > 1) {
        unsigned predecessor_count;
        const TSStateId *predecessors = state_predecessor_map_get(
          &predecessor_map,
          node.state,
          &predecessor_count
        );
        for (unsigned j = 0; j < predecessor_count; j++) {
          AnalysisSubgraphNode predecessor_node = {
            .state = predecessors[j],
            .child_index = node.child_index - 1,
            .production_id = node.production_id,
            .done = false,
          };
          unsigned index, exists;
          array_search_sorted_with(
            &subgraph->nodes, analysis_subgraph_node__compare, &predecessor_node,
            &index, &exists
          );
          if (!exists) {
            array_insert(&subgraph->nodes, index, predecessor_node);
            array_push(&next_nodes, predecessor_node);
          }
        }
      }
    }
  }

  #ifdef DEBUG_ANALYZE_QUERY
    printf("\nSubgraphs:\n");
    for (unsigned i = 0; i < subgraphs.size; i++) {
      AnalysisSubgraph *subgraph = &subgraphs.contents[i];
      printf("  %u, %s:\n", subgraph->symbol, ts_language_symbol_name(self->language, subgraph->symbol));
      for (unsigned j = 0; j < subgraph->start_states.size; j++) {
        printf(
          "    {state: %u}\n",
          subgraph->start_states.contents[j]
        );
      }
      for (unsigned j = 0; j < subgraph->nodes.size; j++) {
        AnalysisSubgraphNode *node = &subgraph->nodes.contents[j];
        printf(
          "    {state: %u, child_index: %u, production_id: %u, done: %d}\n",
          node->state, node->child_index, node->production_id, node->done
        );
      }
      printf("\n");
    }
  #endif

  // For each non-terminal pattern, determine if the pattern can successfully match,
  // and identify all of the possible children within the pattern where matching could fail.
  bool all_patterns_are_valid = true;
  AnalysisStateSet states = array_new();
  AnalysisStateSet next_states = array_new();
  AnalysisStateSet deeper_states = array_new();
  Array(uint16_t) final_step_indices = array_new();
  for (unsigned i = 0; i < parent_step_indices.size; i++) {
    uint16_t parent_step_index = parent_step_indices.contents[i];
    uint16_t parent_depth = self->steps.contents[parent_step_index].depth;
    TSSymbol parent_symbol = self->steps.contents[parent_step_index].symbol;
    if (parent_symbol == ts_builtin_sym_error) continue;

    // Find the subgraph that corresponds to this pattern's root symbol. If the pattern's
    // root symbol is a terminal, then return an error.
    unsigned subgraph_index, exists;
    array_search_sorted_by(&subgraphs, .symbol, parent_symbol, &subgraph_index, &exists);
    if (!exists) {
      unsigned first_child_step_index = parent_step_index + 1;
      uint32_t i, exists;
      array_search_sorted_by(&self->step_offsets, .step_index, first_child_step_index, &i, &exists);
      assert(exists);
      *error_offset = self->step_offsets.contents[i].byte_offset;
      all_patterns_are_valid = false;
      break;
    }

    // Initialize an analysis state at every parse state in the table where
    // this parent symbol can occur.
    AnalysisSubgraph *subgraph = &subgraphs.contents[subgraph_index];
    array_clear(&states);
    array_clear(&deeper_states);
    for (unsigned j = 0; j < subgraph->start_states.size; j++) {
      TSStateId parse_state = subgraph->start_states.contents[j];
      array_push(&states, ((AnalysisState) {
        .step_index = parent_step_index + 1,
        .stack = {
          [0] = {
            .parse_state = parse_state,
            .parent_symbol = parent_symbol,
            .child_index = 0,
            .field_id = 0,
            .done = false,
          },
        },
        .depth = 1,
      }));
    }

    // Walk the subgraph for this non-terminal, tracking all of the possible
    // sequences of progress within the pattern.
    bool can_finish_pattern = false;
    bool did_exceed_max_depth = false;
    unsigned recursion_depth_limit = 0;
    unsigned prev_final_step_count = 0;
    array_clear(&final_step_indices);
    for (;;) {
      #ifdef DEBUG_ANALYZE_QUERY
        printf("Final step indices:");
        for (unsigned j = 0; j < final_step_indices.size; j++) {
          printf(" %4u", final_step_indices.contents[j]);
        }
        printf("\nWalk states for %u %s:\n", i, ts_language_symbol_name(self->language, parent_symbol));
        for (unsigned j = 0; j < states.size; j++) {
          AnalysisState *state = &states.contents[j];
          printf("  %3u: step: %u, stack: [", j, state->step_index);
          for (unsigned k = 0; k < state->depth; k++) {
            printf(
              " {%s, child: %u, state: %4u",
              self->language->symbol_names[state->stack[k].parent_symbol],
              state->stack[k].child_index,
              state->stack[k].parse_state
            );
            if (state->stack[k].field_id) printf(", field: %s", self->language->field_names[state->stack[k].field_id]);
            if (state->stack[k].done) printf(", DONE");
            printf("}");
          }
          printf(" ]\n");
        }
      #endif

      // If no further progress can be made within the current recursion depth limit, then
      // bump the depth limit by one, and continue to process the states the exceeded the
      // limit. But only allow this if progress has been made since the last time the depth
      // limit was increased.
      if (states.size == 0) {
        if (deeper_states.size > 0 && final_step_indices.size > prev_final_step_count) {
          #ifdef DEBUG_ANALYZE_QUERY
            printf("Increase recursion depth limit to %u\n", recursion_depth_limit + 1);
          #endif

          prev_final_step_count = final_step_indices.size;
          recursion_depth_limit++;
          AnalysisStateSet _states = states;
          states = deeper_states;
          deeper_states = _states;
          continue;
        }

        break;
      }

      array_clear(&next_states);
      for (unsigned j = 0; j < states.size; j++) {
        AnalysisState * const state = &states.contents[j];

        // For efficiency, it's important to avoid processing the same analysis state more
        // than once. To achieve this, keep the states in order of ascending position within
        // their hypothetical syntax trees. In each iteration of this loop, start by advancing
        // the states that have made the least progress. Avoid advancing states that have already
        // made more progress.
        if (next_states.size > 0) {
          int comparison = analysis_state__compare_position(state, array_back(&next_states));
          if (comparison == 0) {
            array_insert_sorted_with(&next_states, analysis_state__compare, *state);
            continue;
          } else if (comparison > 0) {
            while (j < states.size) {
              array_push(&next_states, states.contents[j]);
              j++;
            }
            break;
          }
        }

        const TSStateId parse_state = analysis_state__top(state)->parse_state;
        const TSSymbol parent_symbol = analysis_state__top(state)->parent_symbol;
        const TSFieldId parent_field_id = analysis_state__top(state)->field_id;
        const unsigned child_index = analysis_state__top(state)->child_index;
        const QueryStep * const step = &self->steps.contents[state->step_index];

        unsigned subgraph_index, exists;
        array_search_sorted_by(&subgraphs, .symbol, parent_symbol, &subgraph_index, &exists);
        if (!exists) continue;
        const AnalysisSubgraph *subgraph = &subgraphs.contents[subgraph_index];

        // Follow every possible path in the parse table, but only visit states that
        // are part of the subgraph for the current symbol.
        LookaheadIterator lookahead_iterator = ts_language_lookaheads(self->language, parse_state);
        while (ts_lookahead_iterator_next(&lookahead_iterator)) {
          TSSymbol sym = lookahead_iterator.symbol;

          AnalysisSubgraphNode successor = {
            .state = parse_state,
            .child_index = child_index,
          };
          if (lookahead_iterator.action_count) {
            const TSParseAction *action = &lookahead_iterator.actions[lookahead_iterator.action_count - 1];
            if (action->type == TSParseActionTypeShift) {
              if (!action->shift.extra) {
                successor.state = action->shift.state;
                successor.child_index++;
              }
            } else {
              continue;
            }
          } else if (lookahead_iterator.next_state != 0) {
            successor.state = lookahead_iterator.next_state;
            successor.child_index++;
          } else {
            continue;
          }

          unsigned node_index;
          array_search_sorted_with(
            &subgraph->nodes,
            analysis_subgraph_node__compare, &successor,
            &node_index, &exists
          );
          while (node_index < subgraph->nodes.size) {
            AnalysisSubgraphNode *node = &subgraph->nodes.contents[node_index++];
            if (node->state != successor.state || node->child_index != successor.child_index) break;

            // Use the subgraph to determine what alias and field will eventually be applied
            // to this child node.
            TSSymbol alias = ts_language_alias_at(self->language, node->production_id, child_index);
            TSSymbol visible_symbol = alias
              ? alias
              : self->language->symbol_metadata[sym].visible
                ? self->language->public_symbol_map[sym]
                : 0;
            TSFieldId field_id = parent_field_id;
            if (!field_id) {
              const TSFieldMapEntry *field_map, *field_map_end;
              ts_language_field_map(self->language, node->production_id, &field_map, &field_map_end);
              for (; field_map != field_map_end; field_map++) {
                if (!field_map->inherited && field_map->child_index == child_index) {
                  field_id = field_map->field_id;
                  break;
                }
              }
            }

            // Create a new state that has advanced past this hypothetical subtree.
            AnalysisState next_state = *state;
            AnalysisStateEntry *next_state_top = analysis_state__top(&next_state);
            next_state_top->child_index = successor.child_index;
            next_state_top->parse_state = successor.state;
            if (node->done) next_state_top->done = true;

            // Determine if this hypothetical child node would match the current step
            // of the query pattern.
            bool does_match = false;
            if (visible_symbol) {
              does_match = true;
              if (step->symbol == WILDCARD_SYMBOL) {
                if (
                  step->is_named &&
                  !self->language->symbol_metadata[visible_symbol].named
                ) does_match = false;
              } else if (step->symbol != visible_symbol) {
                does_match = false;
              }
              if (step->field && step->field != field_id) {
                does_match = false;
              }
              if (
                step->supertype_symbol &&
                !analysis_state__has_supertype(state, step->supertype_symbol)
              ) does_match = false;
            }

            // If this child is hidden, then descend into it and walk through its children.
            // If the top entry of the stack is at the end of its rule, then that entry can
            // be replaced. Otherwise, push a new entry onto the stack.
            else if (sym >= self->language->token_count) {
              if (!next_state_top->done) {
                if (next_state.depth + 1 >= MAX_ANALYSIS_STATE_DEPTH) {
                  #ifdef DEBUG_ANALYZE_QUERY
                    printf("Exceeded depth limit for state %u\n", j);
                  #endif

                  did_exceed_max_depth = true;
                  continue;
                }

                next_state.depth++;
                next_state_top = analysis_state__top(&next_state);
              }

              *next_state_top = (AnalysisStateEntry) {
                .parse_state = parse_state,
                .parent_symbol = sym,
                .child_index = 0,
                .field_id = field_id,
                .done = false,
              };

              if (analysis_state__recursion_depth(&next_state) > recursion_depth_limit) {
                array_insert_sorted_with(&deeper_states, analysis_state__compare, next_state);
                continue;
              }
            }

            // Pop from the stack when this state reached the end of its current syntax node.
            while (next_state.depth > 0 && next_state_top->done) {
              next_state.depth--;
              next_state_top = analysis_state__top(&next_state);
            }

            // If this hypothetical child did match the current step of the query pattern,
            // then advance to the next step at the current depth. This involves skipping
            // over any descendant steps of the current child.
            const QueryStep *next_step = step;
            if (does_match) {
              for (;;) {
                next_state.step_index++;
                next_step = &self->steps.contents[next_state.step_index];
                if (
                  next_step->depth == PATTERN_DONE_MARKER ||
                  next_step->depth <= parent_depth + 1
                ) break;
              }
            } else if (successor.state == parse_state) {
              continue;
            }

            for (;;) {
              // Skip pass-through states. Although these states have alternatives, they are only
              // used to implement repetitions, and query analysis does not need to process
              // repetitions in order to determine whether steps are possible and definite.
              if (next_step->is_pass_through) {
                next_state.step_index++;
                next_step++;
                continue;
              }

              // If the pattern is finished or hypothetical parent node is complete, then
              // record that matching can terminate at this step of the pattern. Otherwise,
              // add this state to the list of states to process on the next iteration.
              if (!next_step->is_dead_end) {
                bool did_finish_pattern = self->steps.contents[next_state.step_index].depth != parent_depth + 1;
                if (did_finish_pattern) can_finish_pattern = true;
                if (did_finish_pattern || next_state.depth == 0) {
                  array_insert_sorted_by(&final_step_indices, , next_state.step_index);
                } else {
                  array_insert_sorted_with(&next_states, analysis_state__compare, next_state);
                }
              }

              // If the state has advanced to a step with an alternative step, then add another state
              // at that alternative step. This process is simpler than the process of actually matching a
              // pattern during query exection, because for the purposes of query analysis, there is no
              // need to process repetitions.
              if (
                does_match &&
                next_step->alternative_index != NONE &&
                next_step->alternative_index > next_state.step_index
              ) {
                next_state.step_index = next_step->alternative_index;
                next_step = &self->steps.contents[next_state.step_index];
              } else {
                break;
              }
            }
          }
        }
      }

      AnalysisStateSet _states = states;
      states = next_states;
      next_states = _states;
    }

    // Mark as indefinite any step where a match terminated.
    // Later, this property will be propagated to all of the step's predecessors.
    for (unsigned j = 0; j < final_step_indices.size; j++) {
      uint32_t final_step_index = final_step_indices.contents[j];
      QueryStep *step = &self->steps.contents[final_step_index];
      if (
        step->depth != PATTERN_DONE_MARKER &&
        step->depth > parent_depth &&
        !step->is_dead_end
      ) {
        step->parent_pattern_guaranteed = false;
        step->root_pattern_guaranteed = false;
      }
    }

    if (did_exceed_max_depth) {
      for (unsigned j = parent_step_index + 1; j < self->steps.size; j++) {
        QueryStep *step = &self->steps.contents[j];
        if (
          step->depth <= parent_depth ||
          step->depth == PATTERN_DONE_MARKER
        ) break;
        if (!step->is_dead_end) {
          step->parent_pattern_guaranteed = false;
          step->root_pattern_guaranteed = false;
        }
      }
    }

    // If this pattern cannot match, store the pattern index so that it can be
    // returned to the caller.
    if (all_patterns_are_valid && !can_finish_pattern && !did_exceed_max_depth) {
      assert(final_step_indices.size > 0);
      uint16_t impossible_step_index = *array_back(&final_step_indices);
      uint32_t i, exists;
      array_search_sorted_by(&self->step_offsets, .step_index, impossible_step_index, &i, &exists);
      if (i >= self->step_offsets.size) i = self->step_offsets.size - 1;
      *error_offset = self->step_offsets.contents[i].byte_offset;
      all_patterns_are_valid = false;
      break;
    }
  }

  // Mark as indefinite any step with captures that are used in predicates.
  Array(uint16_t) predicate_capture_ids = array_new();
  for (unsigned i = 0; i < self->patterns.size; i++) {
    QueryPattern *pattern = &self->patterns.contents[i];

    // Gather all of the captures that are used in predicates for this pattern.
    array_clear(&predicate_capture_ids);
    for (
      unsigned start = pattern->predicate_steps.offset,
      end = start + pattern->predicate_steps.length,
      j = start; j < end; j++
    ) {
      TSQueryPredicateStep *step = &self->predicate_steps.contents[j];
      if (step->type == TSQueryPredicateStepTypeCapture) {
        array_insert_sorted_by(&predicate_capture_ids, , step->value_id);
      }
    }

    // Find all of the steps that have these captures.
    for (
      unsigned start = pattern->steps.offset,
      end = start + pattern->steps.length,
      j = start; j < end; j++
    ) {
      QueryStep *step = &self->steps.contents[j];
      for (unsigned k = 0; k < MAX_STEP_CAPTURE_COUNT; k++) {
        uint16_t capture_id = step->capture_ids[k];
        if (capture_id == NONE) break;
        unsigned index, exists;
        array_search_sorted_by(&predicate_capture_ids, , capture_id, &index, &exists);
        if (exists) {
          step->root_pattern_guaranteed = false;
          break;
        }
      }
    }
  }

  // Propagate fallibility. If a pattern is fallible at a given step, then it is
  // fallible at all of its preceding steps.
  bool done = self->steps.size == 0;
  while (!done) {
    done = true;
    for (unsigned i = self->steps.size - 1; i > 0; i--) {
      QueryStep *step = &self->steps.contents[i];
      if (step->depth == PATTERN_DONE_MARKER) continue;

      // Determine if this step is definite or has definite alternatives.
      bool parent_pattern_guaranteed = false;
      for (;;) {
        if (step->root_pattern_guaranteed) {
          parent_pattern_guaranteed = true;
          break;
        }
        if (step->alternative_index == NONE || step->alternative_index < i) {
          break;
        }
        step = &self->steps.contents[step->alternative_index];
      }

      // If not, mark its predecessor as indefinite.
      if (!parent_pattern_guaranteed) {
        QueryStep *prev_step = &self->steps.contents[i - 1];
        if (
          !prev_step->is_dead_end &&
          prev_step->depth != PATTERN_DONE_MARKER &&
          prev_step->root_pattern_guaranteed
        ) {
          prev_step->root_pattern_guaranteed = false;
          done = false;
        }
      }
    }
  }

  #ifdef DEBUG_ANALYZE_QUERY
    printf("Steps:\n");
    for (unsigned i = 0; i < self->steps.size; i++) {
      QueryStep *step = &self->steps.contents[i];
      if (step->depth == PATTERN_DONE_MARKER) {
        printf("  %u: DONE\n", i);
      } else {
        printf(
          "  %u: {symbol: %s, field: %s, depth: %u, parent_pattern_guaranteed: %d, root_pattern_guaranteed: %d}\n",
          i,
          (step->symbol == WILDCARD_SYMBOL)
            ? "ANY"
            : ts_language_symbol_name(self->language, step->symbol),
          (step->field ? ts_language_field_name_for_id(self->language, step->field) : "-"),
          step->depth,
          step->parent_pattern_guaranteed,
          step->root_pattern_guaranteed
        );
      }
    }
  #endif

  // Cleanup
  for (unsigned i = 0; i < subgraphs.size; i++) {
    array_delete(&subgraphs.contents[i].start_states);
    array_delete(&subgraphs.contents[i].nodes);
  }
  array_delete(&subgraphs);
  array_delete(&next_nodes);
  array_delete(&states);
  array_delete(&next_states);
  array_delete(&deeper_states);
  array_delete(&final_step_indices);
  array_delete(&parent_step_indices);
  array_delete(&predicate_capture_ids);
  state_predecessor_map_delete(&predecessor_map);

  return all_patterns_are_valid;
}

static void ts_query__add_negated_fields(
  TSQuery *self,
  uint16_t step_index,
  TSFieldId *field_ids,
  uint16_t field_count
) {
  QueryStep *step = &self->steps.contents[step_index];

  // The negated field array stores a list of field lists, separated by zeros.
  // Try to find the start index of an existing list that matches this new list.
  bool failed_match = false;
  unsigned match_count = 0;
  unsigned start_i = 0;
  for (unsigned i = 0; i < self->negated_fields.size; i++) {
    TSFieldId existing_field_id = self->negated_fields.contents[i];

    // At each zero value, terminate the match attempt. If we've exactly
    // matched the new field list, then reuse this index. Otherwise,
    // start over the matching process.
    if (existing_field_id == 0) {
      if (match_count == field_count) {
        step->negated_field_list_id = start_i;
        return;
      } else {
        start_i = i + 1;
        match_count = 0;
        failed_match = false;
      }
    }

    // If the existing list matches our new list so far, then advance
    // to the next element of the new list.
    else if (
      match_count < field_count &&
      existing_field_id == field_ids[match_count] &&
      !failed_match
    ) {
      match_count++;
    }

    // Otherwise, this existing list has failed to match.
    else {
      match_count = 0;
      failed_match = true;
    }
  }

  step->negated_field_list_id = self->negated_fields.size;
  array_extend(&self->negated_fields, field_count, field_ids);
  array_push(&self->negated_fields, 0);
}

static TSQueryError ts_query__parse_string_literal(
  TSQuery *self,
  Stream *stream
) {
  const char *string_start = stream->input;
  if (stream->next != '"') return TSQueryErrorSyntax;
  stream_advance(stream);
  const char *prev_position = stream->input;

  bool is_escaped = false;
  array_clear(&self->string_buffer);
  for (;;) {
    if (is_escaped) {
      is_escaped = false;
      switch (stream->next) {
        case 'n':
          array_push(&self->string_buffer, '\n');
          break;
        case 'r':
          array_push(&self->string_buffer, '\r');
          break;
        case 't':
          array_push(&self->string_buffer, '\t');
          break;
        case '0':
          array_push(&self->string_buffer, '\0');
          break;
        default:
          array_extend(&self->string_buffer, stream->next_size, stream->input);
          break;
      }
      prev_position = stream->input + stream->next_size;
    } else {
      if (stream->next == '\\') {
        array_extend(&self->string_buffer, (stream->input - prev_position), prev_position);
        prev_position = stream->input + 1;
        is_escaped = true;
      } else if (stream->next == '"') {
        array_extend(&self->string_buffer, (stream->input - prev_position), prev_position);
        stream_advance(stream);
        return TSQueryErrorNone;
      } else if (stream->next == '\n') {
        stream_reset(stream, string_start);
        return TSQueryErrorSyntax;
      }
    }
    if (!stream_advance(stream)) {
      stream_reset(stream, string_start);
      return TSQueryErrorSyntax;
    }
  }
}

// Parse a single predicate associated with a pattern, adding it to the
// query's internal `predicate_steps` array. Predicates are arbitrary
// S-expressions associated with a pattern which are meant to be handled at
// a higher level of abstraction, such as the Rust/JavaScript bindings. They
// can contain '@'-prefixed capture names, double-quoted strings, and bare
// symbols, which also represent strings.
static TSQueryError ts_query__parse_predicate(
  TSQuery *self,
  Stream *stream
) {
  if (!stream_is_ident_start(stream)) return TSQueryErrorSyntax;
  const char *predicate_name = stream->input;
  stream_scan_identifier(stream);
  uint32_t length = stream->input - predicate_name;
  uint16_t id = symbol_table_insert_name(
    &self->predicate_values,
    predicate_name,
    length
  );
  array_push(&self->predicate_steps, ((TSQueryPredicateStep) {
    .type = TSQueryPredicateStepTypeString,
    .value_id = id,
  }));
  stream_skip_whitespace(stream);

  for (;;) {
    if (stream->next == ')') {
      stream_advance(stream);
      stream_skip_whitespace(stream);
      array_push(&self->predicate_steps, ((TSQueryPredicateStep) {
        .type = TSQueryPredicateStepTypeDone,
        .value_id = 0,
      }));
      break;
    }

    // Parse an '@'-prefixed capture name
    else if (stream->next == '@') {
      stream_advance(stream);

      // Parse the capture name
      if (!stream_is_ident_start(stream)) return TSQueryErrorSyntax;
      const char *capture_name = stream->input;
      stream_scan_identifier(stream);
      uint32_t length = stream->input - capture_name;

      // Add the capture id to the first step of the pattern
      int capture_id = symbol_table_id_for_name(
        &self->captures,
        capture_name,
        length
      );
      if (capture_id == -1) {
        stream_reset(stream, capture_name);
        return TSQueryErrorCapture;
      }

      array_push(&self->predicate_steps, ((TSQueryPredicateStep) {
        .type = TSQueryPredicateStepTypeCapture,
        .value_id = capture_id,
      }));
    }

    // Parse a string literal
    else if (stream->next == '"') {
      TSQueryError e = ts_query__parse_string_literal(self, stream);
      if (e) return e;
      uint16_t id = symbol_table_insert_name(
        &self->predicate_values,
        self->string_buffer.contents,
        self->string_buffer.size
      );
      array_push(&self->predicate_steps, ((TSQueryPredicateStep) {
        .type = TSQueryPredicateStepTypeString,
        .value_id = id,
      }));
    }

    // Parse a bare symbol
    else if (stream_is_ident_start(stream)) {
      const char *symbol_start = stream->input;
      stream_scan_identifier(stream);
      uint32_t length = stream->input - symbol_start;
      uint16_t id = symbol_table_insert_name(
        &self->predicate_values,
        symbol_start,
        length
      );
      array_push(&self->predicate_steps, ((TSQueryPredicateStep) {
        .type = TSQueryPredicateStepTypeString,
        .value_id = id,
      }));
    }

    else {
      return TSQueryErrorSyntax;
    }

    stream_skip_whitespace(stream);
  }

  return 0;
}

// Read one S-expression pattern from the stream, and incorporate it into
// the query's internal state machine representation. For nested patterns,
// this function calls itself recursively.
static TSQueryError ts_query__parse_pattern(
  TSQuery *self,
  Stream *stream,
  uint32_t depth,
  bool is_immediate
) {
  if (stream->next == 0) return TSQueryErrorSyntax;
  if (stream->next == ')' || stream->next == ']') return PARENT_DONE;

  const uint32_t starting_step_index = self->steps.size;

  // Store the byte offset of each step in the query.
  if (
    self->step_offsets.size == 0 ||
    array_back(&self->step_offsets)->step_index != starting_step_index
  ) {
    array_push(&self->step_offsets, ((StepOffset) {
      .step_index = starting_step_index,
      .byte_offset = stream_offset(stream),
    }));
  }

  // An open bracket is the start of an alternation.
  if (stream->next == '[') {
    stream_advance(stream);
    stream_skip_whitespace(stream);

    // Parse each branch, and add a placeholder step in between the branches.
    Array(uint32_t) branch_step_indices = array_new();
    for (;;) {
      uint32_t start_index = self->steps.size;
      TSQueryError e = ts_query__parse_pattern(
        self,
        stream,
        depth,
        is_immediate
      );

      if (e == PARENT_DONE) {
        if (stream->next == ']' && branch_step_indices.size > 0) {
          stream_advance(stream);
          break;
        }
        e = TSQueryErrorSyntax;
      }
      if (e) {
        array_delete(&branch_step_indices);
        return e;
      }

      array_push(&branch_step_indices, start_index);
      array_push(&self->steps, query_step__new(0, depth, false));
    }
    (void)array_pop(&self->steps);

    // For all of the branches except for the last one, add the subsequent branch as an
    // alternative, and link the end of the branch to the current end of the steps.
    for (unsigned i = 0; i < branch_step_indices.size - 1; i++) {
      uint32_t step_index = branch_step_indices.contents[i];
      uint32_t next_step_index = branch_step_indices.contents[i + 1];
      QueryStep *start_step = &self->steps.contents[step_index];
      QueryStep *end_step = &self->steps.contents[next_step_index - 1];
      start_step->alternative_index = next_step_index;
      end_step->alternative_index = self->steps.size;
      end_step->is_dead_end = true;
    }

    array_delete(&branch_step_indices);
  }

  // An open parenthesis can be the start of three possible constructs:
  // * A grouped sequence
  // * A predicate
  // * A named node
  else if (stream->next == '(') {
    stream_advance(stream);
    stream_skip_whitespace(stream);

    // If this parenthesis is followed by a node, then it represents a grouped sequence.
    if (stream->next == '(' || stream->next == '"' || stream->next == '[') {
      bool child_is_immediate = false;
      for (;;) {
        if (stream->next == '.') {
          child_is_immediate = true;
          stream_advance(stream);
          stream_skip_whitespace(stream);
        }
        TSQueryError e = ts_query__parse_pattern(
          self,
          stream,
          depth,
          child_is_immediate
        );
        if (e == PARENT_DONE) {
          if (stream->next == ')') {
            stream_advance(stream);
            break;
          }
          e = TSQueryErrorSyntax;
        }
        if (e) return e;

        child_is_immediate = false;
      }
    }

    // A dot/pound character indicates the start of a predicate.
    else if (stream->next == '.' || stream->next == '#') {
      stream_advance(stream);
      return ts_query__parse_predicate(self, stream);
    }

    // Otherwise, this parenthesis is the start of a named node.
    else {
      TSSymbol symbol;

      // Parse a normal node name
      if (stream_is_ident_start(stream)) {
        const char *node_name = stream->input;
        stream_scan_identifier(stream);
        uint32_t length = stream->input - node_name;

        // TODO - remove.
        // For temporary backward compatibility, handle predicates without the leading '#' sign.
        if (length > 0 && (node_name[length - 1] == '!' || node_name[length - 1] == '?')) {
          stream_reset(stream, node_name);
          return ts_query__parse_predicate(self, stream);
        }

        // Parse the wildcard symbol
        else if (length == 1 && node_name[0] == '_') {
          symbol = WILDCARD_SYMBOL;
        }

        else {
          symbol = ts_language_symbol_for_name(
            self->language,
            node_name,
            length,
            true
          );
          if (!symbol) {
            stream_reset(stream, node_name);
            return TSQueryErrorNodeType;
          }
        }
      } else {
        return TSQueryErrorSyntax;
      }

      // Add a step for the node.
      array_push(&self->steps, query_step__new(symbol, depth, is_immediate));
      QueryStep *step = array_back(&self->steps);
      if (ts_language_symbol_metadata(self->language, symbol).supertype) {
        step->supertype_symbol = step->symbol;
        step->symbol = WILDCARD_SYMBOL;
      }
      if (symbol == WILDCARD_SYMBOL) {
        step->is_named = true;
      }

      stream_skip_whitespace(stream);

      if (stream->next == '/') {
        stream_advance(stream);
        if (!stream_is_ident_start(stream)) {
          return TSQueryErrorSyntax;
        }

        const char *node_name = stream->input;
        stream_scan_identifier(stream);
        uint32_t length = stream->input - node_name;

        step->symbol = ts_language_symbol_for_name(
          self->language,
          node_name,
          length,
          true
        );
        if (!step->symbol) {
          stream_reset(stream, node_name);
          return TSQueryErrorNodeType;
        }

        stream_skip_whitespace(stream);
      }

      // Parse the child patterns
      bool child_is_immediate = false;
      uint16_t last_child_step_index = 0;
      uint16_t negated_field_count = 0;
      TSFieldId negated_field_ids[MAX_NEGATED_FIELD_COUNT];
      for (;;) {
        // Parse a negated field assertion
        if (stream->next == '!') {
          stream_advance(stream);
          stream_skip_whitespace(stream);
          if (!stream_is_ident_start(stream)) return TSQueryErrorSyntax;
          const char *field_name = stream->input;
          stream_scan_identifier(stream);
          uint32_t length = stream->input - field_name;
          stream_skip_whitespace(stream);

          TSFieldId field_id = ts_language_field_id_for_name(
            self->language,
            field_name,
            length
          );
          if (!field_id) {
            stream->input = field_name;
            return TSQueryErrorField;
          }

          // Keep the field ids sorted.
          if (negated_field_count < MAX_NEGATED_FIELD_COUNT) {
            negated_field_ids[negated_field_count] = field_id;
            negated_field_count++;
          }

          continue;
        }

        // Parse a sibling anchor
        if (stream->next == '.') {
          child_is_immediate = true;
          stream_advance(stream);
          stream_skip_whitespace(stream);
        }

        uint16_t step_index = self->steps.size;
        TSQueryError e = ts_query__parse_pattern(
          self,
          stream,
          depth + 1,
          child_is_immediate
        );
        if (e == PARENT_DONE) {
          if (stream->next == ')') {
            if (child_is_immediate) {
              if (last_child_step_index == 0) return TSQueryErrorSyntax;
              self->steps.contents[last_child_step_index].is_last_child = true;
            }

            if (negated_field_count) {
              ts_query__add_negated_fields(
                self,
                starting_step_index,
                negated_field_ids,
                negated_field_count
              );
            }

            stream_advance(stream);
            break;
          }
          e = TSQueryErrorSyntax;
        }
        if (e) return e;

        last_child_step_index = step_index;
        child_is_immediate = false;
      }
    }
  }

  // Parse a wildcard pattern
  else if (stream->next == '_') {
    stream_advance(stream);
    stream_skip_whitespace(stream);

    // Add a step that matches any kind of node
    array_push(&self->steps, query_step__new(WILDCARD_SYMBOL, depth, is_immediate));
  }

  // Parse a double-quoted anonymous leaf node expression
  else if (stream->next == '"') {
    const char *string_start = stream->input;
    TSQueryError e = ts_query__parse_string_literal(self, stream);
    if (e) return e;

    // Add a step for the node
    TSSymbol symbol = ts_language_symbol_for_name(
      self->language,
      self->string_buffer.contents,
      self->string_buffer.size,
      false
    );
    if (!symbol) {
      stream_reset(stream, string_start + 1);
      return TSQueryErrorNodeType;
    }
    array_push(&self->steps, query_step__new(symbol, depth, is_immediate));
  }

  // Parse a field-prefixed pattern
  else if (stream_is_ident_start(stream)) {
    // Parse the field name
    const char *field_name = stream->input;
    stream_scan_identifier(stream);
    uint32_t length = stream->input - field_name;
    stream_skip_whitespace(stream);

    if (stream->next != ':') {
      stream_reset(stream, field_name);
      return TSQueryErrorSyntax;
    }
    stream_advance(stream);
    stream_skip_whitespace(stream);

    // Parse the pattern
    TSQueryError e = ts_query__parse_pattern(
      self,
      stream,
      depth,
      is_immediate
    );
    if (e == PARENT_DONE) return TSQueryErrorSyntax;
    if (e) return e;

    // Add the field name to the first step of the pattern
    TSFieldId field_id = ts_language_field_id_for_name(
      self->language,
      field_name,
      length
    );
    if (!field_id) {
      stream->input = field_name;
      return TSQueryErrorField;
    }

    uint32_t step_index = starting_step_index;
    QueryStep *step = &self->steps.contents[step_index];
    for (;;) {
      step->field = field_id;
      if (
        step->alternative_index != NONE &&
        step->alternative_index > step_index &&
        step->alternative_index < self->steps.size
      ) {
        step_index = step->alternative_index;
        step = &self->steps.contents[step_index];
      } else {
        break;
      }
    }
  }

  else {
    return TSQueryErrorSyntax;
  }

  stream_skip_whitespace(stream);

  // Parse suffixes modifiers for this pattern
  for (;;) {
    // Parse the one-or-more operator.
    if (stream->next == '+') {
      stream_advance(stream);
      stream_skip_whitespace(stream);

      QueryStep repeat_step = query_step__new(WILDCARD_SYMBOL, depth, false);
      repeat_step.alternative_index = starting_step_index;
      repeat_step.is_pass_through = true;
      repeat_step.alternative_is_immediate = true;
      array_push(&self->steps, repeat_step);
    }

    // Parse the zero-or-more repetition operator.
    else if (stream->next == '*') {
      stream_advance(stream);
      stream_skip_whitespace(stream);

      QueryStep repeat_step = query_step__new(WILDCARD_SYMBOL, depth, false);
      repeat_step.alternative_index = starting_step_index;
      repeat_step.is_pass_through = true;
      repeat_step.alternative_is_immediate = true;
      array_push(&self->steps, repeat_step);

      QueryStep *step = &self->steps.contents[starting_step_index];
      while (step->alternative_index != NONE) {
        step = &self->steps.contents[step->alternative_index];
      }
      step->alternative_index = self->steps.size;
    }

    // Parse the optional operator.
    else if (stream->next == '?') {
      stream_advance(stream);
      stream_skip_whitespace(stream);

      QueryStep *step = &self->steps.contents[starting_step_index];
      while (step->alternative_index != NONE) {
        step = &self->steps.contents[step->alternative_index];
      }
      step->alternative_index = self->steps.size;
    }

    // Parse an '@'-prefixed capture pattern
    else if (stream->next == '@') {
      stream_advance(stream);
      if (!stream_is_ident_start(stream)) return TSQueryErrorSyntax;
      const char *capture_name = stream->input;
      stream_scan_identifier(stream);
      uint32_t length = stream->input - capture_name;
      stream_skip_whitespace(stream);

      // Add the capture id to the first step of the pattern
      uint16_t capture_id = symbol_table_insert_name(
        &self->captures,
        capture_name,
        length
      );

      uint32_t step_index = starting_step_index;
      for (;;) {
        QueryStep *step = &self->steps.contents[step_index];
        query_step__add_capture(step, capture_id);
        if (
          step->alternative_index != NONE &&
          step->alternative_index > step_index &&
          step->alternative_index < self->steps.size
        ) {
          step_index = step->alternative_index;
          step = &self->steps.contents[step_index];
        } else {
          break;
        }
      }
    }

    // No more suffix modifiers
    else {
      break;
    }
  }

  return 0;
}

TSQuery *ts_query_new(
  const TSLanguage *language,
  const char *source,
  uint32_t source_len,
  uint32_t *error_offset,
  TSQueryError *error_type
) {
  if (
    !language ||
    language->version > TREE_SITTER_LANGUAGE_VERSION ||
    language->version < TREE_SITTER_MIN_COMPATIBLE_LANGUAGE_VERSION
  ) {
    *error_type = TSQueryErrorLanguage;
    return NULL;
  }

  TSQuery *self = ts_malloc(sizeof(TSQuery));
  *self = (TSQuery) {
    .steps = array_new(),
    .pattern_map = array_new(),
    .captures = symbol_table_new(),
    .predicate_values = symbol_table_new(),
    .predicate_steps = array_new(),
    .patterns = array_new(),
    .step_offsets = array_new(),
    .string_buffer = array_new(),
    .negated_fields = array_new(),
    .wildcard_root_pattern_count = 0,
    .language = language,
  };

  array_push(&self->negated_fields, 0);

  // Parse all of the S-expressions in the given string.
  Stream stream = stream_new(source, source_len);
  stream_skip_whitespace(&stream);
  while (stream.input < stream.end) {
    uint32_t pattern_index = self->patterns.size;
    uint32_t start_step_index = self->steps.size;
    uint32_t start_predicate_step_index = self->predicate_steps.size;
    array_push(&self->patterns, ((QueryPattern) {
      .steps = (Slice) {.offset = start_step_index},
      .predicate_steps = (Slice) {.offset = start_predicate_step_index},
      .start_byte = stream_offset(&stream),
    }));
    *error_type = ts_query__parse_pattern(self, &stream, 0, false);
    array_push(&self->steps, query_step__new(0, PATTERN_DONE_MARKER, false));

    QueryPattern *pattern = array_back(&self->patterns);
    pattern->steps.length = self->steps.size - start_step_index;
    pattern->predicate_steps.length = self->predicate_steps.size - start_predicate_step_index;

    // If any pattern could not be parsed, then report the error information
    // and terminate.
    if (*error_type) {
      if (*error_type == PARENT_DONE) *error_type = TSQueryErrorSyntax;
      *error_offset = stream_offset(&stream);
      ts_query_delete(self);
      return NULL;
    }

    // Maintain a map that can look up patterns for a given root symbol.
    uint16_t wildcard_root_alternative_index = NONE;
    for (;;) {
      QueryStep *step = &self->steps.contents[start_step_index];

      // If a pattern has a wildcard at its root, but it has a non-wildcard child,
      // then optimize the matching process by skipping matching the wildcard.
      // Later, during the matching process, the query cursor will check that
      // there is a parent node, and capture it if necessary.
      if (step->symbol == WILDCARD_SYMBOL && step->depth == 0 && !step->field) {
        QueryStep *second_step = &self->steps.contents[start_step_index + 1];
        if (second_step->symbol != WILDCARD_SYMBOL && second_step->depth == 1) {
          wildcard_root_alternative_index = step->alternative_index;
          start_step_index += 1;
          step = second_step;
        }
      }

      // Determine whether the pattern has a single root node. This affects
      // decisions about whether or not to start matching the pattern when
      // a query cursor has a range restriction.
      bool is_rooted = true;
      uint32_t start_depth = step->depth;
      for (uint32_t step_index = start_step_index + 1; step_index < self->steps.size; step_index++) {
        QueryStep *step = &self->steps.contents[step_index];
        if (step->depth == start_depth) {
          is_rooted = false;
          break;
        }
      }

      ts_query__pattern_map_insert(self, step->symbol, (PatternEntry) {
        .step_index = start_step_index,
        .pattern_index = pattern_index,
        .is_rooted = is_rooted
      });
      if (step->symbol == WILDCARD_SYMBOL) {
        self->wildcard_root_pattern_count++;
      }

      // If there are alternatives or options at the root of the pattern,
      // then add multiple entries to the pattern map.
      if (step->alternative_index != NONE) {
        start_step_index = step->alternative_index;
        step->alternative_index = NONE;
      } else if (wildcard_root_alternative_index != NONE) {
        start_step_index = wildcard_root_alternative_index;
        wildcard_root_alternative_index = NONE;
      } else {
        break;
      }
    }
  }

  if (!ts_query__analyze_patterns(self, error_offset)) {
    *error_type = TSQueryErrorStructure;
    ts_query_delete(self);
    return NULL;
  }

  array_delete(&self->string_buffer);
  return self;
}

void ts_query_delete(TSQuery *self) {
  if (self) {
    array_delete(&self->steps);
    array_delete(&self->pattern_map);
    array_delete(&self->predicate_steps);
    array_delete(&self->patterns);
    array_delete(&self->step_offsets);
    array_delete(&self->string_buffer);
    array_delete(&self->negated_fields);
    symbol_table_delete(&self->captures);
    symbol_table_delete(&self->predicate_values);
    ts_free(self);
  }
}

uint32_t ts_query_pattern_count(const TSQuery *self) {
  return self->patterns.size;
}

uint32_t ts_query_capture_count(const TSQuery *self) {
  return self->captures.slices.size;
}

uint32_t ts_query_string_count(const TSQuery *self) {
  return self->predicate_values.slices.size;
}

const char *ts_query_capture_name_for_id(
  const TSQuery *self,
  uint32_t index,
  uint32_t *length
) {
  return symbol_table_name_for_id(&self->captures, index, length);
}

const char *ts_query_string_value_for_id(
  const TSQuery *self,
  uint32_t index,
  uint32_t *length
) {
  return symbol_table_name_for_id(&self->predicate_values, index, length);
}

const TSQueryPredicateStep *ts_query_predicates_for_pattern(
  const TSQuery *self,
  uint32_t pattern_index,
  uint32_t *step_count
) {
  Slice slice = self->patterns.contents[pattern_index].predicate_steps;
  *step_count = slice.length;
  if (self->predicate_steps.contents == NULL) {
    return NULL;
  }
  return &self->predicate_steps.contents[slice.offset];
}

uint32_t ts_query_start_byte_for_pattern(
  const TSQuery *self,
  uint32_t pattern_index
) {
  return self->patterns.contents[pattern_index].start_byte;
}

bool ts_query_is_pattern_guaranteed_at_step(
  const TSQuery *self,
  uint32_t byte_offset
) {
  uint32_t step_index = UINT32_MAX;
  for (unsigned i = 0; i < self->step_offsets.size; i++) {
    StepOffset *step_offset = &self->step_offsets.contents[i];
    if (step_offset->byte_offset > byte_offset) break;
    step_index = step_offset->step_index;
  }
  if (step_index < self->steps.size) {
    return self->steps.contents[step_index].root_pattern_guaranteed;
  } else {
    return false;
  }
}

bool ts_query__step_is_fallible(
  const TSQuery *self,
  uint16_t step_index
) {
  assert((uint32_t)step_index + 1 < self->steps.size);
  QueryStep *step = &self->steps.contents[step_index];
  QueryStep *next_step = &self->steps.contents[step_index + 1];
  return (
    next_step->depth != PATTERN_DONE_MARKER &&
    next_step->depth > step->depth &&
    !next_step->parent_pattern_guaranteed
  );
}

void ts_query_disable_capture(
  TSQuery *self,
  const char *name,
  uint32_t length
) {
  // Remove capture information for any pattern step that previously
  // captured with the given name.
  int id = symbol_table_id_for_name(&self->captures, name, length);
  if (id != -1) {
    for (unsigned i = 0; i < self->steps.size; i++) {
      QueryStep *step = &self->steps.contents[i];
      query_step__remove_capture(step, id);
    }
  }
}

void ts_query_disable_pattern(
  TSQuery *self,
  uint32_t pattern_index
) {
  // Remove the given pattern from the pattern map. Its steps will still
  // be in the `steps` array, but they will never be read.
  for (unsigned i = 0; i < self->pattern_map.size; i++) {
    PatternEntry *pattern = &self->pattern_map.contents[i];
    if (pattern->pattern_index == pattern_index) {
      array_erase(&self->pattern_map, i);
      i--;
    }
  }
}

/***************
 * QueryCursor
 ***************/

TSQueryCursor *ts_query_cursor_new(void) {
  TSQueryCursor *self = ts_malloc(sizeof(TSQueryCursor));
  *self = (TSQueryCursor) {
    .did_exceed_match_limit = false,
    .ascending = false,
    .halted = false,
    .states = array_new(),
    .finished_states = array_new(),
    .capture_list_pool = capture_list_pool_new(),
    .start_byte = 0,
    .end_byte = UINT32_MAX,
    .start_point = {0, 0},
    .end_point = POINT_MAX,
  };
  array_reserve(&self->states, 8);
  array_reserve(&self->finished_states, 8);
  return self;
}

void ts_query_cursor_delete(TSQueryCursor *self) {
  array_delete(&self->states);
  array_delete(&self->finished_states);
  ts_tree_cursor_delete(&self->cursor);
  capture_list_pool_delete(&self->capture_list_pool);
  ts_free(self);
}

bool ts_query_cursor_did_exceed_match_limit(const TSQueryCursor *self) {
  return self->did_exceed_match_limit;
}

uint32_t ts_query_cursor_match_limit(const TSQueryCursor *self) {
  return self->capture_list_pool.max_capture_list_count;
}

void ts_query_cursor_set_match_limit(TSQueryCursor *self, uint32_t limit) {
  self->capture_list_pool.max_capture_list_count = limit;
}

void ts_query_cursor_exec(
  TSQueryCursor *self,
  const TSQuery *query,
  TSNode node
) {
  array_clear(&self->states);
  array_clear(&self->finished_states);
  ts_tree_cursor_reset(&self->cursor, node);
  capture_list_pool_reset(&self->capture_list_pool);
  self->next_state_id = 0;
  self->depth = 0;
  self->ascending = false;
  self->halted = false;
  self->query = query;
  self->did_exceed_match_limit = false;
}

void ts_query_cursor_set_byte_range(
  TSQueryCursor *self,
  uint32_t start_byte,
  uint32_t end_byte
) {
  if (end_byte == 0) {
    end_byte = UINT32_MAX;
  }
  self->start_byte = start_byte;
  self->end_byte = end_byte;
}

void ts_query_cursor_set_point_range(
  TSQueryCursor *self,
  TSPoint start_point,
  TSPoint end_point
) {
  if (end_point.row == 0 && end_point.column == 0) {
    end_point = POINT_MAX;
  }
  self->start_point = start_point;
  self->end_point = end_point;
}

// Search through all of the in-progress states, and find the captured
// node that occurs earliest in the document.
static bool ts_query_cursor__first_in_progress_capture(
  TSQueryCursor *self,
  uint32_t *state_index,
  uint32_t *byte_offset,
  uint32_t *pattern_index,
  bool *root_pattern_guaranteed
) {
  bool result = false;
  *state_index = UINT32_MAX;
  *byte_offset = UINT32_MAX;
  *pattern_index = UINT32_MAX;
  for (unsigned i = 0; i < self->states.size; i++) {
    QueryState *state = &self->states.contents[i];
    if (state->dead) continue;

    const CaptureList *captures = capture_list_pool_get(
      &self->capture_list_pool,
      state->capture_list_id
    );
    if (state->consumed_capture_count >= captures->size) {
      continue;
    }

    TSNode node = captures->contents[state->consumed_capture_count].node;
    if (
      ts_node_end_byte(node) <= self->start_byte ||
      point_lte(ts_node_end_point(node), self->start_point)
    ) {
      state->consumed_capture_count++;
      i--;
      continue;
    }

    uint32_t node_start_byte = ts_node_start_byte(node);
    if (
      !result ||
      node_start_byte < *byte_offset ||
      (node_start_byte == *byte_offset && state->pattern_index < *pattern_index)
    ) {
      QueryStep *step = &self->query->steps.contents[state->step_index];
      if (root_pattern_guaranteed) {
        *root_pattern_guaranteed = step->root_pattern_guaranteed;
      } else if (step->root_pattern_guaranteed) {
        continue;
      }

      result = true;
      *state_index = i;
      *byte_offset = node_start_byte;
      *pattern_index = state->pattern_index;
    }
  }
  return result;
}

// Determine which node is first in a depth-first traversal
int ts_query_cursor__compare_nodes(TSNode left, TSNode right) {
  if (left.id != right.id) {
    uint32_t left_start = ts_node_start_byte(left);
    uint32_t right_start = ts_node_start_byte(right);
    if (left_start < right_start) return -1;
    if (left_start > right_start) return 1;
    uint32_t left_node_count = ts_node_end_byte(left);
    uint32_t right_node_count = ts_node_end_byte(right);
    if (left_node_count > right_node_count) return -1;
    if (left_node_count < right_node_count) return 1;
  }
  return 0;
}

// Determine if either state contains a superset of the other state's captures.
void ts_query_cursor__compare_captures(
  TSQueryCursor *self,
  QueryState *left_state,
  QueryState *right_state,
  bool *left_contains_right,
  bool *right_contains_left
) {
  const CaptureList *left_captures = capture_list_pool_get(
    &self->capture_list_pool,
    left_state->capture_list_id
  );
  const CaptureList *right_captures = capture_list_pool_get(
    &self->capture_list_pool,
    right_state->capture_list_id
  );
  *left_contains_right = true;
  *right_contains_left = true;
  unsigned i = 0, j = 0;
  for (;;) {
    if (i < left_captures->size) {
      if (j < right_captures->size) {
        TSQueryCapture *left = &left_captures->contents[i];
        TSQueryCapture *right = &right_captures->contents[j];
        if (left->node.id == right->node.id && left->index == right->index) {
          i++;
          j++;
        } else {
          switch (ts_query_cursor__compare_nodes(left->node, right->node)) {
            case -1:
              *right_contains_left = false;
              i++;
              break;
            case 1:
              *left_contains_right = false;
              j++;
              break;
            default:
              *right_contains_left = false;
              *left_contains_right = false;
              i++;
              j++;
              break;
          }
        }
      } else {
        *right_contains_left = false;
        break;
      }
    } else {
      if (j < right_captures->size) {
        *left_contains_right = false;
      }
      break;
    }
  }
}

#ifdef DEBUG_EXECUTE_QUERY
#define LOG(...) fprintf(stderr, __VA_ARGS__)
#else
#define LOG(...)
#endif

static void ts_query_cursor__add_state(
  TSQueryCursor *self,
  const PatternEntry *pattern
) {
  QueryStep *step = &self->query->steps.contents[pattern->step_index];
  uint32_t start_depth = self->depth - step->depth;

  // Keep the states array in ascending order of start_depth and pattern_index,
  // so that it can be processed more efficiently elsewhere. Usually, there is
  // no work to do here because of two facts:
  // * States with lower start_depth are naturally added first due to the
  //   order in which nodes are visited.
  // * Earlier patterns are naturally added first because of the ordering of the
  //   pattern_map data structure that's used to initiate matches.
  //
  // This loop is only needed in cases where two conditions hold:
  // * A pattern consists of more than one sibling node, so that its states
  //   remain in progress after exiting the node that started the match.
  // * The first node in the pattern matches against multiple nodes at the
  //   same depth.
  //
  // An example of this is the pattern '((comment)* (function))'. If multiple
  // `comment` nodes appear in a row, then we may initiate a new state for this
  // pattern while another state for the same pattern is already in progress.
  // If there are multiple patterns like this in a query, then this loop will
  // need to execute in order to keep the states ordered by pattern_index.
  uint32_t index = self->states.size;
  while (index > 0) {
    QueryState *prev_state = &self->states.contents[index - 1];
    if (prev_state->start_depth < start_depth) break;
    if (prev_state->start_depth == start_depth) {
      // Avoid inserting an unnecessary duplicate state, which would be
      // immediately pruned by the longest-match criteria.
      if (
        prev_state->pattern_index == pattern->pattern_index &&
        prev_state->step_index == pattern->step_index
      ) return;
      if (prev_state->pattern_index <= pattern->pattern_index) break;
    }
    index--;
  }

  LOG(
    "  start state. pattern:%u, step:%u\n",
    pattern->pattern_index,
    pattern->step_index
  );
  array_insert(&self->states, index, ((QueryState) {
    .id = UINT32_MAX,
    .capture_list_id = NONE,
    .step_index = pattern->step_index,
    .pattern_index = pattern->pattern_index,
    .start_depth = start_depth,
    .consumed_capture_count = 0,
    .seeking_immediate_match = true,
    .has_in_progress_alternatives = false,
    .needs_parent = step->depth == 1,
    .dead = false,
  }));
}

// Acquire a capture list for this state. If there are no capture lists left in the
// pool, this will steal the capture list from another existing state, and mark that
// other state as 'dead'.
static CaptureList *ts_query_cursor__prepare_to_capture(
  TSQueryCursor *self,
  QueryState *state,
  unsigned state_index_to_preserve
) {
  if (state->capture_list_id == NONE) {
    state->capture_list_id = capture_list_pool_acquire(&self->capture_list_pool);

    // If there are no capture lists left in the pool, then terminate whichever
    // state has captured the earliest node in the document, and steal its
    // capture list.
    if (state->capture_list_id == NONE) {
      self->did_exceed_match_limit = true;
      uint32_t state_index, byte_offset, pattern_index;
      if (
        ts_query_cursor__first_in_progress_capture(
          self,
          &state_index,
          &byte_offset,
          &pattern_index,
          NULL
        ) &&
        state_index != state_index_to_preserve
      ) {
        LOG(
          "  abandon state. index:%u, pattern:%u, offset:%u.\n",
          state_index, pattern_index, byte_offset
        );
        QueryState *other_state = &self->states.contents[state_index];
        state->capture_list_id = other_state->capture_list_id;
        other_state->capture_list_id = NONE;
        other_state->dead = true;
        CaptureList *list = capture_list_pool_get_mut(
          &self->capture_list_pool,
          state->capture_list_id
        );
        array_clear(list);
        return list;
      } else {
        LOG("  ran out of capture lists");
        return NULL;
      }
    }
  }
  return capture_list_pool_get_mut(&self->capture_list_pool, state->capture_list_id);
}

static void ts_query_cursor__capture(
  TSQueryCursor *self,
  QueryState *state,
  QueryStep *step,
  TSNode node
) {
  if (state->dead) return;
  CaptureList *capture_list = ts_query_cursor__prepare_to_capture(self, state, UINT32_MAX);
  if (!capture_list) {
    state->dead = true;
    return;
  }

  for (unsigned j = 0; j < MAX_STEP_CAPTURE_COUNT; j++) {
    uint16_t capture_id = step->capture_ids[j];
    if (step->capture_ids[j] == NONE) break;
    array_push(capture_list, ((TSQueryCapture) { node, capture_id }));
    LOG(
      "  capture node. type:%s, pattern:%u, capture_id:%u, capture_count:%u\n",
      ts_node_type(node),
      state->pattern_index,
      capture_id,
      capture_list->size
    );
  }
}

// Duplicate the given state and insert the newly-created state immediately after
// the given state in the `states` array. Ensures that the given state reference is
// still valid, even if the states array is reallocated.
static QueryState *ts_query_cursor__copy_state(
  TSQueryCursor *self,
  QueryState **state_ref
) {
  const QueryState *state = *state_ref;
  uint32_t state_index = state - self->states.contents;
  QueryState copy = *state;
  copy.capture_list_id = NONE;

  // If the state has captures, copy its capture list.
  if (state->capture_list_id != NONE) {
    CaptureList *new_captures = ts_query_cursor__prepare_to_capture(self, &copy, state_index);
    if (!new_captures) return NULL;
    const CaptureList *old_captures = capture_list_pool_get(
      &self->capture_list_pool,
      state->capture_list_id
    );
    array_push_all(new_captures, old_captures);
  }

  array_insert(&self->states, state_index + 1, copy);
  *state_ref = &self->states.contents[state_index];
  return &self->states.contents[state_index + 1];
}

// Walk the tree, processing patterns until at least one pattern finishes,
// If one or more patterns finish, return `true` and store their states in the
// `finished_states` array. Multiple patterns can finish on the same node. If
// there are no more matches, return `false`.
static inline bool ts_query_cursor__advance(
  TSQueryCursor *self,
  bool stop_on_definite_step
) {
  bool did_match = false;
  for (;;) {
    if (self->halted) {
      while (self->states.size > 0) {
        QueryState state = array_pop(&self->states);
        capture_list_pool_release(
          &self->capture_list_pool,
          state.capture_list_id
        );
      }
    }

    if (did_match || self->halted) return did_match;

    // Exit the current node.
    if (self->ascending) {
      LOG(
        "leave node. depth:%u, type:%s\n",
        self->depth,
        ts_node_type(ts_tree_cursor_current_node(&self->cursor))
      );

      // Leave this node by stepping to its next sibling or to its parent.
      if (ts_tree_cursor_goto_next_sibling(&self->cursor)) {
        self->ascending = false;
      } else if (ts_tree_cursor_goto_parent(&self->cursor)) {
        self->depth--;
      } else {
        LOG("halt at root\n");
        self->halted = true;
      }

      // After leaving a node, remove any states that cannot make further progress.
      uint32_t deleted_count = 0;
      for (unsigned i = 0, n = self->states.size; i < n; i++) {
        QueryState *state = &self->states.contents[i];
        QueryStep *step = &self->query->steps.contents[state->step_index];

        // If a state completed its pattern inside of this node, but was deferred from finishing
        // in order to search for longer matches, mark it as finished.
        if (step->depth == PATTERN_DONE_MARKER) {
          if (state->start_depth > self->depth || self->halted) {
            LOG("  finish pattern %u\n", state->pattern_index);
            array_push(&self->finished_states, *state);
            did_match = true;
            deleted_count++;
            continue;
          }
        }

        // If a state needed to match something within this node, then remove that state
        // as it has failed to match.
        else if ((uint32_t)state->start_depth + (uint32_t)step->depth > self->depth) {
          LOG(
            "  failed to match. pattern:%u, step:%u\n",
            state->pattern_index,
            state->step_index
          );
          capture_list_pool_release(
            &self->capture_list_pool,
            state->capture_list_id
          );
          deleted_count++;
          continue;
        }

        if (deleted_count > 0) {
          self->states.contents[i - deleted_count] = *state;
        }
      }
      self->states.size -= deleted_count;
    }

    // Enter a new node.
    else {
      // Get the properties of the current node.
      TSNode node = ts_tree_cursor_current_node(&self->cursor);
      TSNode parent_node = ts_tree_cursor_parent_node(&self->cursor);
      TSSymbol symbol = ts_node_symbol(node);
      bool is_named = ts_node_is_named(node);
      bool has_later_siblings;
      bool has_later_named_siblings;
      bool can_have_later_siblings_with_this_field;
      TSFieldId field_id = 0;
      TSSymbol supertypes[8] = {0};
      unsigned supertype_count = 8;
      ts_tree_cursor_current_status(
        &self->cursor,
        &field_id,
        &has_later_siblings,
        &has_later_named_siblings,
        &can_have_later_siblings_with_this_field,
        supertypes,
        &supertype_count
      );
      LOG(
        "enter node. depth:%u, type:%s, field:%s, row:%u state_count:%u, finished_state_count:%u\n",
        self->depth,
        ts_node_type(node),
        ts_language_field_name_for_id(self->query->language, field_id),
        ts_node_start_point(node).row,
        self->states.size,
        self->finished_states.size
      );

      bool node_intersects_range = (
        ts_node_end_byte(node) > self->start_byte &&
        ts_node_start_byte(node) < self->end_byte &&
        point_gt(ts_node_end_point(node), self->start_point) &&
        point_lt(ts_node_start_point(node), self->end_point)
      );

      bool parent_intersects_range = ts_node_is_null(parent_node) || (
        ts_node_end_byte(parent_node) > self->start_byte &&
        ts_node_start_byte(parent_node) < self->end_byte &&
        point_gt(ts_node_end_point(parent_node), self->start_point) &&
        point_lt(ts_node_start_point(parent_node), self->end_point)
      );

        // Add new states for any patterns whose root node is a wildcard.
      for (unsigned i = 0; i < self->query->wildcard_root_pattern_count; i++) {
        PatternEntry *pattern = &self->query->pattern_map.contents[i];

        // If this node matches the first step of the pattern, then add a new
        // state at the start of this pattern.
        QueryStep *step = &self->query->steps.contents[pattern->step_index];
        if (
          (node_intersects_range || (!pattern->is_rooted && parent_intersects_range)) &&
          (!step->field || field_id == step->field) &&
          (!step->supertype_symbol || supertype_count > 0)
        ) {
          ts_query_cursor__add_state(self, pattern);
        }
      }

      // Add new states for any patterns whose root node matches this node.
      unsigned i;
      if (ts_query__pattern_map_search(self->query, symbol, &i)) {
        PatternEntry *pattern = &self->query->pattern_map.contents[i];

        QueryStep *step = &self->query->steps.contents[pattern->step_index];
        do {
          // If this node matches the first step of the pattern, then add a new
          // state at the start of this pattern.
          if (
            (node_intersects_range || (!pattern->is_rooted && parent_intersects_range)) &&
            (!step->field || field_id == step->field)
          ) {
            ts_query_cursor__add_state(self, pattern);
          }

          // Advance to the next pattern whose root node matches this node.
          i++;
          if (i == self->query->pattern_map.size) break;
          pattern = &self->query->pattern_map.contents[i];
          step = &self->query->steps.contents[pattern->step_index];
        } while (step->symbol == symbol);
      }

      // Update all of the in-progress states with current node.
      for (unsigned i = 0, copy_count = 0; i < self->states.size; i += 1 + copy_count) {
        QueryState *state = &self->states.contents[i];
        QueryStep *step = &self->query->steps.contents[state->step_index];
        state->has_in_progress_alternatives = false;
        copy_count = 0;

        // Check that the node matches all of the criteria for the next
        // step of the pattern.
        if ((uint32_t)state->start_depth + (uint32_t)step->depth != self->depth) continue;

        // Determine if this node matches this step of the pattern, and also
        // if this node can have later siblings that match this step of the
        // pattern.
        bool node_does_match = false;
        if (step->symbol == WILDCARD_SYMBOL) {
          node_does_match = is_named || !step->is_named;
        } else {
          node_does_match = symbol == step->symbol;
        }
        bool later_sibling_can_match = has_later_siblings;
        if ((step->is_immediate && is_named) || state->seeking_immediate_match) {
          later_sibling_can_match = false;
        }
        if (step->is_last_child && has_later_named_siblings) {
          node_does_match = false;
        }
        if (step->supertype_symbol) {
          bool has_supertype = false;
          for (unsigned j = 0; j < supertype_count; j++) {
            if (supertypes[j] == step->supertype_symbol) {
              has_supertype = true;
              break;
            }
          }
          if (!has_supertype) node_does_match = false;
        }
        if (step->field) {
          if (step->field == field_id) {
            if (!can_have_later_siblings_with_this_field) {
              later_sibling_can_match = false;
            }
          } else {
            node_does_match = false;
          }
        }

        if (step->negated_field_list_id) {
          TSFieldId *negated_field_ids = &self->query->negated_fields.contents[step->negated_field_list_id];
          for (;;) {
            TSFieldId negated_field_id = *negated_field_ids;
            if (negated_field_id) {
              negated_field_ids++;
              if (ts_node_child_by_field_id(node, negated_field_id).id) {
                node_does_match = false;
                break;
              }
            } else {
              break;
            }
          }
        }

        // Remove states immediately if it is ever clear that they cannot match.
        if (!node_does_match) {
          if (!later_sibling_can_match) {
            LOG(
              "  discard state. pattern:%u, step:%u\n",
              state->pattern_index,
              state->step_index
            );
            capture_list_pool_release(
              &self->capture_list_pool,
              state->capture_list_id
            );
            array_erase(&self->states, i);
            i--;
          }
          continue;
        }

        // Some patterns can match their root node in multiple ways, capturing different
        // children. If this pattern step could match later children within the same
        // parent, then this query state cannot simply be updated in place. It must be
        // split into two states: one that matches this node, and one which skips over
        // this node, to preserve the possibility of matching later siblings.
        if (later_sibling_can_match && (
          step->contains_captures ||
          ts_query__step_is_fallible(self->query, state->step_index)
        )) {
          if (ts_query_cursor__copy_state(self, &state)) {
            LOG(
              "  split state for capture. pattern:%u, step:%u\n",
              state->pattern_index,
              state->step_index
            );
            copy_count++;
          }
        }

        // If this pattern started with a wildcard, such that the pattern map
        // actually points to the *second* step of the pattern, then check
        // that the node has a parent, and capture the parent node if necessary.
        if (state->needs_parent) {
          TSNode parent = ts_tree_cursor_parent_node(&self->cursor);
          if (ts_node_is_null(parent)) {
            LOG("  missing parent node\n");
            state->dead = true;
          } else {
            state->needs_parent = false;
            QueryStep *skipped_wildcard_step = step;
            do {
              skipped_wildcard_step--;
            } while (
              skipped_wildcard_step->is_dead_end ||
              skipped_wildcard_step->is_pass_through ||
              skipped_wildcard_step->depth > 0
            );
            if (skipped_wildcard_step->capture_ids[0] != NONE) {
              LOG("  capture wildcard parent\n");
              ts_query_cursor__capture(
                self,
                state,
                skipped_wildcard_step,
                parent
              );
            }
          }
        }

        // If the current node is captured in this pattern, add it to the capture list.
        if (step->capture_ids[0] != NONE) {
          ts_query_cursor__capture(self, state, step, node);
        }

        if (state->dead) {
          array_erase(&self->states, i);
          i--;
          continue;
        }

        // Advance this state to the next step of its pattern.
        state->step_index++;
        state->seeking_immediate_match = false;
        LOG(
          "  advance state. pattern:%u, step:%u\n",
          state->pattern_index,
          state->step_index
        );

        QueryStep *next_step = &self->query->steps.contents[state->step_index];
        if (stop_on_definite_step && next_step->root_pattern_guaranteed) did_match = true;

        // If this state's next step has an alternative step, then copy the state in order
        // to pursue both alternatives. The alternative step itself may have an alternative,
        // so this is an interative process.
        unsigned end_index = i + 1;
        for (unsigned j = i; j < end_index; j++) {
          QueryState *state = &self->states.contents[j];
          QueryStep *next_step = &self->query->steps.contents[state->step_index];
          if (next_step->alternative_index != NONE) {
            // A "dead-end" step exists only to add a non-sequential jump into the step sequence,
            // via its alternative index. When a state reaches a dead-end step, it jumps straight
            // to the step's alternative.
            if (next_step->is_dead_end) {
              state->step_index = next_step->alternative_index;
              j--;
              continue;
            }

            // A "pass-through" step exists only to add a branch into the step sequence,
            // via its alternative_index. When a state reaches a pass-through step, it splits
            // in order to process the alternative step, and then it advances to the next step.
            if (next_step->is_pass_through) {
              state->step_index++;
              j--;
            }

            QueryState *copy = ts_query_cursor__copy_state(self, &state);
            if (copy) {
              LOG(
                "  split state for branch. pattern:%u, from_step:%u, to_step:%u, immediate:%d, capture_count: %u\n",
                copy->pattern_index,
                copy->step_index,
                next_step->alternative_index,
                next_step->alternative_is_immediate,
                capture_list_pool_get(&self->capture_list_pool, copy->capture_list_id)->size
              );
              end_index++;
              copy_count++;
              copy->step_index = next_step->alternative_index;
              if (next_step->alternative_is_immediate) {
                copy->seeking_immediate_match = true;
              }
            }
          }
        }
      }

      for (unsigned i = 0; i < self->states.size; i++) {
        QueryState *state = &self->states.contents[i];
        if (state->dead) {
          array_erase(&self->states, i);
          i--;
          continue;
        }

        // Enfore the longest-match criteria. When a query pattern contains optional or
        // repeated nodes, this is necessary to avoid multiple redundant states, where
        // one state has a strict subset of another state's captures.
        bool did_remove = false;
        for (unsigned j = i + 1; j < self->states.size; j++) {
          QueryState *other_state = &self->states.contents[j];

          // Query states are kept in ascending order of start_depth and pattern_index.
          // Since the longest-match criteria is only used for deduping matches of the same
          // pattern and root node, we only need to perform pairwise comparisons within a
          // small slice of the states array.
          if (
            other_state->start_depth != state->start_depth ||
            other_state->pattern_index != state->pattern_index
          ) break;

          bool left_contains_right, right_contains_left;
          ts_query_cursor__compare_captures(
            self,
            state,
            other_state,
            &left_contains_right,
            &right_contains_left
          );
          if (left_contains_right) {
            if (state->step_index == other_state->step_index) {
              LOG(
                "  drop shorter state. pattern: %u, step_index: %u\n",
                state->pattern_index,
                state->step_index
              );
              capture_list_pool_release(&self->capture_list_pool, other_state->capture_list_id);
              array_erase(&self->states, j);
              j--;
              continue;
            }
            other_state->has_in_progress_alternatives = true;
          }
          if (right_contains_left) {
            if (state->step_index == other_state->step_index) {
              LOG(
                "  drop shorter state. pattern: %u, step_index: %u\n",
                state->pattern_index,
                state->step_index
              );
              capture_list_pool_release(&self->capture_list_pool, state->capture_list_id);
              array_erase(&self->states, i);
              i--;
              did_remove = true;
              break;
            }
            state->has_in_progress_alternatives = true;
          }
        }

        // If the state is at the end of its pattern, remove it from the list
        // of in-progress states and add it to the list of finished states.
        if (!did_remove) {
          LOG(
            "  keep state. pattern: %u, start_depth: %u, step_index: %u, capture_count: %u\n",
            state->pattern_index,
            state->start_depth,
            state->step_index,
            capture_list_pool_get(&self->capture_list_pool, state->capture_list_id)->size
          );
          QueryStep *next_step = &self->query->steps.contents[state->step_index];
          if (next_step->depth == PATTERN_DONE_MARKER) {
            if (state->has_in_progress_alternatives) {
              LOG("  defer finishing pattern %u\n", state->pattern_index);
            } else {
              LOG("  finish pattern %u\n", state->pattern_index);
              array_push(&self->finished_states, *state);
              array_erase(&self->states, state - self->states.contents);
              did_match = true;
              i--;
            }
          }
        }
      }

      // When the current node ends prior to the desired start offset,
      // only descend for the purpose of continuing in-progress matches.
      bool should_descend = node_intersects_range;
      if (!should_descend) {
        for (unsigned i = 0; i < self->states.size; i++) {
          QueryState *state = &self->states.contents[i];;
          QueryStep *next_step = &self->query->steps.contents[state->step_index];
          if (
            next_step->depth != PATTERN_DONE_MARKER &&
            state->start_depth + next_step->depth > self->depth
          ) {
            should_descend = true;
            break;
          }
        }
      }

      if (!should_descend) {
        LOG(
          "  not descending. node end byte: %u, start byte: %u\n",
          ts_node_end_byte(node),
          self->start_byte
        );
      }

      if (should_descend && ts_tree_cursor_goto_first_child(&self->cursor)) {
        self->depth++;
      } else {
        self->ascending = true;
      }
    }
  }
}

bool ts_query_cursor_next_match(
  TSQueryCursor *self,
  TSQueryMatch *match
) {
  if (self->finished_states.size == 0) {
    if (!ts_query_cursor__advance(self, false)) {
      return false;
    }
  }

  QueryState *state = &self->finished_states.contents[0];
  if (state->id == UINT32_MAX) state->id = self->next_state_id++;
  match->id = state->id;
  match->pattern_index = state->pattern_index;
  const CaptureList *captures = capture_list_pool_get(
    &self->capture_list_pool,
    state->capture_list_id
  );
  match->captures = captures->contents;
  match->capture_count = captures->size;
  capture_list_pool_release(&self->capture_list_pool, state->capture_list_id);
  array_erase(&self->finished_states, 0);
  return true;
}

void ts_query_cursor_remove_match(
  TSQueryCursor *self,
  uint32_t match_id
) {
  for (unsigned i = 0; i < self->finished_states.size; i++) {
    const QueryState *state = &self->finished_states.contents[i];
    if (state->id == match_id) {
      capture_list_pool_release(
        &self->capture_list_pool,
        state->capture_list_id
      );
      array_erase(&self->finished_states, i);
      return;
    }
  }
}

bool ts_query_cursor_next_capture(
  TSQueryCursor *self,
  TSQueryMatch *match,
  uint32_t *capture_index
) {
  // The goal here is to return captures in order, even though they may not
  // be discovered in order, because patterns can overlap. Search for matches
  // until there is a finished capture that is before any unfinished capture.
  for (;;) {
    // First, find the earliest capture in an unfinished match.
    uint32_t first_unfinished_capture_byte;
    uint32_t first_unfinished_pattern_index;
    uint32_t first_unfinished_state_index;
    bool first_unfinished_state_is_definite = false;
    ts_query_cursor__first_in_progress_capture(
      self,
      &first_unfinished_state_index,
      &first_unfinished_capture_byte,
      &first_unfinished_pattern_index,
      &first_unfinished_state_is_definite
    );

    // Then find the earliest capture in a finished match. It must occur
    // before the first capture in an *unfinished* match.
    QueryState *first_finished_state = NULL;
    uint32_t first_finished_capture_byte = first_unfinished_capture_byte;
    uint32_t first_finished_pattern_index = first_unfinished_pattern_index;
    for (unsigned i = 0; i < self->finished_states.size;) {
      QueryState *state = &self->finished_states.contents[i];
      const CaptureList *captures = capture_list_pool_get(
        &self->capture_list_pool,
        state->capture_list_id
      );

      // Remove states whose captures are all consumed.
      if (state->consumed_capture_count >= captures->size) {
        capture_list_pool_release(
          &self->capture_list_pool,
          state->capture_list_id
        );
        array_erase(&self->finished_states, i);
        continue;
      }

      // Skip captures that precede the cursor's start byte.
      TSNode node = captures->contents[state->consumed_capture_count].node;
      if (ts_node_end_byte(node) <= self->start_byte) {
        state->consumed_capture_count++;
        continue;
      }

      uint32_t node_start_byte = ts_node_start_byte(node);
      if (
        node_start_byte < first_finished_capture_byte ||
        (
          node_start_byte == first_finished_capture_byte &&
          state->pattern_index < first_finished_pattern_index
        )
      ) {
        first_finished_state = state;
        first_finished_capture_byte = node_start_byte;
        first_finished_pattern_index = state->pattern_index;
      }
      i++;
    }

    // If there is finished capture that is clearly before any unfinished
    // capture, then return its match, and its capture index. Internally
    // record the fact that the capture has been 'consumed'.
    QueryState *state;
    if (first_finished_state) {
      state = first_finished_state;
    } else if (first_unfinished_state_is_definite) {
      state = &self->states.contents[first_unfinished_state_index];
    } else {
      state = NULL;
    }

    if (state) {
      if (state->id == UINT32_MAX) state->id = self->next_state_id++;
      match->id = state->id;
      match->pattern_index = state->pattern_index;
      const CaptureList *captures = capture_list_pool_get(
        &self->capture_list_pool,
        state->capture_list_id
      );
      match->captures = captures->contents;
      match->capture_count = captures->size;
      *capture_index = state->consumed_capture_count;
      state->consumed_capture_count++;
      return true;
    }

    if (capture_list_pool_is_empty(&self->capture_list_pool)) {
      LOG(
        "  abandon state. index:%u, pattern:%u, offset:%u.\n",
        first_unfinished_state_index,
        first_unfinished_pattern_index,
        first_unfinished_capture_byte
      );
      capture_list_pool_release(
        &self->capture_list_pool,
        self->states.contents[first_unfinished_state_index].capture_list_id
      );
      array_erase(&self->states, first_unfinished_state_index);
    }

    // If there are no finished matches that are ready to be returned, then
    // continue finding more matches.
    if (
      !ts_query_cursor__advance(self, true) &&
      self->finished_states.size == 0
    ) return false;
  }
}

#undef LOG