tor-rtmock 0.32.0

Testing mock support for tor-rtcomapt
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
//! Executor for running tests with mocked environment
//!
//! See [`MockExecutor`]

use std::any::Any;
use std::cell::Cell;
use std::collections::VecDeque;
use std::fmt::{self, Debug, Display};
use std::future::Future;
use std::io::{self, Write as _};
use std::iter;
use std::panic::{catch_unwind, panic_any, AssertUnwindSafe};
use std::pin::{pin, Pin};
use std::sync::{Arc, Mutex, MutexGuard, Weak};
use std::task::{Context, Poll, RawWaker, RawWakerVTable, Waker};

use futures::pin_mut;
use futures::task::{FutureObj, Spawn, SpawnError};
use futures::FutureExt as _;

use assert_matches::assert_matches;
use educe::Educe;
use itertools::Either::{self, *};
use itertools::{chain, izip};
use slotmap_careful::DenseSlotMap;
use std::backtrace::Backtrace;
use strum::EnumIter;

// NB: when using traced_test, the trace! and error! output here is generally suppressed
// in tests of other crates.  To see it, you can write something like this
// (in the dev-dependencies of the crate whose tests you're running):
//    tracing-test = { version = "0.2.4", features = ["no-env-filter"] }
use tracing::{error, trace};

use oneshot_fused_workaround::{self as oneshot, Canceled};
use tor_error::error_report;
use tor_rtcompat::{Blocking, ToplevelBlockOn};

use Poll::*;
use TaskState::*;

/// Type-erased future, one for each of our (normal) tasks
type TaskFuture = FutureObj<'static, ()>;

/// Future for the argument to `block_on`, which is handled specially
type MainFuture<'m> = Pin<&'m mut dyn Future<Output = ()>>;

//---------- principal data structures ----------

/// Executor for running tests with mocked environment
///
/// For test cases which don't actually wait for anything in the real world.
///
/// This is the executor.
/// It implements [`Spawn`] and [`ToplevelBlockOn`]
///
/// It will usually be used as part of a `MockRuntime`.
///
/// To run futures, call [`ToplevelBlockOn::block_on`]
///
/// # Restricted environment
///
/// Tests run with this executor must not attempt to block
/// on anything "outside":
/// every future that anything awaits must (eventually) be woken directly
/// *by some other task* in the same test case.
///
/// (By directly we mean that the [`Waker::wake`] call is made
/// by that waking future, before that future itself awaits anything.)
///
/// # Panics
///
/// The executor will panic
/// if the toplevel future (passed to `block_on`)
/// doesn't complete (without externally blocking),
/// but instead waits for something.
///
/// The executor will malfunction or panic if reentered.
/// (Eg, if `block_on` is reentered.)
#[derive(Clone, Default, Educe)]
#[educe(Debug)]
pub struct MockExecutor {
    /// Mutable state
    #[educe(Debug(ignore))]
    shared: Arc<Shared>,
}

/// Shared state and ancillary information
///
/// This is always within an `Arc`.
#[derive(Default)]
struct Shared {
    /// Shared state
    data: Mutex<Data>,
    /// Condition variable for thread scheduling
    ///
    /// Signaled when [`Data.thread_to_run`](struct.Data.html#structfield.thread_to_run)
    /// is modified.
    thread_condvar: std::sync::Condvar,
}

/// Task id, module to hide `Ti` alias
mod task_id {
    slotmap_careful::new_key_type! {
        /// Task ID, usually called `TaskId`
        ///
        /// Short name in special `task_id` module so that [`Debug`] is nice
        pub(super) struct Ti;
    }
}
use task_id::Ti as TaskId;

/// Executor's state
///
/// ### Task state machine
///
/// A task is created in `tasks`, `Awake`, so also in `awake`.
///
/// When we poll it, we take it out of `awake` and set it to `Asleep`,
/// and then call `poll()`.
/// Any time after that, it can be made `Awake` again (and put back onto `awake`)
/// by the waker ([`ActualWaker`], wrapped in [`Waker`]).
///
/// The task's future is of course also present here in this data structure.
/// However, during poll we must release the lock,
/// so we cannot borrow the future from `Data`.
/// Instead, we move it out.  So `Task.fut` is an `Option`.
///
/// ### "Main" task - the argument to `block_on`
///
/// The signature of `BlockOn::block_on` accepts a non-`'static` future
/// (and a non-`Send`/`Sync` one).
///
/// So we cannot store that future in `Data` because `Data` is `'static`.
/// Instead, this main task future is passed as an argument down the call stack.
/// In the data structure we simply store a placeholder, `TaskFutureInfo::Main`.
#[derive(Educe, derive_more::Debug)]
#[educe(Default)]
struct Data {
    /// Tasks
    ///
    /// Includes tasks spawned with `spawn`,
    /// and also the future passed to `block_on`.
    #[debug("{:?}", DebugTasks(self, || tasks.keys()))]
    tasks: DenseSlotMap<TaskId, Task>,

    /// `awake` lists precisely: tasks that are `Awake`, plus maybe stale `TaskId`s
    ///
    /// Tasks are pushed onto the *back* when woken,
    /// so back is the most recently woken.
    #[debug("{:?}", DebugTasks(self, || awake.iter().cloned()))]
    awake: VecDeque<TaskId>,

    /// If a future from `progress_until_stalled` exists
    progressing_until_stalled: Option<ProgressingUntilStalled>,

    /// Scheduling policy
    scheduling: SchedulingPolicy,

    /// (Sub)thread we want to run now
    ///
    /// At any one time only one thread is meant to be running.
    /// Other threads are blocked in condvar wait, waiting for this to change.
    ///
    /// **Modified only** within
    /// [`thread_context_switch_send_instruction_to_run`](Shared::thread_context_switch_send_instruction_to_run),
    /// which takes responsibility for preserving the following **invariants**:
    ///
    ///  1. no-one but the named thread is allowed to modify this field.
    ///  2. after modifying this field, signal `thread_condvar`
    #[educe(Default(expression = "ThreadDescriptor::Executor"))]
    thread_to_run: ThreadDescriptor,
}

/// How we should schedule?
#[derive(Debug, Clone, Default, EnumIter)]
#[non_exhaustive]
pub enum SchedulingPolicy {
    /// Task *most* recently woken is run
    ///
    /// This is the default.
    ///
    /// It will expose starvation bugs if a task never sleeps.
    /// (Which is a good thing in tests.)
    #[default]
    Stack,
    /// Task *least* recently woken is run.
    Queue,
}

/// Record of a single task
///
/// Tracks a spawned task, or the main task (the argument to `block_on`).
///
/// Stored in [`Data`]`.tasks`.
struct Task {
    /// For debugging output
    desc: String,
    /// Has this been woken via a waker?  (And is it in `Data.awake`?)
    ///
    /// **Set to `Awake` only by [`Task::set_awake`]**,
    /// preserving the invariant that
    /// every `Awake` task is in [`Data.awake`](struct.Data.html#structfield.awake).
    state: TaskState,
    /// The actual future (or a placeholder for it)
    ///
    /// May be `None` briefly in the executor main loop, because we've
    /// temporarily moved it out so we can poll it,
    /// or if this is a Subthread task which is currently running sync code
    /// (in which case we're blocked in the executor waiting to be
    /// woken up by [`thread_context_switch`](Shared::thread_context_switch).
    ///
    /// Note that the `None` can be observed outside the main loop, because
    /// the main loop unlocks while it polls, so other (non-main-loop) code
    /// might see it.
    fut: Option<TaskFutureInfo>,
}

/// A future as stored in our record of a [`Task`]
#[derive(Educe)]
#[educe(Debug)]
enum TaskFutureInfo {
    /// The [`Future`].  All is normal.
    Normal(#[educe(Debug(ignore))] TaskFuture),
    /// The future isn't here because this task is the main future for `block_on`
    Main,
    /// This task is actually a [`Subthread`](MockExecutor::subthread_spawn)
    ///
    /// Instead of polling it, we'll switch to it with
    /// [`thread_context_switch`](Shared::thread_context_switch).
    Subthread,
}

/// State of a task - do we think it needs to be polled?
///
/// Stored in [`Task`]`.state`.
#[derive(Debug)]
enum TaskState {
    /// Awake - needs to be polled
    ///
    /// Established by [`waker.wake()`](Waker::wake)
    Awake,
    /// Asleep - does *not* need to be polled
    ///
    /// Established each time just before we call the future's [`poll`](Future::poll)
    Asleep(Vec<SleepLocation>),
}

/// Actual implementor of `Wake` for use in a `Waker`
///
/// Futures (eg, channels from [`futures`]) will use this to wake a task
/// when it should be polled.
///
/// This type must not be `Cloned` with the `Data` lock held.
/// Consequently, a `Waker` mustn't either.
struct ActualWaker {
    /// Executor state
    ///
    /// The Waker mustn't to hold a strong reference to the executor,
    /// since typically a task holds a future that holds a Waker,
    /// and the executor holds the task - so that would be a cycle.
    data: Weak<Shared>,

    /// Which task this is
    id: TaskId,
}

/// State used for an in-progress call to
/// [`progress_until_stalled`][`MockExecutor::progress_until_stalled`]
///
/// If present in [`Data`], an (async) call to `progress_until_stalled`
/// is in progress.
///
/// The future from `progress_until_stalled`, [`ProgressUntilStalledFuture`]
/// is a normal-ish future.
/// It can be polled in the normal way.
/// When it is polled, it looks here, in `finished`, to see if it's `Ready`.
///
/// The future is made ready, and woken (via `waker`),
/// by bespoke code in the task executor loop.
///
/// When `ProgressUntilStalledFuture` (maybe completes and) is dropped,
/// its `Drop` impl is used to remove this from `Data.progressing_until_stalled`.
#[derive(Debug)]
struct ProgressingUntilStalled {
    /// Have we, in fact, stalled?
    ///
    /// Made `Ready` by special code in the executor loop
    finished: Poll<()>,

    /// Waker
    ///
    /// Signalled by special code in the executor loop
    waker: Option<Waker>,
}

/// Future from
/// [`progress_until_stalled`][`MockExecutor::progress_until_stalled`]
///
/// See [`ProgressingUntilStalled`] for an overview of this aspect of the contraption.
///
/// Existence of this struct implies `Data.progressing_until_stalled` is `Some`.
/// There can only be one at a time.
#[derive(Educe)]
#[educe(Debug)]
struct ProgressUntilStalledFuture {
    /// Executor's state; this future's state is in `.progressing_until_stalled`
    #[educe(Debug(ignore))]
    shared: Arc<Shared>,
}

/// Identifies a thread we know about - the executor thread, or a Subthread
///
/// Not related to `std::thread::ThreadId`.
///
/// See [`spawn_subthread`](MockExecutor::subthread_spawn) for definition of a Subthread.
///
/// This being a thread-local and not scoped by which `MockExecutor` we're talking about
/// means that we can't cope if there are multiple `MockExecutor`s involved in the same thread.
/// That's OK (and documented).
#[derive(Copy, Clone, Eq, PartialEq, derive_more::Debug)]
enum ThreadDescriptor {
    /// Foreign - neither the (running) executor, nor a Subthread
    #[debug("FOREIGN")]
    Foreign,
    /// The executor.
    #[debug("Exe")]
    Executor,
    /// This task, which is a Subthread.
    #[debug("{_0:?}")]
    Subthread(TaskId),
}

/// Marker indicating that this task is a Subthread, not an async task.
///
/// See [`spawn_subthread`](MockExecutor::subthread_spawn) for definition of a Subthread.
#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
struct IsSubthread;

/// [`Shared::subthread_yield`] should set our task awake before switching to the executor
#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
struct SetAwake;

thread_local! {
    /// Identifies this thread.
    pub static THREAD_DESCRIPTOR: Cell<ThreadDescriptor> = const {
        Cell::new(ThreadDescriptor::Foreign)
    };
}

//---------- creation ----------

impl MockExecutor {
    /// Make a `MockExecutor` with default parameters
    pub fn new() -> Self {
        Self::default()
    }

    /// Make a `MockExecutor` with a specific `SchedulingPolicy`
    pub fn with_scheduling(scheduling: SchedulingPolicy) -> Self {
        Data {
            scheduling,
            ..Default::default()
        }
        .into()
    }
}

impl From<Data> for MockExecutor {
    fn from(data: Data) -> MockExecutor {
        let shared = Shared {
            data: Mutex::new(data),
            thread_condvar: std::sync::Condvar::new(),
        };
        MockExecutor {
            shared: Arc::new(shared),
        }
    }
}

//---------- spawning ----------

impl MockExecutor {
    /// Spawn a task and return something to identify it
    ///
    /// `desc` should `Display` as some kind of short string (ideally without spaces)
    /// and will be used in the `Debug` impl and trace log messages from `MockExecutor`.
    ///
    /// The returned value is an opaque task identifier which is very cheap to clone
    /// and which can be used by the caller in debug logging,
    /// if it's desired to correlate with the debug output from `MockExecutor`.
    /// Most callers will want to ignore it.
    ///
    /// This method is infallible.  (The `MockExecutor` cannot be shut down.)
    pub fn spawn_identified(
        &self,
        desc: impl Display,
        fut: impl Future<Output = ()> + Send + 'static,
    ) -> impl Debug + Clone + Send + 'static {
        self.spawn_internal(desc.to_string(), FutureObj::from(Box::new(fut)))
    }

    /// Spawn a task and return its output for further usage
    ///
    /// `desc` should `Display` as some kind of short string (ideally without spaces)
    /// and will be used in the `Debug` impl and trace log messages from `MockExecutor`.
    pub fn spawn_join<T: Debug + Send + 'static>(
        &self,
        desc: impl Display,
        fut: impl Future<Output = T> + Send + 'static,
    ) -> impl Future<Output = T> {
        let (tx, rx) = oneshot::channel();
        self.spawn_identified(desc, async move {
            let res = fut.await;
            tx.send(res)
                .expect("Failed to send future's output, did future panic?");
        });
        rx.map(|m| m.expect("Failed to receive future's output"))
    }

    /// Spawn a task and return its `TaskId`
    ///
    /// Convenience method for use by `spawn_identified` and `spawn_obj`.
    /// The future passed to `block_on` is not handled here.
    fn spawn_internal(&self, desc: String, fut: TaskFuture) -> TaskId {
        let mut data = self.shared.lock();
        data.insert_task(desc, TaskFutureInfo::Normal(fut))
    }
}

impl Data {
    /// Insert a task given its `TaskFutureInfo` and return its `TaskId`.
    fn insert_task(&mut self, desc: String, fut: TaskFutureInfo) -> TaskId {
        let state = Awake;
        let id = self.tasks.insert(Task {
            state,
            desc,
            fut: Some(fut),
        });
        self.awake.push_back(id);
        trace!("MockExecutor spawned {:?}={:?}", id, self.tasks[id]);
        id
    }
}

impl Spawn for MockExecutor {
    fn spawn_obj(&self, future: TaskFuture) -> Result<(), SpawnError> {
        self.spawn_internal("spawn_obj".into(), future);
        Ok(())
    }
}

impl Blocking for MockExecutor {
    type ThreadHandle<T: Send + 'static> = Pin<Box<dyn Future<Output = T>>>;

    fn spawn_blocking<F, T>(&self, f: F) -> Self::ThreadHandle<T>
    where
        F: FnOnce() -> T + Send + 'static,
        T: Send + 'static,
    {
        assert_matches!(
            THREAD_DESCRIPTOR.get(),
            ThreadDescriptor::Executor | ThreadDescriptor::Subthread(_),
 "MockExecutor::spawn_blocking_io only allowed from future or subthread, being run by this executor"
        );
        Box::pin(
            self.subthread_spawn("spawn_blocking", f)
                .map(|x| x.expect("Error in spawn_blocking subthread.")),
        )
    }

    fn reenter_block_on<F>(&self, future: F) -> F::Output
    where
        F: Future,
        F::Output: Send + 'static,
    {
        self.subthread_block_on_future(future)
    }
}

//---------- block_on ----------

impl ToplevelBlockOn for MockExecutor {
    fn block_on<F>(&self, input_fut: F) -> F::Output
    where
        F: Future,
    {
        let mut value: Option<F::Output> = None;

        // Box this just so that we can conveniently control precisely when it's dropped.
        // (We could do this with Option and Pin::set but that seems clumsier.)
        let mut input_fut = Box::pin(input_fut);

        let run_store_fut = {
            let value = &mut value;
            let input_fut = &mut input_fut;
            async {
                trace!("MockExecutor block_on future...");
                let t = input_fut.await;
                trace!("MockExecutor block_on future returned...");
                *value = Some(t);
                trace!("MockExecutor block_on future exiting.");
            }
        };

        {
            pin_mut!(run_store_fut);

            let main_id = self
                .shared
                .lock()
                .insert_task("main".into(), TaskFutureInfo::Main);
            trace!("MockExecutor {main_id:?} is task for block_on");
            self.execute_to_completion(run_store_fut);
        }

        #[allow(clippy::let_and_return)] // clarity
        let value = value.take().unwrap_or_else(|| {
            // eprintln can be captured by libtest, but the debug_dump goes to io::stderr.
            // use the latter, so that the debug dump is prefixed by this message.
            let _: io::Result<()> = writeln!(io::stderr(), "all futures blocked, crashing...");
            // write to tracing too, so the tracing log is clear about when we crashed
            error!("all futures blocked, crashing...");

            // Sequencing here is subtle.
            //
            // We should do the dump before dropping the input future, because the input
            // future is likely to own things that, when dropped, wake up other tasks,
            // rendering the dump inaccurate.
            //
            // But also, dropping the input future may well drop a ProgressUntilStalledFuture
            // which then reenters us.  More generally, we mustn't call user code
            // with the lock held.
            //
            // And, we mustn't panic with the data lock held.
            //
            // If value was Some, then this closure is dropped without being called,
            // which drops the future after it has yielded the value, which is correct.
            {
                let mut data = self.shared.lock();
                data.debug_dump();
            }
            drop(input_fut);

            panic!(
                r"
all futures blocked. waiting for the real world? or deadlocked (waiting for each other) ?
"
            );
        });

        value
    }
}

//---------- execution - core implementation ----------

impl MockExecutor {
    /// Keep polling tasks until nothing more can be done
    ///
    /// Ie, stop when `awake` is empty and `progressing_until_stalled` is `None`.
    fn execute_to_completion(&self, mut main_fut: MainFuture) {
        trace!("MockExecutor execute_to_completion...");
        loop {
            self.execute_until_first_stall(main_fut.as_mut());

            // Handle `progressing_until_stalled`
            let pus_waker = {
                let mut data = self.shared.lock();
                let pus = &mut data.progressing_until_stalled;
                trace!("MockExecutor execute_to_completion PUS={:?}", &pus);
                let Some(pus) = pus else {
                    // No progressing_until_stalled, we're actually done.
                    break;
                };
                assert_eq!(
                    pus.finished, Pending,
                    "ProgressingUntilStalled finished twice?!"
                );
                pus.finished = Ready(());

                // Release the lock temporarily so that ActualWaker::clone doesn't deadlock
                let waker = pus
                    .waker
                    .take()
                    .expect("ProgressUntilStalledFuture not ever polled!");
                drop(data);
                let waker_copy = waker.clone();
                let mut data = self.shared.lock();

                let pus = &mut data.progressing_until_stalled;
                if let Some(double) = pus
                    .as_mut()
                    .expect("progressing_until_stalled updated under our feet!")
                    .waker
                    .replace(waker)
                {
                    panic!("double progressing_until_stalled.waker! {double:?}");
                }

                waker_copy
            };
            pus_waker.wake();
        }
        trace!("MockExecutor execute_to_completion done");
    }

    /// Keep polling tasks until `awake` is empty
    ///
    /// (Ignores `progressing_until_stalled` - so if one is active,
    /// will return when all other tasks have blocked.)
    ///
    /// # Panics
    ///
    /// Might malfunction or panic if called reentrantly
    fn execute_until_first_stall(&self, main_fut: MainFuture) {
        trace!("MockExecutor execute_until_first_stall ...");

        assert_eq!(
            THREAD_DESCRIPTOR.get(),
            ThreadDescriptor::Foreign,
            "MockExecutor executor re-entered"
        );
        THREAD_DESCRIPTOR.set(ThreadDescriptor::Executor);

        let r = catch_unwind(AssertUnwindSafe(|| self.executor_main_loop(main_fut)));

        THREAD_DESCRIPTOR.set(ThreadDescriptor::Foreign);

        match r {
            Ok(()) => trace!("MockExecutor execute_until_first_stall done."),
            Err(e) => {
                trace!("MockExecutor executor, or async task, panicked!");
                panic_any(e)
            }
        }
    }

    /// Keep polling tasks until `awake` is empty (inner, executor main loop)
    ///
    /// This is only called from [`MockExecutor::execute_until_first_stall`],
    /// so it could also be called `execute_until_first_stall_inner`.
    #[allow(clippy::cognitive_complexity)]
    fn executor_main_loop(&self, mut main_fut: MainFuture) {
        'outer: loop {
            // Take a `Awake` task off `awake` and make it `Asleep`
            let (id, mut fut) = 'inner: loop {
                let mut data = self.shared.lock();
                let Some(id) = data.schedule() else {
                    break 'outer;
                };
                let Some(task) = data.tasks.get_mut(id) else {
                    trace!("MockExecutor {id:?} vanished");
                    continue;
                };
                task.state = Asleep(vec![]);
                let fut = task.fut.take().expect("future missing from task!");
                break 'inner (id, fut);
            };

            // Poll the selected task
            trace!("MockExecutor {id:?} polling...");
            let waker = ActualWaker::make_waker(&self.shared, id);
            let mut cx = Context::from_waker(&waker);
            let r: Either<Poll<()>, IsSubthread> = match &mut fut {
                TaskFutureInfo::Normal(fut) => Left(fut.poll_unpin(&mut cx)),
                TaskFutureInfo::Main => Left(main_fut.as_mut().poll(&mut cx)),
                TaskFutureInfo::Subthread => Right(IsSubthread),
            };

            // Deal with the returned `Poll`
            let _fut_drop_late;
            {
                let mut data = self.shared.lock();
                let task = data
                    .tasks
                    .get_mut(id)
                    .expect("task vanished while we were polling it");

                match r {
                    Left(Pending) => {
                        trace!("MockExecutor {id:?} -> Pending");
                        if task.fut.is_some() {
                            panic!("task reinserted while we polled it?!");
                        }
                        // The task might have been woken *by its own poll method*.
                        // That's why we set it to `Asleep` *earlier* rather than here.
                        // All we need to do is put the future back.
                        task.fut = Some(fut);
                    }
                    Left(Ready(())) => {
                        trace!("MockExecutor {id:?} -> Ready");
                        // Oh, it finished!
                        // It might be in `awake`, but that's allowed to contain stale tasks,
                        // so we *don't* need to scan that list and remove it.
                        data.tasks.remove(id);
                        // It is important that we don't drop `fut` until we have released
                        // the data lock, since it is an external type and might try to reenter
                        // us (eg by calling spawn).  If we do that here, we risk deadlock.
                        // So, move `fut` to a variable with scope outside the block with `data`.
                        _fut_drop_late = fut;
                    }
                    Right(IsSubthread) => {
                        trace!("MockExecutor {id:?} -> Ready, waking Subthread");
                        // Task is a subthread, which has called thread_context_switch
                        // to switch to us.  We "poll" it by switching back.

                        // Put back `TFI::Subthread`, which was moved out temporarily, above.
                        task.fut = Some(fut);

                        self.shared.thread_context_switch(
                            data,
                            ThreadDescriptor::Executor,
                            ThreadDescriptor::Subthread(id),
                        );

                        // Now, if the Subthread still exists, that's because it's switched
                        // back to us, and is waiting in subthread_block_on_future again.
                        // Or it might have ended, in which case it's not in `tasks` any more.
                        // In any case we can go back to scheduling futures.
                    }
                }
            }
        }
    }
}

impl Data {
    /// Return the next task to run
    ///
    /// The task is removed from `awake`, but **`state` is not set to `Asleep`**.
    /// The caller must restore the invariant!
    fn schedule(&mut self) -> Option<TaskId> {
        use SchedulingPolicy as SP;
        match self.scheduling {
            SP::Stack => self.awake.pop_back(),
            SP::Queue => self.awake.pop_front(),
        }
    }
}

impl ActualWaker {
    /// Obtain a strong reference to the executor's data
    fn upgrade_data(&self) -> Option<Arc<Shared>> {
        self.data.upgrade()
    }

    /// Wake the task corresponding to this `ActualWaker`
    ///
    /// This is like `<Self as std::task::Wake>::wake()` but takes `&self`, not `Arc`
    fn wake(&self) {
        let Some(data) = self.upgrade_data() else {
            // The executor is gone!  Don't try to wake.
            return;
        };
        let mut data = data.lock();
        let data = &mut *data;
        trace!("MockExecutor {:?} wake", &self.id);
        let Some(task) = data.tasks.get_mut(self.id) else {
            return;
        };
        task.set_awake(self.id, &mut data.awake);
    }

    /// Create and return a `Waker` for task `id`
    fn make_waker(shared: &Arc<Shared>, id: TaskId) -> Waker {
        ActualWaker {
            data: Arc::downgrade(shared),
            id,
        }
        .new_waker()
    }
}

//---------- "progress until stalled" functionality ----------

impl MockExecutor {
    /// Run tasks in the current executor until every other task is waiting
    ///
    /// # Panics
    ///
    /// Might malfunction or panic if more than one such call is running at once.
    ///
    /// (Ie, you must `.await` or drop the returned `Future`
    /// before calling this method again.)
    ///
    /// Must be called and awaited within a future being run by `self`.
    pub fn progress_until_stalled(&self) -> impl Future<Output = ()> {
        let mut data = self.shared.lock();
        assert!(
            data.progressing_until_stalled.is_none(),
            "progress_until_stalled called more than once"
        );
        trace!("MockExecutor progress_until_stalled...");
        data.progressing_until_stalled = Some(ProgressingUntilStalled {
            finished: Pending,
            waker: None,
        });
        ProgressUntilStalledFuture {
            shared: self.shared.clone(),
        }
    }
}

impl Future for ProgressUntilStalledFuture {
    type Output = ();

    fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<()> {
        let waker = cx.waker().clone();
        let mut data = self.shared.lock();
        let pus = data.progressing_until_stalled.as_mut();
        trace!("MockExecutor progress_until_stalled polling... {:?}", &pus);
        let pus = pus.expect("ProgressingUntilStalled missing");
        pus.waker = Some(waker);
        pus.finished
    }
}

impl Drop for ProgressUntilStalledFuture {
    fn drop(&mut self) {
        self.shared.lock().progressing_until_stalled = None;
    }
}

//---------- (sub)threads ----------

impl MockExecutor {
    /// Spawn a "Subthread", for processing in a sync context
    ///
    /// `call` will be run on a separate thread, called a "Subthread".
    ///
    /// But it will **not run simultaneously** with the executor,
    /// nor with other Subthreads.
    /// So Subthreads are somewhat like coroutines.
    ///
    /// `call` must be capable of making progress without waiting for any other Subthreads.
    /// `call` may wait for async futures, using
    /// [`subthread_block_on_future`](MockExecutor::subthread_block_on_future).
    ///
    /// Subthreads may be used for cpubound activity,
    /// or synchronous IO (such as large volumes of disk activity),
    /// provided that the synchronous code will reliably make progress,
    /// without waiting (directly or indirectly) for any async task or Subthread -
    /// except via `subthread_block_on_future`.
    ///
    /// # Subthreads vs raw `std::thread` threads
    ///
    /// Programs using `MockExecutor` may use `std::thread` threads directly.
    /// However, this is not recommended.  There are severe limitations:
    ///
    ///  * Only a Subthread can re-enter the async context from sync code:
    ///    this must be done with
    ///    using [`subthread_block_on_future`](MockExecutor::subthread_block_on_future).
    ///    (Re-entering the executor with
    ///    [`block_on`](tor_rtcompat::ToplevelBlockOn::block_on)
    ///    is not allowed.)
    ///  * If async tasks want to suspend waiting for synchronous code,
    ///    the synchronous code must run on a Subthread.
    ///    This allows the `MockExecutor` to know when
    ///    that synchronous code is still making progress.
    ///    (This is needed for
    ///    [`progress_until_stalled`](MockExecutor::progress_until_stalled)
    ///    and the facilities which use it, such as
    ///    [`MockRuntime::advance_until_stalled`](crate::MockRuntime::advance_until_stalled).)
    ///  * Subthreads never run in parallel -
    ///    they only run as scheduled deterministically by the `MockExecutor`.
    ///    So using Subthreads eliminates a source of test nonndeterminism.
    ///    (Execution order is still varied due to explicitly varying the scheduling policy.)
    ///
    /// # Panics, abuse, and malfunctions
    ///
    /// If `call` panics and unwinds, `spawn_subthread` yields `Err`.
    /// The application code should to do something about it if this happens,
    /// typically, logging errors, tearing things down, or failing a test case.
    ///
    /// If the executor doesn't run, the subthread will not run either, and will remain stuck.
    /// (So, typically, if the thread supposed to run the executor panics,
    /// for example because a future or the executor itself panics,
    /// all the subthreads will become stuck - effectively, they'll be leaked.)
    ///
    /// `spawn_subthread` panics if OS thread spawning fails.
    /// (Like `std::thread::spawn()` does.)
    ///
    /// `MockExecutor`s will malfunction or panic if
    /// any executor invocation method (eg `block_on`) is called on a Subthread.
    pub fn subthread_spawn<T: Send + 'static>(
        &self,
        desc: impl Display,
        call: impl FnOnce() -> T + Send + 'static,
    ) -> impl Future<Output = Result<T, Box<dyn Any + Send>>> + Unpin + Send + Sync + 'static {
        let desc = desc.to_string();
        let (output_tx, output_rx) = oneshot::channel();

        // NB: we don't know which thread we're on!
        // In principle we might be on another Subthread.
        // So we can't context switch here.  That would be very confusing.
        //
        // Instead, we prepare the new Subthread as follows:
        //   - There is a task in the executor
        //   - The task is ready to be polled, whenever the executor decides to
        //   - The thread starts running right away, but immediately waits until it is scheduled
        // See `subthread_entrypoint`.

        {
            let mut data = self.shared.lock();
            let id = data.insert_task(desc.clone(), TaskFutureInfo::Subthread);

            let _: std::thread::JoinHandle<()> = std::thread::Builder::new()
                .name(desc)
                .spawn({
                    let shared = self.shared.clone();
                    move || shared.subthread_entrypoint(id, call, output_tx)
                })
                .expect("spawn failed");
        }

        output_rx.map(|r| {
            r.unwrap_or_else(|_: Canceled| panic!("Subthread cancelled but should be impossible!"))
        })
    }

    /// Call an async `Future` from a Subthread
    ///
    /// Blocks the Subthread, and arranges to run async tasks,
    /// including `fut`, until `fut` completes.
    ///
    /// `fut` is polled on the executor thread, not on the Subthread.
    /// (We may change that in the future, allowing passing a non-`Send` future.)
    ///
    /// # Panics, abuse, and malfunctions
    ///
    /// `subthread_block_on_future` will malfunction or panic
    /// if called on a thread that isn't a Subthread from the same `MockExecutor`
    /// (ie a thread made with [`spawn_subthread`](MockExecutor::subthread_spawn)).
    ///
    /// If `fut` itself panics, the executor will panic.
    ///
    /// If the executor isn't running, `subthread_block_on_future` will hang indefinitely.
    /// See `spawn_subthread`.
    #[allow(clippy::cognitive_complexity)] // Splitting this up would be worse
    pub fn subthread_block_on_future<T: Send + 'static>(&self, fut: impl Future<Output = T>) -> T {
        let id = match THREAD_DESCRIPTOR.get() {
            ThreadDescriptor::Subthread(id) => id,
            ThreadDescriptor::Executor => {
                panic!("subthread_block_on_future called from MockExecutor thread (async task?)")
            }
            ThreadDescriptor::Foreign => panic!(
    "subthread_block_on_future called on foreign thread (not spawned with spawn_subthread)"
            ),
        };
        trace!("MockExecutor thread {id:?}, subthread_block_on_future...");
        let mut fut = pin!(fut);

        // We yield once before the first poll, and once after Ready, to shake up the
        // execution order a bit, depending on the scheduling policy.
        let yield_ = |set_awake| self.shared.subthread_yield(id, set_awake);
        yield_(Some(SetAwake));

        let ret = loop {
            // Poll the provided future
            trace!("MockExecutor thread {id:?}, s.t._block_on_future polling...");
            let waker = ActualWaker::make_waker(&self.shared, id);
            let mut cx = Context::from_waker(&waker);
            let r: Poll<T> = fut.as_mut().poll(&mut cx);

            if let Ready(r) = r {
                trace!("MockExecutor thread {id:?}, s.t._block_on_future poll -> Ready");
                break r;
            }

            // Pending.  Switch back to the exeuctor thread.
            // When the future becomes ready, the Waker will be woken, waking the task,
            // so that the executor will "poll" us again.
            trace!("MockExecutor thread {id:?}, s.t._block_on_future poll -> Pending");

            yield_(None);
        };

        yield_(Some(SetAwake));

        trace!("MockExecutor thread {id:?}, subthread_block_on_future complete.");

        ret
    }
}

impl Shared {
    /// Main entrypoint function for a Subthread
    ///
    /// Entered on a new `std::thread` thread created by
    /// [`subthread_spawn`](MockExecutor::subthread_spawn).
    ///
    /// When `call` completes, sends its returned value `T` to `output_tx`.
    fn subthread_entrypoint<T: Send + 'static>(
        self: Arc<Self>,
        id: TaskId,
        call: impl FnOnce() -> T + Send + 'static,
        output_tx: oneshot::Sender<Result<T, Box<dyn Any + Send>>>,
    ) {
        THREAD_DESCRIPTOR.set(ThreadDescriptor::Subthread(id));
        trace!("MockExecutor thread {id:?}, entrypoint");

        // We start out Awake, but we wait for the executor to tell us to run.
        // This will be done the first time the task is "polled".
        {
            let data = self.lock();
            self.thread_context_switch_waitfor_instruction_to_run(
                data,
                ThreadDescriptor::Subthread(id),
            );
        }

        trace!("MockExecutor thread {id:?}, entering user code");

        // Run the user's actual thread function.
        // This will typically reenter us via subthread_block_on_future.
        let ret = catch_unwind(AssertUnwindSafe(call));

        trace!("MockExecutor thread {id:?}, completed user code");

        // This makes the return value from subthread_spawn ready.
        // It will be polled by the executor in due course, presumably.

        output_tx.send(ret).unwrap_or_else(
            #[allow(clippy::unnecessary_lazy_evaluations)]
            |_| {}, // receiver dropped, maybe executor dropped or something?
        );

        {
            let mut data = self.lock();

            // Never poll this task again (so never schedule this thread)
            let _: Task = data.tasks.remove(id).expect("Subthread task vanished!");

            // Tell the executor it is scheduled now.
            // We carry on exiting, in parallel (holding the data lock).
            self.thread_context_switch_send_instruction_to_run(
                &mut data,
                ThreadDescriptor::Subthread(id),
                ThreadDescriptor::Executor,
            );
        }
    }

    /// Yield back to the executor from a subthread
    ///
    /// Checks that things are in order
    /// (in particular, that this task is in the data structure as a subhtread)
    /// and switches to the executor thread.
    ///
    /// The caller must arrange that the task gets woken.
    ///
    /// With [`SetAwake`], sets our task awake, so that we'll be polled
    /// again as soon as we get to the top of the executor's queue.
    /// Otherwise, we'll be reentered after someone wakes a [`Waker`] for the task.
    fn subthread_yield(&self, us: TaskId, set_awake: Option<SetAwake>) {
        let mut data = self.lock();
        {
            let data = &mut *data;
            let task = data.tasks.get_mut(us).expect("Subthread task vanished!");
            match &task.fut {
                Some(TaskFutureInfo::Subthread) => {}
                other => panic!("subthread_block_on_future but TFI {other:?}"),
            };
            if let Some(SetAwake) = set_awake {
                task.set_awake(us, &mut data.awake);
            }
        }
        self.thread_context_switch(
            data,
            ThreadDescriptor::Subthread(us),
            ThreadDescriptor::Executor,
        );
    }

    /// Switch from (sub)thread `us` to (sub)thread `them`
    ///
    /// Returns when someone calls `thread_context_switch(.., us)`.
    fn thread_context_switch(
        &self,
        mut data: MutexGuard<Data>,
        us: ThreadDescriptor,
        them: ThreadDescriptor,
    ) {
        trace!("MockExecutor thread {us:?}, switching to {them:?}");
        self.thread_context_switch_send_instruction_to_run(&mut data, us, them);
        self.thread_context_switch_waitfor_instruction_to_run(data, us);
    }

    /// Instruct the (sub)thread `them` to run
    ///
    /// Update `thread_to_run`, which will wake up `them`'s
    /// call to `thread_context_switch_waitfor_instruction_to_run`.
    ///
    /// Must be called from (sub)thread `us`.
    /// Part of `thread_context_switch`, not normally called directly.
    fn thread_context_switch_send_instruction_to_run(
        &self,
        data: &mut MutexGuard<Data>,
        us: ThreadDescriptor,
        them: ThreadDescriptor,
    ) {
        assert_eq!(data.thread_to_run, us);
        data.thread_to_run = them;
        self.thread_condvar.notify_all();
    }

    /// Await an instruction for this thread, `us`, to run
    ///
    /// Waits for `thread_to_run` to be `us`,
    /// waiting for `thread_condvar` as necessary.
    ///
    /// Part of `thread_context_switch`, not normally called directly.
    fn thread_context_switch_waitfor_instruction_to_run(
        &self,
        data: MutexGuard<Data>,
        us: ThreadDescriptor,
    ) {
        #[allow(let_underscore_lock)]
        let _: MutexGuard<_> = self
            .thread_condvar
            .wait_while(data, |data| {
                let live = data.thread_to_run;
                let resume = live == us;
                if resume {
                    trace!("MockExecutor thread {us:?}, resuming");
                } else {
                    trace!("MockExecutor thread {us:?}, waiting for {live:?}");
                }
                // We're in `.wait_while`, not `.wait_until`.  Confusing.
                !resume
            })
            .expect("data lock poisoned");
    }
}

//---------- ancillary and convenience functions ----------

/// Trait to let us assert at compile time that something is nicely `Sync` etc.
#[allow(dead_code)] // yes, we don't *use* anything from this trait
trait EnsureSyncSend: Sync + Send + 'static {}
impl EnsureSyncSend for ActualWaker {}
impl EnsureSyncSend for MockExecutor {}

impl MockExecutor {
    /// Return the number of tasks running in this executor
    ///
    /// One possible use is for a test case to check that task(s)
    /// that ought to have exited, have indeed done so.
    ///
    /// In the usual case, the answer will be at least 1,
    /// because it counts the future passed to
    /// [`block_on`](MockExecutor::block_on)
    /// (perhaps via [`MockRuntime::test_with_various`](crate::MockRuntime::test_with_various)).
    pub fn n_tasks(&self) -> usize {
        self.shared.lock().tasks.len()
    }
}

impl Shared {
    /// Lock and obtain the guard
    ///
    /// Convenience method which panics on poison
    fn lock(&self) -> MutexGuard<Data> {
        self.data.lock().expect("data lock poisoned")
    }
}

impl Task {
    /// Set task `id` to `Awake` and arrange that it will be polled.
    fn set_awake(&mut self, id: TaskId, data_awake: &mut VecDeque<TaskId>) {
        match self.state {
            Awake => {}
            Asleep(_) => {
                self.state = Awake;
                data_awake.push_back(id);
            }
        }
    }
}

//---------- ActualWaker as RawWaker ----------

/// Using [`ActualWaker`] in a [`RawWaker`]
///
/// We need to make a
/// [`Waker`] (the safe, type-erased, waker, used by actual futures)
/// which contains an
/// [`ActualWaker`] (our actual waker implementation, also safe).
///
/// `std` offers `Waker::from<Arc<impl Wake>>`.
/// But we want a bespoke `Clone` implementation, so we don't want to use `Arc`.
///
/// So instead, we implement the `RawWaker` API in terms of `ActualWaker`.
/// We keep the `ActualWaker` in a `Box`, and actually `clone` it (and the `Box`).
///
/// SAFETY
///
///  * The data pointer is `Box::<ActualWaker>::into_raw()`
///  * We share these when we clone
///  * No-one is allowed `&mut ActualWaker` unless there are no other clones
///  * So we may make references `&ActualWaker`
impl ActualWaker {
    /// Wrap up an [`ActualWaker`] as a type-erased [`Waker`] for passing to futures etc.
    fn new_waker(self) -> Waker {
        unsafe { Waker::from_raw(self.raw_new()) }
    }

    /// Helper: wrap up an [`ActualWaker`] as a [`RawWaker`].
    fn raw_new(self) -> RawWaker {
        let self_: Box<ActualWaker> = self.into();
        let self_: *mut ActualWaker = Box::into_raw(self_);
        let self_: *const () = self_ as _;
        RawWaker::new(self_, &RAW_WAKER_VTABLE)
    }

    /// Implementation of [`RawWakerVTable`]'s `clone`
    unsafe fn raw_clone(self_: *const ()) -> RawWaker {
        let self_: *const ActualWaker = self_ as _;
        let self_: &ActualWaker = self_.as_ref().unwrap_unchecked();
        let copy: ActualWaker = self_.clone();
        copy.raw_new()
    }

    /// Implementation of [`RawWakerVTable`]'s `wake`
    unsafe fn raw_wake(self_: *const ()) {
        Self::raw_wake_by_ref(self_);
        Self::raw_drop(self_);
    }

    /// Implementation of [`RawWakerVTable`]'s `wake_ref_by`
    unsafe fn raw_wake_by_ref(self_: *const ()) {
        let self_: *const ActualWaker = self_ as _;
        let self_: &ActualWaker = self_.as_ref().unwrap_unchecked();
        self_.wake();
    }

    /// Implementation of [`RawWakerVTable`]'s `drop`
    unsafe fn raw_drop(self_: *const ()) {
        let self_: *mut ActualWaker = self_ as _;
        let self_: Box<ActualWaker> = Box::from_raw(self_);
        drop(self_);
    }
}

/// vtable for `Box<ActualWaker>` as `RawWaker`
//
// This ought to be in the impl block above, but
//   "associated `static` items are not allowed"
static RAW_WAKER_VTABLE: RawWakerVTable = RawWakerVTable::new(
    ActualWaker::raw_clone,
    ActualWaker::raw_wake,
    ActualWaker::raw_wake_by_ref,
    ActualWaker::raw_drop,
);

//---------- Sleep location tracking and dumping ----------

/// We record "where a future went to sleep" as (just) a backtrace
///
/// This type alias allows us to mock `Backtrace` for miri.
/// (It also insulates from future choices about sleep location representation.0
#[cfg(not(miri))]
type SleepLocation = Backtrace;

impl Data {
    /// Dump tasks and their sleep location backtraces
    fn dump_backtraces(&self, f: &mut fmt::Formatter) -> fmt::Result {
        for (id, task) in self.tasks.iter() {
            let prefix = |f: &mut fmt::Formatter| write!(f, "{id:?}={task:?}: ");
            match &task.state {
                Awake => {
                    prefix(f)?;
                    writeln!(f, "awake")?;
                }
                Asleep(locs) => {
                    let n = locs.len();
                    for (i, loc) in locs.iter().enumerate() {
                        prefix(f)?;
                        writeln!(f, "asleep, backtrace {i}/{n}:\n{loc}",)?;
                    }
                    if n == 0 {
                        prefix(f)?;
                        writeln!(f, "asleep, no backtraces, Waker never cloned, stuck!",)?;
                    }
                }
            }
        }
        writeln!(
            f,
            "\nNote: there might be spurious traces, see docs for MockExecutor::debug_dump\n"
        )?;
        Ok(())
    }
}

/// Track sleep locations via `<Waker as Clone>`.
///
/// See [`MockExecutor::debug_dump`] for the explanation.
impl Clone for ActualWaker {
    fn clone(&self) -> Self {
        let id = self.id;

        if let Some(data) = self.upgrade_data() {
            // If the executor is gone, there is nothing to adjust
            let mut data = data.lock();
            if let Some(task) = data.tasks.get_mut(self.id) {
                match &mut task.state {
                    Awake => trace!("MockExecutor cloned waker for awake task {id:?}"),
                    Asleep(locs) => locs.push(SleepLocation::force_capture()),
                }
            } else {
                trace!("MockExecutor cloned waker for dead task {id:?}");
            }
        }

        ActualWaker {
            data: self.data.clone(),
            id,
        }
    }
}

//---------- API for full debug dump ----------

/// Debugging dump of a `MockExecutor`'s state
///
/// Returned by [`MockExecutor::as_debug_dump`]
//
// Existence implies backtraces have been resolved
//
// We use `Either` so that we can also use this internally when we have &mut Data.
pub struct DebugDump<'a>(Either<&'a Data, MutexGuard<'a, Data>>);

impl MockExecutor {
    /// Dump the executor's state including backtraces of waiting tasks, to stderr
    ///
    /// This is considerably more extensive than simply
    /// `MockExecutor as Debug`.
    ///
    /// (This is a convenience method, which wraps
    /// [`MockExecutor::as_debug_dump()`].
    ///
    /// ### Backtrace salience (possible spurious traces)
    ///
    /// **Summary**
    ///
    /// The technique used to capture backtraces when futures sleep is not 100% exact.
    /// It will usually show all the actual sleeping sites,
    /// but it might also show other backtraces which were part of
    /// the implementation of some complex relevant future.
    ///
    /// **Details**
    ///
    /// When a future's implementation wants to sleep,
    /// it needs to record the [`Waker`] (from the [`Context`])
    /// so that the "other end" can call `.wake()` on it later,
    /// when the future should be woken.
    ///
    /// Since `Context.waker()` gives `&Waker`, borrowed from the `Context`,
    /// the future must clone the `Waker`,
    /// and it must do so in within the `poll()` call.
    ///
    /// A future which is waiting in a `select!` will typically
    /// show multiple traces, one for each branch.
    /// But,
    /// if a future sleeps on one thing, and then when polled again later,
    /// sleeps on something different, without waking up in between,
    /// both backtrace locations will be shown.
    /// And,
    /// a complicated future contraption *might* clone the `Waker` more times.
    /// So not every backtrace will necessarily be informative.
    ///
    /// ### Panics
    ///
    /// Panics on write errors.
    pub fn debug_dump(&self) {
        self.as_debug_dump().to_stderr();
    }

    /// Dump the executor's state including backtraces of waiting tasks
    ///
    /// This is considerably more extensive than simply
    /// `MockExecutor as Debug`.
    ///
    /// Returns an object for formatting with [`Debug`].
    /// To simply print the dump to stderr (eg in a test),
    /// use [`.debug_dump()`](MockExecutor::debug_dump).
    ///
    /// **Backtrace salience (possible spurious traces)** -
    /// see [`.debug_dump()`](MockExecutor::debug_dump).
    pub fn as_debug_dump(&self) -> DebugDump {
        let data = self.shared.lock();
        DebugDump(Right(data))
    }
}

impl Data {
    /// Convenience function: dump including backtraces, to stderr
    fn debug_dump(&mut self) {
        DebugDump(Left(self)).to_stderr();
    }
}

impl DebugDump<'_> {
    /// Convenience function: dump tasks and backtraces to stderr
    #[allow(clippy::wrong_self_convention)] // "to_stderr" doesn't mean "convert to stderr"
    fn to_stderr(self) {
        write!(io::stderr().lock(), "{:?}", self)
            .unwrap_or_else(|e| error_report!(e, "failed to write debug dump to stderr"));
    }
}

//---------- bespoke Debug impls ----------

impl Debug for DebugDump<'_> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let self_: &Data = &self.0;

        writeln!(f, "MockExecutor state:\n{self_:#?}")?;
        writeln!(f, "MockExecutor task dump:")?;
        self_.dump_backtraces(f)?;

        Ok(())
    }
}

// See `impl Debug for Data` for notes on the output
impl Debug for Task {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let Task { desc, state, fut } = self;
        write!(f, "{:?}", desc)?;
        write!(f, "=")?;
        match fut {
            None => write!(f, "P")?,
            Some(TaskFutureInfo::Normal(_)) => write!(f, "f")?,
            Some(TaskFutureInfo::Main) => write!(f, "m")?,
            Some(TaskFutureInfo::Subthread) => write!(f, "T")?,
        }
        match state {
            Awake => write!(f, "W")?,
            Asleep(locs) => write!(f, "s{}", locs.len())?,
        };
        Ok(())
    }
}

/// Helper: `Debug`s as a list of tasks, given the `Data` for lookups and a list of the ids
///
/// `Task`s in `Data` are printed as `Ti(ID)"SPEC"=FLAGS"`.
///
/// `FLAGS` are:
///
///  * `T`: this task is for a Subthread (from subthread_spawn).
///  * `P`: this task is being polled (its `TaskFutureInfo` is absent)
///  * `f`: this is a normal task with a future and its future is present in `Data`
///  * `m`: this is the main task from `block_on`
///
///  * `W`: the task is awake
///  * `s<n>`: the task is asleep, and `<n>` is the number of recorded sleeping locations
//
// We do it this way because the naive dump from derive is very expansive
// and makes it impossible to see the wood for the trees.
// This very compact representation it easier to find a task of interest in the output.
//
// This is implemented in `impl Debug for Task`.
//
//
// rustc doesn't think automatically-derived Debug impls count for whether a thing is used.
// This has caused quite some fallout.  https://github.com/rust-lang/rust/pull/85200
// I think derive_more emits #[automatically_derived], so that even though we use this
// in our Debug impl, that construction is unused.
#[allow(dead_code)]
struct DebugTasks<'d, F>(&'d Data, F);

// See `impl Debug for Data` for notes on the output
impl<F, I> Debug for DebugTasks<'_, F>
where
    F: Fn() -> I,
    I: Iterator<Item = TaskId>,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let DebugTasks(data, ids) = self;
        for (id, delim) in izip!(ids(), chain!(iter::once(""), iter::repeat(" ")),) {
            write!(f, "{delim}{id:?}")?;
            match data.tasks.get(id) {
                None => write!(f, "-")?,
                Some(task) => write!(f, "={task:?}")?,
            }
        }
        Ok(())
    }
}

/// Mock `Backtrace` for miri
///
/// See also the not-miri `type SleepLocation`, alias above.
#[cfg(miri)]
mod miri_sleep_location {
    #[derive(Debug, derive_more::Display)]
    #[display("<SleepLocation>")]
    pub(super) struct SleepLocation {}

    impl SleepLocation {
        pub(super) fn force_capture() -> Self {
            SleepLocation {}
        }
    }
}
#[cfg(miri)]
use miri_sleep_location::SleepLocation;

#[cfg(test)]
mod test {
    // @@ begin test lint list maintained by maint/add_warning @@
    #![allow(clippy::bool_assert_comparison)]
    #![allow(clippy::clone_on_copy)]
    #![allow(clippy::dbg_macro)]
    #![allow(clippy::mixed_attributes_style)]
    #![allow(clippy::print_stderr)]
    #![allow(clippy::print_stdout)]
    #![allow(clippy::single_char_pattern)]
    #![allow(clippy::unwrap_used)]
    #![allow(clippy::unchecked_duration_subtraction)]
    #![allow(clippy::useless_vec)]
    #![allow(clippy::needless_pass_by_value)]
    //! <!-- @@ end test lint list maintained by maint/add_warning @@ -->
    use super::*;
    use futures::channel::mpsc;
    use futures::{SinkExt as _, StreamExt as _};
    use strum::IntoEnumIterator;
    use tracing::info;

    #[cfg(not(miri))] // trace! asks for the time, which miri doesn't support
    use tracing_test::traced_test;

    fn various_mock_executors() -> impl Iterator<Item = MockExecutor> {
        // This duplicates the part of the logic in MockRuntime::test_with_various which
        // relates to MockExecutor, because we don't have a MockRuntime::builder.
        // The only parameter to MockExecutor is its scheduling policy, so this seems fine.
        SchedulingPolicy::iter().map(|scheduling| {
            eprintln!("===== MockExecutor::with_scheduling({scheduling:?}) =====");
            MockExecutor::with_scheduling(scheduling)
        })
    }

    #[cfg_attr(not(miri), traced_test)]
    #[test]
    fn simple() {
        let runtime = MockExecutor::default();
        let val = runtime.block_on(async { 42 });
        assert_eq!(val, 42);
    }

    #[cfg_attr(not(miri), traced_test)]
    #[test]
    fn stall() {
        let runtime = MockExecutor::default();

        runtime.block_on({
            let runtime = runtime.clone();
            async move {
                const N: usize = 3;
                let (mut txs, mut rxs): (Vec<_>, Vec<_>) =
                    (0..N).map(|_| mpsc::channel::<usize>(5)).unzip();

                let mut rx_n = rxs.pop().unwrap();

                for (i, mut rx) in rxs.into_iter().enumerate() {
                    runtime.spawn_identified(i, {
                        let mut txs = txs.clone();
                        async move {
                            loop {
                                eprintln!("task {i} rx...");
                                let v = rx.next().await.unwrap();
                                let nv = v + 1;
                                eprintln!("task {i} rx {v}, tx {nv}");
                                let v = nv;
                                txs[v].send(v).await.unwrap();
                            }
                        }
                    });
                }

                dbg!();
                let _: mpsc::TryRecvError = rx_n.try_next().unwrap_err();

                dbg!();
                runtime.progress_until_stalled().await;

                dbg!();
                let _: mpsc::TryRecvError = rx_n.try_next().unwrap_err();

                dbg!();
                txs[0].send(0).await.unwrap();

                dbg!();
                runtime.progress_until_stalled().await;

                dbg!();
                let r = rx_n.next().await;
                assert_eq!(r, Some(N - 1));

                dbg!();
                let _: mpsc::TryRecvError = rx_n.try_next().unwrap_err();

                runtime.spawn_identified("tx", {
                    let txs = txs.clone();
                    async {
                        eprintln!("sending task...");
                        for (i, mut tx) in txs.into_iter().enumerate() {
                            eprintln!("sending 0 to {i}...");
                            tx.send(0).await.unwrap();
                        }
                        eprintln!("sending task done");
                    }
                });

                runtime.debug_dump();

                for i in 0..txs.len() {
                    eprintln!("main {i} wait stall...");
                    runtime.progress_until_stalled().await;
                    eprintln!("main {i} rx wait...");
                    let r = rx_n.next().await;
                    eprintln!("main {i} rx = {r:?}");
                    assert!(r == Some(0) || r == Some(N - 1));
                }

                eprintln!("finishing...");
                runtime.progress_until_stalled().await;
                eprintln!("finished.");
            }
        });
    }

    #[cfg_attr(not(miri), traced_test)]
    #[test]
    fn spawn_blocking() {
        let runtime = MockExecutor::default();

        runtime.block_on({
            let runtime = runtime.clone();
            async move {
                let thr_1 = runtime.spawn_blocking(|| 42);
                let thr_2 = runtime.spawn_blocking(|| 99);

                assert_eq!(thr_2.await, 99);
                assert_eq!(thr_1.await, 42);
            }
        });
    }

    #[cfg_attr(not(miri), traced_test)]
    #[test]
    fn drop_reentrancy() {
        // Check that dropping a completed task future is done *outside* the data lock.
        // Involves a contrived future whose Drop impl reenters the executor.
        //
        // If `_fut_drop_late = fut` in execute_until_first_stall (the main loop)
        // is replaced with `drop(fut)` (dropping the future at the wrong moment),
        // we do indeed get deadlock, so this test case is working.

        struct ReentersOnDrop {
            runtime: MockExecutor,
        }
        impl Future for ReentersOnDrop {
            type Output = ();
            fn poll(self: Pin<&mut Self>, _cx: &mut Context) -> Poll<()> {
                Poll::Ready(())
            }
        }
        impl Drop for ReentersOnDrop {
            fn drop(&mut self) {
                self.runtime
                    .spawn_identified("dummy", futures::future::ready(()));
            }
        }

        for runtime in various_mock_executors() {
            runtime.block_on(async {
                runtime.spawn_identified("trapper", {
                    let runtime = runtime.clone();
                    ReentersOnDrop { runtime }
                });
            });
        }
    }

    #[cfg_attr(not(miri), traced_test)]
    #[test]
    fn subthread_oneshot() {
        for runtime in various_mock_executors() {
            runtime.block_on(async {
                let (tx, rx) = oneshot::channel();
                info!("spawning subthread");
                let thr = runtime.subthread_spawn("thr1", {
                    let runtime = runtime.clone();
                    move || {
                        info!("subthread_block_on_future...");
                        let i = runtime.subthread_block_on_future(rx).unwrap();
                        info!("subthread_block_on_future => {i}");
                        i + 1
                    }
                });
                info!("main task sending");
                tx.send(12).unwrap();
                info!("main task sent");
                let r = thr.await.unwrap();
                info!("main task thr => {r}");
                assert_eq!(r, 13);
            });
        }
    }

    #[cfg_attr(not(miri), traced_test)]
    #[test]
    #[allow(clippy::cognitive_complexity)] // It's is not that complicated, really.
    fn subthread_pingpong() {
        for runtime in various_mock_executors() {
            runtime.block_on(async {
                let (mut i_tx, mut i_rx) = mpsc::channel(1);
                let (mut o_tx, mut o_rx) = mpsc::channel(1);
                info!("spawning subthread");
                let thr = runtime.subthread_spawn("thr", {
                    let runtime = runtime.clone();
                    move || {
                        while let Some(i) = {
                            info!("thread receiving ...");
                            runtime.subthread_block_on_future(i_rx.next())
                        } {
                            let o = i + 12;
                            info!("thread received {i}, sending {o}");
                            runtime.subthread_block_on_future(o_tx.send(o)).unwrap();
                            info!("thread sent {o}");
                        }
                        info!("thread exiting");
                        42
                    }
                });
                for i in 0..2 {
                    info!("main task sending {i}");
                    i_tx.send(i).await.unwrap();
                    info!("main task sent {i}");
                    let o = o_rx.next().await.unwrap();
                    info!("main task recv => {o}");
                    assert_eq!(o, i + 12);
                }
                info!("main task dropping sender");
                drop(i_tx);
                info!("main task awaiting thread");
                let r = thr.await.unwrap();
                info!("main task complete");
                assert_eq!(r, 42);
            });
        }
    }
}