1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
//! Serial audio interface support. Used for I2S, PCM/DSP, TDM, AC'97 etc.
//! See L443 Reference Manual, section 41. H743 FM, section 51.
//!
//! For now, only supports a limited set of I2S features.
// todo: WIP
use core::ops::Deref;
use cortex_m::interrupt::free;
use crate::{clocks::Clocks, pac::RCC, rcc_en_reset};
#[cfg(not(feature = "h7"))]
use crate::pac::sai1 as sai;
#[cfg(feature = "h7")]
use crate::pac::sai4 as sai;
use cfg_if::cfg_if;
#[cfg(feature = "g0")]
use crate::pac::dma as dma_p;
#[cfg(any(
feature = "f3",
feature = "l4",
feature = "g4",
feature = "h7",
feature = "wb"
))]
use crate::pac::dma1 as dma_p;
#[cfg(not(any(feature = "f4", feature = "l5")))]
use crate::dma::{self, ChannelCfg, Dma, DmaChannel};
#[derive(Clone, Copy)]
/// Specify the SAI device to use. Used internally for setting the appropriate APB.
pub enum SaiDevice {
One,
#[cfg(feature = "h7")]
Two,
}
#[derive(Clone, Copy)]
#[repr(u8)]
/// Select Master or Slave mode.
pub enum SaiMode {
MasterTransmitter = 0b00,
MasterReceiver = 0b01,
SlaveTransmitter = 0b10,
SlaveReceiver = 0b11,
}
#[derive(Clone, Copy)]
#[repr(u8)]
/// Select Stereo or Mono mode
pub enum Mono {
Stereo = 0,
Mono = 1,
}
#[derive(Clone, Copy)]
#[repr(u8)]
/// Specify wheather sub-clocks A and B are synchronized.
pub enum SyncMode {
/// Audio sub-block in asynchronous mode
Async = 0b00,
/// Audio sub-block is synchronous with the other internal audio sub-block. In this case, the audio
/// sub-block must be configured in slave mode
Sync = 0b01,
/// Audio subblock is synchronous with an external SAI embedded peripheral. In this case the audio
/// subblock should be configured in Slave mode.
SyncExternal = 0b10, // todo: May only be valid for some MCUs, eg ones with multiple SAI devices.
}
#[derive(Clone, Copy)]
#[repr(u8)]
/// Select the audio protocol to use. xCR1 register, PRTCFG field.
pub enum Protocol {
/// Free protocol. Free protocol allows to use the powerful configuration of the audio block to
/// address a specific audio protocol (such as I2S, LSB/MSB justified, TDM, PCM/DSP...) by setting
/// most of the configuration register bits as well as frame configuration register.
Free = 0b00,
/// SPDIF protocol
Spdif = 0b01,
/// AC'97 protocol
Ac97 = 0b10,
}
#[derive(Clone, Copy)]
#[repr(u8)]
/// Select the data size to use. xCR1 register, DS field.
pub enum DataSize {
/// 8 bits
S8 = 0b010,
/// 10 bits
S10 = 0b011,
/// 16 bits
S16 = 0b100,
/// 20 bits
S20 = 0b101,
/// 24 bits
S24 = 0b110,
/// 32 bits
S32 = 0b111,
}
#[derive(Clone, Copy)]
#[repr(u8)]
/// Select wheather the master clock is generated. xDR1 register, NOMCK field.
pub enum MasterClock {
Used = 0,
NotUsed = 1,
}
#[derive(Clone, Copy)]
/// The type of SAI interrupt to configure. Reference Section 41.5 of the L4 RM.
/// Enabled in xIM register, yIE fields. See H743 RM, section 51.5: SAI interrupts.
pub enum SaiInterrupt {
Freq,
///When the audio block is configured as receiver, an overrun condition may appear if data are
/// received in an audio frame when the FIFO is full and not able to store the received data. In
/// this case, the received data are lost, the flag OVRUDR in the SAI_xSR register is set and an
/// interrupt is generated if OVRUDRIE bit is set in the SAI_xIM register.
///
/// An underrun may occur when the audio block in the SAI is a transmitter and the FIFO is
/// empty when data need to be transmitted. If an underrun is detected, the slot number for
/// which the event occurs is stored and MUTE value (00) is sent until the FIFO is ready to
/// transmit the data corresponding to the slot for which the underrun was detected (refer to
/// Figure 664). This avoids desynchronization between the memory pointer and the slot in the
/// audio frame.
Ovrudr,
/// The AFSDET flag is used only in slave mode. It is never asserted in master mode. It
/// indicates that a frame synchronization (FS) has been detected earlier than expected since
/// the frame length, the frame polarity, the frame offset are defined and known.
AfsDet,
/// The LFSDET flag in the SAI_xSR register can be set only when the SAI audio block
/// operates as a slave. The frame length, the frame polarity and the frame offset configuration
/// are known in register SAI_xFRCR.
LfsDet,
/// The CNRDY flag in the SAI_xSR register is relevant only if the SAI audio block is configured
/// to operate in AC’97 mode (PRTCFG[1:0] = 10 in the SAI_xCR1 register). If CNRDYIE bit is
/// set in the SAI_xIM register, an interrupt is generated when the CNRDY flag is set.
/// CNRDY is asserted when the Codec is not ready to communicate during the reception of
/// the TAG 0 (slot0) of the AC’97 audio frame.
CnRdy,
/// Mute detection
MuteDet,
/// When the audio block operates as a master (MODE[1] = 0) and NOMCK bit is equal to 0,
/// the WCKCFG flag is set as soon as the SAI is enabled if the following conditions are met:
/// • (FRL+1) is not a power of 2, and
/// • (FRL+1) is not between 8 and 256.
/// MODE, NOMCK, and SAIEN bits belong to SAI_xCR1 register and FRL to SAI_xFRCR
/// register.
WckCfg,
}
#[derive(Clone, Copy)]
pub enum SaiChannel {
A,
B,
}
pub struct SaiConfig {
pub mode: SaiMode,
pub protocol: Protocol,
pub mono: Mono,
/// An audio subblock can be configured to operate synchronously with the second audio
/// subblock in the same SAI. In this case, the bit clock and the frame synchronization signals
/// are shared to reduce the number of external pins used for the communication.
pub sync: SyncMode,
pub datasize: DataSize,
pub frame_length: u8,
pub master_clock: MasterClock,
}
impl Default for SaiConfig {
fn default() -> Self {
Self {
mode: SaiMode::MasterTransmitter,
protocol: Protocol::Free,
mono: Mono::Stereo,
sync: SyncMode::Async,
datasize: DataSize::S32,
frame_length: 10,
master_clock: MasterClock::Used, // todo?
}
}
}
/// Represents the USART peripheral, for serial communications.
pub struct Sai<R> {
regs: R,
pub config_a: SaiConfig,
pub config_b: SaiConfig,
}
impl<R> Sai<R>
where
R: Deref<Target = sai::RegisterBlock>,
{
pub fn new(
regs: R,
device: SaiDevice,
config_a: SaiConfig,
config_b: SaiConfig,
clocks: &Clocks,
) -> Self {
free(|cs| {
let rcc = unsafe { &(*RCC::ptr()) };
match device {
SaiDevice::One => {
rcc_en_reset!(apb2, sai1, rcc);
}
// todo: What other MCUs support what SAI#s?
#[cfg(feature = "h7")]
SaiDevice::Two => {
rcc_en_reset!(apb2, sai2, rcc);
} // todo: More devices for H7
}
});
// todo: Do we always want to configure and enable both A and B?
// todo: Sort out mken/nomck. PAC issues?
// For info on modes, reference H743 RM, section 51.4.3: "Configuring and
// Enabling SAI modes".
regs.cha.cr1.modify(|_, w| unsafe {
w.mode().bits(config_a.mode as u8);
w.prtcfg().bits(config_a.protocol as u8);
w.mono().bit(config_a.mono as u8 != 0);
w.syncen().bits(config_a.sync as u8);
// The NOMCK bit of the SAI_xCR1 register is used to define whether the master clock is
// generated or not.
// #[cfg(not(feature = "h7"))]
// w.nomck().bits(config_a.master_clock as u8 != 0);
#[cfg(feature = "h7")]
w.mcken().bit(config_a.master_clock as u8 == 0);
// The audio frame can target different data sizes by configuring bit DS[2:0] in the SAI_xCR1
// register. The data sizes may be 8, 10, 16, 20, 24 or 32 bits. During the transfer, either the
// MSB or the LSB of the data are sent first, depending on the configuration of bit LSBFIRST in
// the SAI_xCR1 register.
w.ds().bits(config_a.datasize as u8)
});
// todo: MCKEN vice NOMCK?? Make sure your enum reflects how you handle it.
regs.chb.cr1.modify(|_, w| unsafe {
w.mode().bits(config_b.mode as u8);
w.prtcfg().bits(config_b.protocol as u8);
w.mono().bit(config_b.mono as u8 != 0);
w.syncen().bits(config_b.sync as u8);
// #[cfg(not(feature = "h7"))]
// w.nomck().bits(config_b.master_clock as u8 != 0);
#[cfg(feature = "h7")]
w.mcken().bit(config_b.master_clock as u8 == 0);
w.ds().bits(config_b.datasize as u8)
});
// The audio frame length can be configured to up to 256 bit clock cycles, by setting
// FRL[7:0] field in the SAI_xFRCR register.
regs.cha
.frcr
.modify(|_, w| unsafe { w.frl().bits(config_a.frame_length) });
regs.chb
.frcr
.modify(|_, w| unsafe { w.frl().bits(config_b.frame_length) });
// todo: Slot configuration (NBSLOT) ? xSLOTR?
Self {
regs,
config_a,
config_b,
}
}
/// Enable an audio subblock (channel).
pub fn enable(&mut self, channel: SaiChannel) {
match channel {
SaiChannel::A => self.regs.cha.cr1.modify(|_, w| w.saien().set_bit()),
SaiChannel::B => self.regs.chb.cr1.modify(|_, w| w.saien().set_bit()),
}
}
/// Disable an audio subblock (channel). See H743 RM, section 51.4.15.
/// The SAI audio block can be disabled at any moment by clearing SAIEN bit in the SAI_xCR1
/// register. All the already started frames are automatically completed before the SAI is stops
/// working. SAIEN bit remains High until the SAI is completely switched-off at the end of the
/// current audio frame transfer.
/// If an audio block in the SAI operates synchronously with the other one, the one which is the
/// master must be disabled first.
pub fn disable(&mut self, channel: SaiChannel) {
match channel {
SaiChannel::A => self.regs.cha.cr1.modify(|_, w| w.saien().clear_bit()),
SaiChannel::B => self.regs.chb.cr1.modify(|_, w| w.saien().clear_bit()),
}
}
/// Read 2 words of data from a channel.
/// A read from the SR register empties the FIFO if the FIFO is not empty
pub fn read(&self, channel: SaiChannel) -> (u32, u32) {
// A read from this register empties the FIFO if the FIFO is not empty
match channel {
SaiChannel::A => (
self.regs.cha.dr.read().bits(),
self.regs.cha.dr.read().bits(),
),
SaiChannel::B => (
self.regs.chb.dr.read().bits(),
self.regs.chb.dr.read().bits(),
),
}
// todo: Check FIFO level?
//
// match audio_ch.sr.read().flvl().variant() {
// Val(sr::FLVL_A::EMPTY) => Err(nb::Error::WouldBlock),
// _ => Ok((audio_ch.dr.read().bits(), audio_ch.dr.read().bits())),
// }
}
/// Send 2 words of data to a single channel.
/// A write to the SR register loads the FIFO provided the FIFO is not full.
pub fn write(&mut self, channel: SaiChannel, left_word: u32, right_word: u32) {
match channel {
SaiChannel::A => self
.regs
.cha
.dr
.write(|w| unsafe { w.bits(left_word).bits(right_word) }),
SaiChannel::B => self
.regs
.chb
.dr
.write(|w| unsafe { w.bits(left_word).bits(right_word) }),
}
// todo: Why 2 words?
// todo: Check FIFO level?
// The FIFO is 8 words long. A write consists of 2 words, in stereo mode.
// Therefore you need to wait for 3/4s to ensure 2 words are available for writing.
// match audio_ch.sr.read().flvl().variant() {
// Val(sr::FLVL_A::FULL) => Err(nb::Error::WouldBlock),
// Val(sr::FLVL_A::QUARTER4) => Err(nb::Error::WouldBlock),
// _ => {
// unsafe {
// audio_ch.dr.write(|w| w.bits(left_word).bits(right_word));
// }
// Ok(())
// }
// }
}
/// Send data over SAI with DMA. H743 RM, section 51.4.16: SAI DMA Interface.
/// To free the CPU and to optimize bus bandwidth, each SAI audio block has an independent
/// DMA interface to read/write from/to the SAI_xDR register (to access the internal FIFO).
/// There is one DMA channel per audio subblock supporting basic DMA request/acknowledge
/// protocol.
#[cfg(not(any(feature = "g0", feature = "f4", feature = "l5")))]
pub unsafe fn write_dma<D>(
&mut self,
buf: &[u32], // todo size?
sai_channel: SaiChannel,
dma_channel: DmaChannel,
channel_cfg: ChannelCfg,
dma: &mut Dma<D>,
) where
D: Deref<Target = dma_p::RegisterBlock>,
{
let (ptr, len) = (buf.as_ptr(), buf.len());
// todo: Impl these non-DMAMUx features.
// // L44 RM, Table 41. "DMA1 requests for each channel
// // todo: DMA2 support.
// #[cfg(any(feature = "f3", feature = "l4"))]
// let channel = match self.device {
// AdcDevice::One => DmaInput::Adc1.dma1_channel(),
// AdcDevice::Two => DmaInput::Adc2.dma1_channel(),
// _ => panic!("DMA on ADC beyond 2 is not supported. If it is for your MCU, please submit an issue \
// or PR on Github.")
// };
//
// #[cfg(feature = "l4")]
// match self.device {
// AdcDevice::One => dma.channel_select(DmaInput::Adc1),
// AdcDevice::Two => dma.channel_select(DmaInput::Adc2),
// _ => unimplemented!(),
// }
// To configure the audio subblock for DMA transfer, set DMAEN bit in the SAI_xCR1 register.
// The DMA request is managed directly by the FIFO controller depending on the FIFO
// threshold level (for more details refer to Section 51.4.9: Internal FIFOs). DMA transfer
// direction is linked to the SAI audio subblock configuration:
// • If the audio block operates as a transmitter, the audio block FIFO controller outputs a
// DMA request to load the FIFO with data written in the SAI_xDR register.
// • If the audio block is operates as a receiver, the DMA request is related to read
// operations from the SAI_xDR register.
match sai_channel {
SaiChannel::A => self.regs.cha.cr1.modify(|_, w| w.dmaen().set_bit()),
SaiChannel::B => self.regs.chb.cr1.modify(|_, w| w.dmaen().set_bit()),
}
// Follow the sequence below to configure the SAI interface in DMA mode:
// 1. Configure SAI and FIFO threshold levels to specify when the DMA request will be
// launched.
// todo!
// 2. Configure SAI DMA channel. (handled by `dma.cfg_channel`)
// 3. Enable the DMA. (handled by `dma.cfg_channel`)
let periph_addr = match sai_channel {
SaiChannel::A => &self.regs.cha.dr as *const _ as u32,
SaiChannel::B => &self.regs.chb.dr as *const _ as u32,
};
#[cfg(feature = "h7")]
let len = len as u32;
#[cfg(not(feature = "h7"))]
let len = len as u16;
dma.cfg_channel(
dma_channel,
periph_addr,
ptr as u32,
len,
dma::Direction::ReadFromMem,
dma::DataSize::S32, // todo?
dma::DataSize::S32, // todo?
channel_cfg,
);
// 4. Enable the SAI interface. (handled by `Sai::enable() in user code`.)
}
/// Read data from SAI with DMA. H743 RM, section 51.4.16: SAI DMA Interface.
/// To free the CPU and to optimize bus bandwidth, each SAI audio block has an independent
/// DMA interface to read/write from/to the SAI_xDR register (to access the internal FIFO).
/// There is one DMA channel per audio subblock supporting basic DMA request/acknowledge
/// protocol.
#[cfg(not(any(feature = "g0", feature = "f4", feature = "l5")))]
pub unsafe fn read_dma<D>(
&mut self,
buf: &mut [u32], // todo size?
sai_channel: SaiChannel,
dma_channel: DmaChannel,
channel_cfg: ChannelCfg,
dma: &mut Dma<D>,
) where
D: Deref<Target = dma_p::RegisterBlock>,
{
let (ptr, len) = (buf.as_mut_ptr(), buf.len());
// See commends on `write_dma`.
// todo: Impl these non-DMAMUx features.
// // L44 RM, Table 41. "DMA1 requests for each channel
// // todo: DMA2 support.
// #[cfg(any(feature = "f3", feature = "l4"))]
// let channel = match self.device {
// AdcDevice::One => DmaInput::Adc1.dma1_channel(),
// AdcDevice::Two => DmaInput::Adc2.dma1_channel(),
// _ => panic!("DMA on ADC beyond 2 is not supported. If it is for your MCU, please submit an issue \
// or PR on Github.")
// };
//
// #[cfg(feature = "l4")]
// match self.device {
// AdcDevice::One => dma.channel_select(DmaInput::Adc1),
// AdcDevice::Two => dma.channel_select(DmaInput::Adc2),
// _ => unimplemented!(),
// }
match sai_channel {
SaiChannel::A => self.regs.cha.cr1.modify(|_, w| w.dmaen().set_bit()),
SaiChannel::B => self.regs.chb.cr1.modify(|_, w| w.dmaen().set_bit()),
}
let periph_addr = match sai_channel {
SaiChannel::A => &self.regs.cha.dr as *const _ as u32,
SaiChannel::B => &self.regs.chb.dr as *const _ as u32,
};
#[cfg(feature = "h7")]
let len = len as u32;
#[cfg(not(feature = "h7"))]
let len = len as u16;
dma.cfg_channel(
dma_channel,
periph_addr,
ptr as u32,
len,
dma::Direction::ReadFromPeriph,
dma::DataSize::S32, // todo?
dma::DataSize::S32, // todo?
channel_cfg,
);
// 4. Enable the SAI interface. (handled by `Sai::enable() in user code`.)
}
/// Enable a specific type of interrupt. See L4 RM, Table 220: "SAI interrupt sources".
pub fn enable_interrupt(&mut self, interrupt_type: SaiInterrupt, channel: SaiChannel) {
// Disable the UART to allow writing the `add` and `addm7` bits
// L4 RM: Follow the sequence below to enable an interrupt:
// 1. Disable SAI interrupt.
// 2. Configure SAI.
// 3. Configure SAI interrupt source.
// 4. Enable SAI.
//todo: Does that mean we need to disable and re-enable SAI here?
match channel {
SaiChannel::A => {
self.regs.cha.im.modify(|_, w| match interrupt_type {
SaiInterrupt::Freq => w.freqie().set_bit(),
SaiInterrupt::Ovrudr => w.ovrudrie().set_bit(),
SaiInterrupt::AfsDet => w.afsdetie().set_bit(),
SaiInterrupt::LfsDet => w.lfsdetie().set_bit(),
SaiInterrupt::CnRdy => w.cnrdyie().set_bit(),
SaiInterrupt::MuteDet => w.mutedetie().set_bit(),
SaiInterrupt::WckCfg => w.wckcfgie().set_bit(),
});
}
SaiChannel::B => {
self.regs.chb.im.modify(|_, w| match interrupt_type {
SaiInterrupt::Freq => w.freqie().set_bit(),
SaiInterrupt::Ovrudr => w.ovrudrie().set_bit(),
SaiInterrupt::AfsDet => w.afsdetie().set_bit(),
SaiInterrupt::LfsDet => w.lfsdetie().set_bit(),
SaiInterrupt::CnRdy => w.cnrdyie().set_bit(),
SaiInterrupt::MuteDet => w.mutedetie().set_bit(),
SaiInterrupt::WckCfg => w.wckcfgie().set_bit(),
});
}
}
}
/// Clears the interrupt pending flag for a specific type of interrupt.
pub fn clear_interrupt(&mut self, interrupt_type: SaiInterrupt, channel: SaiChannel) {
// todo
match interrupt_type {
SaiInterrupt::Freq => {}
SaiInterrupt::Ovrudr => {}
SaiInterrupt::AfsDet => {}
SaiInterrupt::LfsDet => {}
SaiInterrupt::CnRdy => {}
SaiInterrupt::MuteDet => {}
SaiInterrupt::WckCfg => {}
}
}
}