Tract
Tiny, no-nonsense, self contained, portable TensorFlow and ONNX inference.
Example
# extern crate tract_core;
# fn main() {
use tract_core::internal::*;
let mut model = TypedModel::default();
let input_fact = f32::fact(&[3]);
let input = model.add_source("input", input_fact).unwrap();
let three = model.add_const("three".to_string(), tensor1(&[3f32])).unwrap();
let add = model.wire_node("add".to_string(),
tract_core::ops::math::add(),
[input, three].as_ref()
).unwrap();
model.auto_outputs().unwrap();
let plan = SimplePlan::new(&model).unwrap();
let input = tensor1(&[1.0f32, 2.5, 5.0]);
let mut outputs = plan.run(tvec![input.into()]).unwrap();
let mut tensor = outputs.pop().unwrap();
assert_eq!(tensor, tensor1(&[4.0f32, 5.5, 8.0]).into());
# }
While creating a model from Rust code is useful for testing the library,
real-life use-cases will usually load a TensorFlow or ONNX model using
tract-tensorflow or tract-onnx crates.