1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
#![doc = include_str!("../README.md")]
#![cfg_attr(docsrs, feature(doc_auto_cfg, doc_cfg))]
use std::{cmp::Ordering, ops::Range};
use chunk_size::MemoizedChunkSizer;
use itertools::Itertools;
mod chunk_size;
#[cfg(feature = "markdown")]
mod markdown;
mod text;
pub use chunk_size::{Characters, ChunkCapacity, ChunkSize, ChunkSizer};
#[cfg(feature = "markdown")]
pub use markdown::MarkdownSplitter;
pub use text::TextSplitter;
/// Captures information about document structure for a given text, and their
/// various semantic levels
#[derive(Debug)]
struct SemanticSplitRanges<Level>
where
Level: Copy + Ord + PartialOrd + 'static,
{
/// Levels that are always considered in splitting text, because they are always present.
peristent_levels: &'static [Level],
/// Range of each semantic item and its precalculated semantic level
ranges: Vec<(Level, Range<usize>)>,
}
impl<Level> SemanticSplitRanges<Level>
where
Level: Copy + Ord + PartialOrd + 'static,
{
/// Retrieve ranges for all sections of a given level after an offset
fn ranges_after_offset(
&self,
offset: usize,
) -> impl Iterator<Item = &(Level, Range<usize>)> + '_ {
self.ranges
.iter()
.filter(move |(_, sep)| sep.start >= offset)
}
/// Retrieve ranges for all sections of a given level after an offset
fn level_ranges_after_offset(
&self,
offset: usize,
level: Level,
) -> impl Iterator<Item = &(Level, Range<usize>)> + '_ {
let first_item = self.ranges_after_offset(offset).find(|(l, _)| l == &level);
self.ranges_after_offset(offset)
.filter(move |(l, _)| l >= &level)
.skip_while(move |(l, r)| {
first_item.is_some_and(|(_, fir)| l > &level && r.contains(&fir.start))
})
}
/// Return a unique, sorted list of all line break levels present before the next max level, added
/// to all of the base semantic levels, in order from smallest to largest
fn levels_in_remaining_text(&self, offset: usize) -> impl Iterator<Item = Level> + '_ {
let existing_levels = self.ranges_after_offset(offset).map(|(l, _)| l);
self.peristent_levels
.iter()
.chain(existing_levels)
.sorted()
.dedup()
.copied()
}
/// Clear out ranges we have moved past so future iterations are faster
fn update_ranges(&mut self, cursor: usize) {
self.ranges.retain(|(_, range)| range.start >= cursor);
}
}
/// Implementation that dictates the semantic split points available.
/// For plain text, this goes from characters, to grapheme clusters, to words,
/// to sentences, to linebreaks.
/// For something like Markdown, this would also include things like headers,
/// lists, and code blocks.
trait SemanticSplit {
/// Internal type used to represent the level of semantic splitting.
type Level: Copy + Ord + PartialOrd + 'static;
/// Generate a new instance from a given text.
fn new(text: &str) -> Self;
/// Split a given text into iterator over each semantic chunk
fn semantic_chunks<'splitter, 'text: 'splitter>(
&'splitter self,
offset: usize,
text: &'text str,
semantic_level: Self::Level,
) -> impl Iterator<Item = (usize, &'text str)> + 'splitter;
/// Trim the str and adjust the offset if necessary.
/// This is the default behavior, but custom semantic levels may need different behavior.
fn trim_chunk<'splitter, 'text: 'splitter>(
&'splitter self,
offset: usize,
chunk: &'text str,
) -> (usize, &'text str) {
// Figure out how many bytes we lose trimming the beginning
let diff = chunk.len() - chunk.trim_start().len();
(offset + diff, chunk.trim())
}
}
/// Returns chunks of text with their byte offsets as an iterator.
#[derive(Debug)]
struct TextChunks<'text, 'sizer, C, S, L>
where
C: ChunkCapacity,
S: ChunkSizer,
L: Copy + Ord + PartialOrd + 'static,
SemanticSplitRanges<L>: SemanticSplit,
{
/// How to validate chunk sizes
chunk_sizer: MemoizedChunkSizer<'sizer, C, S>,
/// Current byte offset in the `text`
cursor: usize,
/// Reusable container for next sections to avoid extra allocations
next_sections: Vec<(usize, &'text str)>,
/// Splitter used for determining semantic levels.
semantic_split: SemanticSplitRanges<L>,
/// Original text to iterate over and generate chunks from
text: &'text str,
/// Whether or not chunks should be trimmed
trim_chunks: bool,
}
impl<'sizer, 'text: 'sizer, C, S, L> TextChunks<'text, 'sizer, C, S, L>
where
C: ChunkCapacity,
S: ChunkSizer,
L: Copy + Ord + PartialOrd + 'static,
SemanticSplitRanges<L>: SemanticSplit<Level = L>,
{
/// Generate new [`TextChunks`] iterator for a given text.
/// Starts with an offset of 0
fn new(chunk_capacity: C, chunk_sizer: &'sizer S, text: &'text str, trim_chunks: bool) -> Self {
Self {
cursor: 0,
chunk_sizer: MemoizedChunkSizer::new(chunk_capacity, chunk_sizer),
next_sections: Vec::new(),
semantic_split: SemanticSplitRanges::<L>::new(text),
text,
trim_chunks,
}
}
/// If trim chunks is on, trim the str and adjust the offset
fn trim_chunk(&self, offset: usize, chunk: &'text str) -> (usize, &'text str) {
if self.trim_chunks {
self.semantic_split.trim_chunk(offset, chunk)
} else {
(offset, chunk)
}
}
/// Generate the next chunk, applying trimming settings.
/// Returns final byte offset and str.
/// Will return `None` if given an invalid range.
fn next_chunk(&mut self) -> Option<(usize, &'text str)> {
// Reset caches so we can reuse the memory allocation
self.chunk_sizer.clear_cache();
self.semantic_split.update_ranges(self.cursor);
self.update_next_sections();
let start = self.cursor;
let mut end = self.cursor;
let mut equals_found = false;
let mut low = 0;
let mut high = self.next_sections.len().saturating_sub(1);
let mut successful_index = None;
let mut successful_chunk_size = None;
while low <= high {
let mid = low + (high - low) / 2;
let (offset, str) = self.next_sections[mid];
let text_end = offset + str.len();
let chunk = self.text.get(start..text_end)?;
let chunk_size = self
.chunk_sizer
.check_capacity(self.trim_chunk(start, chunk));
match chunk_size.fits() {
Ordering::Less => {
// We got further than the last one, so update end
if text_end > end {
end = text_end;
successful_index = Some(mid);
successful_chunk_size = Some(chunk_size);
}
}
Ordering::Equal => {
// If we found a smaller equals use it. Or if this is the first equals we found
if text_end < end || !equals_found {
end = text_end;
successful_index = Some(mid);
successful_chunk_size = Some(chunk_size);
}
equals_found = true;
}
Ordering::Greater => {
// If we're too big on our smallest run, we must return at least one section
if mid == 0 && start == end {
end = text_end;
successful_index = Some(mid);
successful_chunk_size = Some(chunk_size);
}
}
};
// Adjust search area
if chunk_size.fits().is_lt() {
low = mid + 1;
} else if mid > 0 {
high = mid - 1;
} else {
// Nothing to adjust
break;
}
}
// Sometimes with tokenization, we can get a bigger chunk for the same amount of tokens.
if let (Some(successful_index), Some(chunk_size)) =
(successful_index, successful_chunk_size)
{
let mut range = successful_index..self.next_sections.len();
// We've already checked the successful index
range.next();
for index in range {
let (offset, str) = self.next_sections[index];
let text_end = offset + str.len();
let chunk = self.text.get(start..text_end)?;
let size = self
.chunk_sizer
.check_capacity(self.trim_chunk(start, chunk));
if size.size() <= chunk_size.size() {
if text_end > end {
end = text_end;
}
} else {
break;
}
}
}
self.cursor = end;
let chunk = self.text.get(start..self.cursor)?;
// Trim whitespace if user requested it
Some(self.trim_chunk(start, chunk))
}
/// Find the ideal next sections, breaking it up until we find the largest chunk.
/// Increasing length of chunk until we find biggest size to minimize validation time
/// on huge chunks
fn update_next_sections(&mut self) {
// First thing, clear out the list, but reuse the allocated memory
self.next_sections.clear();
// Get starting level
let mut levels_in_remaining_text =
self.semantic_split.levels_in_remaining_text(self.cursor);
let mut semantic_level = levels_in_remaining_text
.next()
.expect("Need at least one level to progress");
// If we aren't at the highest semantic level, stop iterating sections that go beyond the range of the next level.
let mut max_encoded_offset = None;
let remaining_text = self.text.get(self.cursor..).unwrap();
let levels_with_chunks = levels_in_remaining_text
.filter_map(|level| {
self.semantic_split
.semantic_chunks(self.cursor, remaining_text, level)
.next()
.map(|(_, str)| (level, str))
})
// We assume that larger levels are also longer. We can skip lower levels if going to a higher level would result in a shorter text
.coalesce(|(a_level, a_str), (b_level, b_str)| {
if a_str.len() >= b_str.len() {
Ok((b_level, b_str))
} else {
Err(((a_level, a_str), (b_level, b_str)))
}
});
for (level, str) in levels_with_chunks {
let chunk_size = self
.chunk_sizer
.check_capacity(self.trim_chunk(self.cursor, str));
// If this no longer fits, we use the level we are at.
if chunk_size.fits().is_gt() {
max_encoded_offset = chunk_size.max_chunk_size_offset();
break;
}
// Otherwise break up the text with the next level
semantic_level = level;
}
let sections = self
.semantic_split
.semantic_chunks(self.cursor, remaining_text, semantic_level)
// We don't want to return items at this level that go beyond the next highest semantic level, as that is most
// likely a meaningful breakpoint we want to preserve. We already know that the next highest doesn't fit anyway,
// so we should be safe to break once we reach it.
.take_while_inclusive(move |(offset, _)| {
max_encoded_offset.map_or(true, |max| offset <= &max)
})
.filter(|(_, str)| !str.is_empty());
self.next_sections.extend(sections);
}
}
impl<'sizer, 'text: 'sizer, C, S, L> Iterator for TextChunks<'text, 'sizer, C, S, L>
where
C: ChunkCapacity,
S: ChunkSizer,
L: Copy + Ord + PartialOrd + 'static,
SemanticSplitRanges<L>: SemanticSplit<Level = L>,
{
type Item = (usize, &'text str);
fn next(&mut self) -> Option<Self::Item> {
loop {
// Make sure we haven't reached the end
if self.cursor >= self.text.len() {
return None;
}
match self.next_chunk()? {
// Make sure we didn't get an empty chunk. Should only happen in
// cases where we trim.
(_, "") => continue,
c => return Some(c),
}
}
}
}