1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
//! Serial audio interface (SAI) support, for digital audio input and output. Used for I2S, PCM/DSP, TDM,
//! AC'97 etc. See L443 Reference Manual, section 41, or H743 RM, section 51.

use core::ops::Deref;

#[cfg(any(feature = "f3", feature = "l4"))]
use crate::dma::DmaInput;
#[cfg(not(any(feature = "f4", feature = "l552")))]
use crate::dma::{self, ChannelCfg, Dma, DmaChannel};
#[cfg(feature = "g0")]
use crate::pac::dma as dma_p;
#[cfg(any(
    feature = "f3",
    feature = "l4",
    feature = "l5",
    feature = "g4",
    feature = "h7",
    feature = "wb"
))]
use crate::pac::dma1 as dma_p;
#[cfg(feature = "g4")]
use crate::pac::sai;
#[cfg(not(any(feature = "g4", feature = "h7")))]
use crate::pac::sai1 as sai;
#[cfg(feature = "h7")]
use crate::pac::sai4 as sai;
use crate::{clocks::Clocks, pac::RCC, util::RccPeriph};

#[derive(Clone, Copy)]
#[repr(u8)]
/// Select Master or Slave mode. Sets xCR1 register, MODE field.
/// The audio subblock can be a transmitter or receiver, in master or slave mode. The master
/// mode means the SCK_x bit clock and the frame synchronization signal are generated from
/// the SAI, whereas in slave mode, they come from another external or internal master. There
/// is a particular case for which the FS signal direction is not directly linked to the master or
/// slave mode definition. In AC’97 protocol, it will be an SAI output even if the SAI (link
/// controller) is set-up to consume the SCK clock (and so to be in Slave mode).
pub enum SaiMode {
    /// The SAI delivers the timing signals to the external connected device:
    /// The bit clock and the frame synchronization are output on pin SCK_x and FS_x,
    /// respectively. Both SCK_x, FS_x and MCLK_x are configured as outputs.
    /// If needed, the SAI can also generate a master clock on MCLK_x pin.
    MasterTransmitter = 0b00,
    MasterReceiver = 0b01,
    /// The SAI expects to receive timing signals from an external device.
    /// If the SAI subblock is configured in asynchronous mode, then SCK_x and FS_x pins
    /// are configured as inputs.
    /// If the SAI subblock is configured to operate synchronously with another SAI interface or
    /// with the second audio subblock, the corresponding SCK_x and FS_x pins are left free
    /// to be used as general purpose I/Os.
    SlaveTransmitter = 0b10,
    SlaveReceiver = 0b11,
}

#[derive(Clone, Copy)]
#[repr(u8)]
/// Select Stereo or Mono mode. Sets xCR1 register, MONO field.
pub enum Mono {
    Stereo = 0,
    Mono = 1,
}

#[derive(Clone, Copy)]
#[repr(u8)]
/// Select if signals generated by SAI change on SCK rising, or falling edge. Sets xCR1 register,
/// CKSTR field.
pub enum ClockStrobe {
    /// Signals generated by the SAI change on SCK rising edge, while signals received by the SAI are
    /// sampled on the SCK falling edge.
    TransmitRisingEdge = 0,
    /// Signals generated by the SAI change on SCK falling edge, while signals received by the SAI are
    /// sampled on the SCK rising edge.
    TransmitFallingEdge = 1,
}

#[derive(Clone, Copy)]
#[repr(u8)]
/// Frame synchronization offset.
/// Depending on the audio protocol targeted in the application, the Frame synchronization
/// signal can be asserted when transmitting the last bit or the first bit of the audio frame (this is
/// the case in I2S standard protocol and in MSB-justified protocol, respectively).
/// Sets FRCR register, FSOFF field.
pub enum FsOffset {
    /// FS is asserted on the first bit of the slot 0.
    FirstBit = 0,
    /// FS is asserted one bit before the first bit of the slot 0
    BeforeFirstBit = 1,
}

#[derive(Clone, Copy)]
#[repr(u8)]
/// This bit is set and cleared by software. It is used to configure the level of the start of frame on the FS
/// signal. It is meaningless and is not used in AC’97 or SPDIF audio block configuration.
/// This bit must be configured when the audio block is disabled.
/// Sets FRCR register, FSPOL field.
pub enum FsPolarity {
    /// FS is active low (falling edge)
    ActiveLow = 0,
    /// FS is active high (rising edge)
    ActiveHigh = 1,
}

#[derive(Clone, Copy)]
#[repr(u8)]
/// Set Where the signal is in the frame. Sets FRCR register, FSDEF field.
pub enum FsSignal {
    /// Start of frame, like for instance the PCM/DSP, TDM, AC’97, audio protocols.
    /// Sets FRCR register, FSDEF field.
    Frame = 0,
    /// Start of frame and channel side identification within the audio frame like for the I2S,
    /// the MSB or LSB-justified protocols.
    FrameAndChannel = 1,
}

#[derive(Clone, Copy)]
#[repr(u8)]
/// Set which bit is transmitted first: Least significant, or Most significant. You may have to
/// choose the one used by your SAI device. Sets xCR1 register, LSBFIRST field.
pub enum FirstBit {
    /// Data are transferred with MSB first
    MsbFirst = 0,
    /// Data are transferred with LSB first
    LsbFirst = 1,
}

#[derive(Clone, Copy)]
#[repr(u8)]
/// Select the number of connected PDM mics. It is possible to select
/// between 2,4,6 or 8 microphones. For example, if the application is using 3 microphones, the
/// user has to select 4.
/// Sets PDMCR register, MICNBR field.
pub enum NumPdmMics {
    /// Configuration with 2 microphones
    N2 = 0b00,
    /// Configuration with 4 microphones
    N4 = 0b01,
    /// Configuration with 6 microphones
    N6 = 0b10,
    /// Configuration with 8 microphones
    N7 = 0b11,
}

#[derive(Clone, Copy)]
#[repr(u8)]
/// FIFO threshold. Affects xCR2 reg, FTH field. Affects when SAI interrupts, and
/// DMA transfers occur.
pub enum FifoThresh {
    /// FIFO empty (transmitter and receiver modes)
    Empty = 0b000,
    /// FIFO ≤ ¼ but not empty (transmitter mode), FIFO < ¼ but not empty (receiver mode)
    T1_4 = 0b001,
    /// ¼ < FIFO ≤ ½ (transmitter mode), ¼ ≤ FIFO < ½ (receiver mode)
    T1_2 = 0b010,
    /// ½ < FIFO ≤ ¾ (transmitter mode), ½ ≤ FIFO < ¾ (receiver mode)
    T3_4 = 0b011,
    /// ¾ < FIFO but not full (transmitter mode), ¾ ≤ FIFO but not full (receiver mode)
    T3_4B = 0b100,
    /// FIFO full (transmitter and receiver modes)
    Full = 0b101,
}

#[derive(Clone, Copy)]
#[repr(u8)]
/// Oversampling ratio for master clock. You may have to
/// choose the one used by your SAI device. Sets xCR1 register, OSR field.
pub enum OversamplingRatio {
    /// Master clock frequency = F_FS x 256
    FMul256 = 0,
    /// Master clock frequency = F_FS x 512
    FMul512 = 1,
}

#[derive(Clone, Copy)]
#[repr(u8)]
/// Specify wheather sub-clocks A and B are synchronized. Sets xCR1 register, SYNCEN field.
pub enum SyncMode {
    /// Audio sub-block in asynchronous mode
    Async = 0b00,
    /// Audio sub-block is synchronous with the other internal audio sub-block. In this case, the audio
    /// sub-block must be configured in slave mode
    Sync = 0b01,
    /// Audio subblock is synchronous with an external SAI embedded peripheral. In this case the audio
    /// subblock should be configured in Slave mode.
    SyncExternal = 0b10, // todo: May only be valid for some MCUs, eg ones with multiple SAI devices.
}

#[cfg(not(feature = "l4"))]
#[derive(Clone, Copy)]
#[repr(u8)]
/// Synchronization outputs. Sets xGCR register, SYNCOUT field. Must be set when SAI is diabled.
/// Not block specific.
pub enum SyncOut {
    /// No synchronization output signals. SYNCOUT[1:0] should be configured as “No synchronization
    /// output signals” when audio block is configured as SPDIF
    NoSync = 0b00,
    /// Block A used for further synchronization for others SAI
    BlockA = 0b01,
    ///  Block B used for further synchronization for others SAI
    BlockB = 0b10,
}

#[cfg(not(feature = "l4"))]
#[derive(Clone, Copy)]
#[repr(u8)]
/// Synchronization inputs. Sets xGCR register, SYNCIn field. Must be set when SAI is diabled.
/// Not block specific. Syncs this SAI peripheral with the one specified here, if `sync_mode` is
/// configured as `SyncExternal`. The block synchronized with is controlled by that SAI's `sync_out`
/// setting.
pub enum SyncIn {
    /// Sync with SAI1 as master.
    Sai1 = 0,
    /// Sync with SAI2 as master.
    Sai2 = 1,
    /// Sync with SAI3 as master.
    Sai3 = 2,
    /// Sync with SAI4 as master.
    Sai4 = 3,
}

#[derive(Clone, Copy)]
#[repr(u8)]
/// Select the audio protocol to use. xCR1 register, PRTCFG field.
pub enum Protocol {
    /// Free protocol. Free protocol allows to use the powerful configuration of the audio block to
    /// address a specific audio protocol (such as I2S, LSB/MSB justified, TDM, PCM/DSP...) by setting
    /// most of the configuration register bits as well as frame configuration register.
    Free = 0b00,
    /// SPDIF protocol
    Spdif = 0b01,
    /// AC'97 protocol
    Ac97 = 0b10,
}

#[derive(Clone, Copy)]
#[repr(u8)]
/// Select the data size to use. xCR1 register, DS field.
pub enum DataSize {
    /// 8 bits
    S8 = 0b010,
    /// 10 bits
    S10 = 0b011,
    /// 16 bits
    S16 = 0b100,
    /// 20 bits
    S20 = 0b101,
    /// 24 bits
    S24 = 0b110,
    /// 32 bits
    S32 = 0b111,
}

#[derive(Clone, Copy)]
#[repr(u8)]
/// Select the slot size to use. xSLOTR register, SLOTSZ field.
pub enum SlotSize {
    /// The slot size is equivalent to the data size (specified in DS[3:0] in the SAI_xCR1 register)
    DataSize = 0b00,
    /// 16 bits
    S16 = 0b01,
    /// 32 bits
    S32 = 0b10,
}

#[derive(Clone, Copy)]
#[repr(u8)]
/// Select wheather the master clock is generated. xDR1 register, NOMCK field on H7.
/// on other variants such as WB, affects the MCKEN and NODIV fields (?).
pub enum MasterClock {
    // These bit values are for NOMCK, ie on H7. We use inverse logic when setting the bits
    // on other variants.
    /// (H7): Master clock generator is enabled
    Used = 0,
    /// (H7):  Master clock generator is disabled. The clock divider controlled by MCKDIV can still be used to
    /// generate the bit clock.
    NotUsed = 1,
}

#[derive(Clone, Copy)]
/// The type of SAI interrupt to configure. Reference Section 41.5 of the L4 RM.
/// Enabled in xIM register, yIE fields. See H743 RM, section 51.5: SAI interrupts.
pub enum SaiInterrupt {
    /// FIFO request interrupt enable. When this bit is set, an interrupt is generated if the FREQ bit in the SAI_xSR register is set.
    /// Since the audio block defaults to operate as a transmitter after reset, the MODE bit must be
    /// configured before setting FREQIE to avoid a parasitic interrupt in receiver mode
    Freq,
    /// When the audio block is configured as receiver, an overrun condition may appear if data are
    /// received in an audio frame when the FIFO is full and not able to store the received data. In
    /// this case, the received data are lost, the flag OVRUDR in the SAI_xSR register is set and an
    /// interrupt is generated if OVRUDRIE bit is set in the SAI_xIM register.
    ///
    /// An underrun may occur when the audio block in the SAI is a transmitter and the FIFO is
    /// empty when data need to be transmitted. If an underrun is detected, the slot number for
    /// which the event occurs is stored and MUTE value (00) is sent until the FIFO is ready to
    /// transmit the data corresponding to the slot for which the underrun was detected (refer to
    /// Figure 664). This avoids desynchronization between the memory pointer and the slot in the
    /// audio frame.
    Ovrudr,
    /// The AFSDET flag is used only in slave mode. It is never asserted in master mode. It
    /// indicates that a frame synchronization (FS) has been detected earlier than expected since
    /// the frame length, the frame polarity, the frame offset are defined and known.
    AfsDet,
    /// The LFSDET flag in the SAI_xSR register can be set only when the SAI audio block
    /// operates as a slave. The frame length, the frame polarity and the frame offset configuration
    /// are known in register SAI_xFRCR.
    LfsDet,
    /// The CNRDY flag in the SAI_xSR register is relevant only if the SAI audio block is configured
    /// to operate in AC’97 mode (PRTCFG[1:0] = 10 in the SAI_xCR1 register). If CNRDYIE bit is
    /// set in the SAI_xIM register, an interrupt is generated when the CNRDY flag is set.
    /// CNRDY is asserted when the Codec is not ready to communicate during the reception of
    /// the TAG 0 (slot0) of the AC’97 audio frame.
    CnRdy,
    /// Mute detection
    MuteDet,
    /// When the audio block operates as a master (MODE[1] = 0) and NOMCK bit is equal to 0,
    /// the WCKCFG flag is set as soon as the SAI is enabled if the following conditions are met:
    /// • (FRL+1) is not a power of 2, and
    /// • (FRL+1) is not between 8 and 256.
    /// MODE, NOMCK, and SAIEN bits belong to SAI_xCR1 register and FRL to SAI_xFRCR
    /// register.
    WckCfg,
}

#[derive(Clone, Copy)]
pub enum SaiChannel {
    A,
    B,
}

/// Configuration for the SAI peripheral. Mainly affects the ACR and BCR registers.
/// Used for either channel. For details, see documentation of individual structs and fields.
/// You may be forced into certain settings based on the device used.
#[derive(Clone)]
pub struct SaiConfig {
    pub mode: SaiMode,
    /// Select protocols between Free, Ac'97, and SPDIF. Defaults to Free.
    pub protocol: Protocol,
    /// Select mono or stereo modes. Default to mono.
    pub mono: Mono,
    /// An audio subblock can be configured to operate synchronously with the second audio
    /// subblock in the same SAI. In this case, the bit clock and the frame synchronization signals
    /// are shared to reduce the number of external pins used for the communication. Default to async.
    pub sync: SyncMode,
    /// Used for synchronization with other SAI blocks and peripherals. Set this using the A config.
    /// Controls which block is the master synchronization signal for other SAI peripherals.
    #[cfg(not(feature = "l4"))]
    pub sync_out: SyncOut,
    /// Used for synchronization with other SAI blocks and peripherals. Set this using the A config.
    /// Configurd to sync with SAI1, if syncmode is external.
    #[cfg(not(feature = "l4"))]
    pub sync_in: SyncIn,
    /// Clock strobing edge. Defaults to Signals generated by the SAI change on SCK rising edge, while signals received by the SAI are
    /// sampled on the SCK falling edge
    pub clock_strobe: ClockStrobe,
    /// Size of the data in the slot. Defaults to 24-bit.
    pub datasize: DataSize,
    /// Size of the slot; can be 16 or 32 bits. Defaults to the same or larger for the data size.
    pub slotsize: SlotSize,
    /// Select wheather the master clock out is enabled, eg for syncing external devices. Defaults
    /// to disabled.
    pub master_clock: MasterClock,
    pub first_bit: FirstBit,
    pub oversampling_ratio: OversamplingRatio,
    /// Define the audio frame length expressed in number
    /// of SCK clock cycles: the number of bits in the frame is equal to FRL[7:0] + 1.
    /// The minimum number of bits to transfer in an audio frame must be equal to 8, otherwise the audio
    /// block will behaves in an unexpected way. This is the case when the data size is 8 bits and only one
    /// slot 0 is defined in NBSLOT[4:0] of SAI_xSLOTR register (NBSLOT[3:0] = 0000).
    /// In master mode, if the master clock (available on MCLK_x pin) is used, the frame length should be
    /// aligned with a number equal to a power of 2, ranging from 8 to 256. When the master clock is not
    /// used (NOMCK = 1), it is recommended to program the frame length to an value ranging from 8 to
    /// 256.
    pub frame_length: u16, // u16 to allow the value of 256.
    pub fs_offset: FsOffset,
    /// Active high, or active low polarity. Defaults to active high.
    pub fs_polarity: FsPolarity,
    /// Start of frame. Default to frame and channel.
    pub fs_signal: FsSignal,
    /// Number of slots. Defaults to 2.
    pub num_slots: u8,
    /// The FIFO threshold configures when the FREQ interrupt is generated based on how full
    /// the FIFO is.
    pub fifo_thresh: FifoThresh,
    /// These bits are set and cleared by software.
    /// The value set in this bitfield defines the position of the first data transfer bit in the slot. It represents
    /// an offset value. In transmission mode, the bits outside the data field are forced to 0. In reception
    /// mode, the extra received bits are discarded.
    /// These bits must be set when the audio block is disabled.
    /// They are ignored in AC’97 or SPDIF mode.
    pub first_bit_offset: u8,
    /// Enable Pulse Density Modulation (PDM) functionality, eg for digital microphones.
    /// See the relevant ST Application note: AN5027
    pub pdm_mode: bool,
    /// The number of connected PDM mics, if applicable. Defualts to 2.
    pub num_pdm_mics: NumPdmMics,
    /// Which PDM CK line to enable. Must be 1-4. Defaults to 1. (CK1 in User manuals)
    pub pdm_clock_used: u8,
    /// Master clock divider. Divides the kernel clock input. Defaults to 0, for no division.
    pub mckdiv: u8,
}

impl Default for SaiConfig {
    fn default() -> Self {
        Self {
            mode: SaiMode::MasterTransmitter,
            protocol: Protocol::Free,
            mono: Mono::Stereo,
            sync: SyncMode::Async,
            #[cfg(not(feature = "l4"))]
            sync_out: SyncOut::NoSync,
            #[cfg(not(feature = "l4"))]
            sync_in: SyncIn::Sai1,
            clock_strobe: ClockStrobe::TransmitRisingEdge,
            datasize: DataSize::S24,
            slotsize: SlotSize::DataSize,
            master_clock: MasterClock::NotUsed,
            first_bit: FirstBit::MsbFirst,
            oversampling_ratio: OversamplingRatio::FMul256,
            frame_length: 64,
            // fs_level_len: 32, // For now, we always use frame_length / 2, for 50% duty cycle.
            fs_offset: FsOffset::FirstBit,
            fs_polarity: FsPolarity::ActiveHigh,
            fs_signal: FsSignal::FrameAndChannel, // Use FrameAndChannel for I2S.
            num_slots: 2,
            first_bit_offset: 0,
            fifo_thresh: FifoThresh::T1_4,
            pdm_mode: false,
            num_pdm_mics: NumPdmMics::N2,
            pdm_clock_used: 1,
            mckdiv: 0,
        }
    }
}

// todo: Populate these presets
impl SaiConfig {
    /// Default configuration for I2S.
    pub fn i2s_preset() -> Self {
        Self {
            // Use our default of 2 slots, and a frame length of 64 bits, to allow for up
            // to 32 bits per slot.
            // We also use our default fifo thresh of 1/4 of the total size of 8 words,
            // ie 1 word per channel
            // Note that we include some settings here that are present in default,
            // for explicitness. (ie required by I2S, but perhaps arbitrary in default)
            first_bit: FirstBit::MsbFirst,
            // H743 RM: Frame schronization offset: Depending on the audio protocol targeted in the
            // application, the Frame synchronization signal can be asserted when transmitting
            // the last bit or the first bit of the audio frame (this is the case in I2S standard
            // protocol and in MSB-justified protocol, respectively)
            fs_offset: FsOffset::BeforeFirstBit,
            // RM: this bit has to be set for I2S or MSB/LSB-justified protocols.
            fs_signal: FsSignal::FrameAndChannel,
            protocol: Protocol::Free,
            datasize: DataSize::S24,
            frame_length: 64,
            num_slots: 2,
            // From the INMP441 datasheet: The default data format is I²S (two’s complement), MSB-first.
            // In this format, the MSB of each word is delayed by one SCK cycle from
            // the start of each half-frame
            // Note that this is already handled by by `fs_offset`.
            first_bit_offset: 0,
            fifo_thresh: FifoThresh::T1_4,
            pdm_mode: false,

            ..Default::default()
        }
    }

    /// Default configuration for TDM. Configures an I2S-style delay of 1 between FS and
    /// data start. Configures the FS signal to be a pulse indicating frame start. Sets
    /// window length based on data size and number of slots.
    pub fn tdm_preset(num_slots: u8, slotsize: SlotSize) -> Self {
        // let frame_length = match datasize {
        //     DataSize::S8 => 8 * num_slots as u16,
        //     DataSize::S10 => 10 * num_slots as u16,
        //     DataSize::S16 => 16 * num_slots as u16,
        //     DataSize::S20 => 20 * num_slots as u16,
        //     DataSize::S24 => 24 * num_slots as u16,
        //     DataSize::S32 => 32 * num_slots as u16,
        // };

        let frame_length = match slotsize {
            SlotSize::S16 => 16 * num_slots as u16,
            SlotSize::S32 => 32 * num_slots as u16,
            SlotSize::DataSize => panic!(),
        };

        Self {
            first_bit: FirstBit::MsbFirst,
            fs_offset: FsOffset::BeforeFirstBit,
            fs_signal: FsSignal::Frame,
            protocol: Protocol::Free,
            slotsize,
            frame_length,
            num_slots,
            first_bit_offset: 0,
            // todo: Smartly set up fifo thresh based on number of slots?
            fifo_thresh: FifoThresh::Full,
            pdm_mode: false,

            ..Default::default()
        }
    }

    /// Default configuration for PDM microphones. See H743 RM, Table 422. TDM settings.
    /// See table 423 for how to configure Frame Length, and number of slots.
    /// This default configures for 48kHz sample rate, assuming 3.072Mhz SAI clock,
    /// and 1 slots of 16 bits per frame. If using something else, see Table 423, and
    /// modify as required.
    pub fn pdm_mic_preset(num_mics: NumPdmMics, clock_used: u8) -> Self {
        Self {
            // These first settings (up to `pdm_mode1) are taken directly from Table 422.
            //Mode must be MASTER receiver
            mode: SaiMode::MasterReceiver,

            // Free protocol for TDM
            protocol: Protocol::Free,
            // Signal transitions occur on the rising edge of the SCK_A bit clock. Signals
            // are stable on the falling edge of the bit clock.
            clock_strobe: ClockStrobe::TransmitRisingEdge,
            mono: Mono::Stereo,
            // Note: FSALL is set to 0, to set Pulse width is one bit clock cycle.
            // We handle that directly in `new()`.
            // FS signal is a start of frame
            fs_signal: FsSignal::Frame,
            // FS is active High
            fs_polarity: FsPolarity::ActiveHigh,
            // FS is asserted on the first bit of slot 0
            fs_offset: FsOffset::FirstBit,
            // No offset on slot
            first_bit_offset: 0,
            master_clock: MasterClock::NotUsed,

            // These next 3 settings may depend on master clock speed, sample rate, and number
            // of mics. See table 423.
            // This is currently set for 2 mics, 1 slot of 16-bits per frame.
            // 3.072Mhz SAI freq.
            // RM: FRL = (16 x (MICNBR + 1)) - 1
            frame_length: (16 * (num_mics as u8 as u16 + 1)) - 1,
            // todo: Make these more flexible instead of hard-coded
            datasize: DataSize::S16,
            num_slots: 1,
            fifo_thresh: FifoThresh::Empty,

            pdm_mode: true,
            num_pdm_mics: num_mics,
            pdm_clock_used: clock_used,
            ..Default::default()
        }
    }

    /// Default configuration for AC'97
    pub fn ac97_preset() -> Self {
        Self {
            protocol: Protocol::Ac97,
            // Start of frame, like for instance the PCM/DSP, TDM, AC’97 audio protocols,
            fs_signal: FsSignal::Frame,
            // Note that AC97 uses 13 slots, but with the AC97 protocol set, the slots setting is
            // ignored.
            ..Default::default()
        }
    }

    /// Default configuration for SPDIF
    pub fn spdif_preset() -> Self {
        Self {
            protocol: Protocol::Spdif,
            ..Default::default()
        }
    }
}

/// Represents the Serial Audio Interface (SAI) peripheral, used for digital audio
/// input and output.
pub struct Sai<R> {
    pub regs: R,
    config_a: SaiConfig,
    config_b: SaiConfig,
}

impl<R> Sai<R>
where
    R: Deref<Target = sai::RegisterBlock> + RccPeriph,
{
    /// Initialize a SAI peripheral, including  enabling and resetting
    /// its RCC peripheral clock.
    pub fn new(regs: R, config_a: SaiConfig, config_b: SaiConfig, _clocks: &Clocks) -> Self {
        let rcc = unsafe { &(*RCC::ptr()) };
        R::en_reset(rcc);

        // todo: Do we always want to configure and enable both A and B?

        // Set the master clock divider.

        // See H7 RM, Table 421.

        // mckdiv = SAI clock / (sampling freq * 256) ?? (512 for oversampling?)

        // with NOMCK = 1: (No master clock)
        // F_SCK = F_sai_ker_ck / MCKDIV
        // F_FS = F_sai_ker_ck / ((FRL + 1) * MCKDIV)

        // 6-bit fields.
        assert!(config_a.mckdiv <= 0b111111);
        assert!(config_b.mckdiv <= 0b111111);

        // For info on modes, reference H743 RM, section 51.4.3: "Configuring and
        // Enabling SAI modes".
        regs.cha().cr1.modify(|_, w| unsafe {
            w.mode().bits(config_a.mode as u8);
            w.prtcfg().bits(config_a.protocol as u8);
            w.mono().bit(config_a.mono as u8 != 0);
            w.syncen().bits(config_a.sync as u8);
            w.ckstr().bit(config_a.clock_strobe as u8 != 0);
            // The NOMCK bit of the SAI_xCR1 register is used to define whether the master clock is
            // generated or not.
            // Inversed polarity on non-H7 based on how we have `MasterClock` enabled.
            #[cfg(not(any(feature = "h7", feature = "l4", feature = "l5")))]
            w.mcken().bit(config_a.master_clock as u8 == 0);
            #[cfg(feature = "h7")]
            // Due to an H743v PAC error, xCR bit 19 is called NODIV (Which is how it is on other platforms).
            // This is actually the NOMCK bit.
            // todo: NODIV may need to be set by the user and presets - not hard-set like this!
            w.nodiv().bit(config_a.master_clock as u8 != 0);
            // The audio frame can target different data sizes by configuring bit DS[2:0] in the SAI_xCR1
            // register. The data sizes may be 8, 10, 16, 20, 24 or 32 bits. During the transfer, either the
            // MSB or the LSB of the data are sent first, depending on the configuration of bit LSBFIRST in
            // the SAI_xCR1 register.
            w.ds().bits(config_a.datasize as u8);
            #[cfg(not(feature = "l4"))]
            w.osr().bit(config_a.oversampling_ratio as u8 != 0);
            // This bit is set and cleared by software. It must be configured when the audio block is disabled. This
            // bit has no meaning in AC’97 audio protocol since AC’97 data are always transferred with the MSB
            // first. This bit has no meaning in SPDIF audio protocol since in SPDIF data are always transferred
            // with LSB first
            w.lsbfirst().bit(config_a.first_bit as u8 != 0);
            w.mckdiv().bits(config_a.mckdiv)
        });
        // todo: MCKEN vice NOMCK?? Make sure your enum reflects how you handle it.

        // RM: External synchronization
        // The audio subblocks can also be configured to operate synchronously with another SAI.
        // This can be done as follow:
        // 1. The SAI, which is configured as the source from which the other SAI is synchronized,
        // has to define which of its audio subblock is supposed to provide the FS and SCK
        // signals to other SAI. This is done by programming SYNCOUT[1:0] bits.
        // 2. The SAI which shall receive the synchronization signals has to select which SAI will
        // provide the synchronization by setting the proper value on SYNCIN[1:0] bits. For each
        // of the two SAI audio subblocks, the user must then specify if it operates synchronously
        // with the other SAI via the SYNCEN bit.
        // Note: SYNCIN[1:0] and SYNCOUT[1:0] bits are located into the SAI_GCR register, and SYNCEN
        // bits into SAI_xCR1 register.
        //
        // If both audio subblocks in a given SAI need to be synchronized with another SAI, it is
        // possible to choose one of the following configurations:
        // • Configure each audio block to be synchronous with another SAI block through the
        // SYNCEN[1:0] bits.
        // • Configure one audio block to be synchronous with another SAI through the
        // SYNCEN[1:0] bits. The other audio block is then configured as synchronous with the
        // second SAI audio block through SYNCEN[1:0] bits.

        // We use config A's settings here, and ignore config B. These must be set with SAI disabled.
        #[cfg(not(any(feature = "l4", feature = "wb", feature = "g4")))]
        regs.gcr.modify(|_, w| unsafe {
            w.syncout().bits(config_a.sync_out as u8);
            w.syncin().bits(config_a.sync_in as u8)
        });

        regs.chb().cr1.modify(|_, w| unsafe {
            w.mode().bits(config_b.mode as u8);
            w.prtcfg().bits(config_b.protocol as u8);
            w.mono().bit(config_b.mono as u8 != 0);
            w.syncen().bits(config_b.sync as u8);
            w.ckstr().bit(config_b.clock_strobe as u8 != 0);
            #[cfg(not(any(feature = "h7", feature = "l4", feature = "l5")))]
            w.mcken().bit(config_b.master_clock as u8 == 0);
            #[cfg(feature = "h7")]
            w.nodiv().bit(config_b.master_clock as u8 != 0);
            w.ds().bits(config_b.datasize as u8);
            #[cfg(not(feature = "l4"))]
            w.osr().bit(config_b.oversampling_ratio as u8 != 0);
            w.lsbfirst().bit(config_b.first_bit as u8 != 0);
            w.mckdiv().bits(config_a.mckdiv)
        });

        // todo: Add this to config and don't hard-set.
        regs.cha().cr2.modify(|_, w| unsafe {
            w.comp().bits(0);
            w.cpl().clear_bit();
            #[cfg(feature = "wb")]
            w.mutecnt().bits(0); // rec only
            #[cfg(not(feature = "wb"))]
            w.muteval().clear_bit(); // xmitter only
            w.mute().clear_bit(); // xmitter only
            w.tris().clear_bit(); // xmitter only
                                  // The FIFO pointers can be reinitialized when the SAI is disabled by setting bit FFLUSH in the
                                  // SAI_xCR2 register. If FFLUSH is set when the SAI is enabled the data present in the FIFO
                                  // will be lost automatically.
            w.fflush().set_bit();
            // FIFO threshold
            w.fth().bits(config_a.fifo_thresh as u8)
        });

        regs.chb().cr2.modify(|_, w| unsafe {
            w.comp().bits(0);
            w.cpl().clear_bit();
            #[cfg(feature = "wb")]
            w.mutecnt().bits(0); // rec only
            #[cfg(not(feature = "wb"))]
            w.muteval().clear_bit(); // xmitter only
            w.mute().clear_bit(); // xmitter only
            w.tris().clear_bit(); // xmitter only
            w.fflush().set_bit();
            w.fth().bits(config_b.fifo_thresh as u8)
        });

        // The FS signal can have a different meaning depending on the FS function. FSDEF bit in the
        // SAI_xFRCR register selects which meaning it will have:
        // • 0: start of frame, like for instance the PCM/DSP, TDM, AC’97, audio protocols,
        // • 1: start of frame and channel side identification within the audio frame like for the I2S,
        // the MSB or LSB-justified protocols.
        // When the FS signal is considered as a start of frame and channel side identification within
        // the frame, the number of declared slots must be considered to be half the number for the left
        // channel and half the number for the right channel. If the number of bit clock cycles on half
        // audio frame is greater than the number of slots dedicated to a channel side, and TRIS = 0, 0
        // is sent for transmission for the remaining bit clock cycles in the SAI_xCR2 register.
        // Otherwise if TRIS = 1, the SD line is released to HI-Z. In reception mode, the remaining bit
        // clock cycles are not considered until the channel side changes.

        if config_a.frame_length < 8
            || config_b.frame_length < 8
            || config_a.frame_length > 256
            || config_b.frame_length > 256
        {
            panic!("Frame length must be bewteen 8 and 256")
        }

        let fsall_bits_a = if let FsSignal::Frame = config_a.fs_signal {
            0
        } else {
            // Hard-set a 50% duty cycle. Don't think this is a safe assumption? Send in an issue
            // or PR.
            (config_a.frame_length / 2) as u8 - 1
        };

        let fsall_bits_b = if let FsSignal::Frame = config_a.fs_signal {
            0
        } else {
            // Hard-set a 50% duty cycle. Don't think this is a safe assumption? Send in an issue
            // or PR.
            (config_a.frame_length / 2) as u8 - 1
        };

        // The audio frame length can be configured to up to 256 bit clock cycles, by setting
        // FRL[7:0] field in the SAI_xFRCR register.
        regs.cha().frcr.modify(|_, w| unsafe {
            w.fsoff().bit(config_a.fs_offset as u8 != 0);
            w.fspol().bit(config_a.fs_polarity as u8 != 0);
            w.fsdef().bit(config_a.fs_signal as u8 != 0);
            w.fsall().bits(fsall_bits_a);
            w.frl().bits((config_a.frame_length - 1) as u8)
        });

        regs.chb().frcr.modify(|_, w| unsafe {
            w.fsoff().bit(config_a.fs_offset as u8 != 0);
            w.fspol().bit(config_b.fs_polarity as u8 != 0);
            w.fsdef().bit(config_b.fs_signal as u8 != 0);
            w.fsall().bits(fsall_bits_b);
            w.frl().bits((config_b.frame_length - 1) as u8)
        });

        assert!(config_a.first_bit_offset <= 0b11111);
        assert!(config_b.first_bit_offset <= 0b11111);

        // Each SLOTEN bit corresponds to a slot position from 0 to 15 (maximum 16 slots).
        // So, to enable the first 2 slots, we set 0b11. The code below calculates this.
        let slot_en_bits = 2_u16.pow(config_a.num_slots as u32) - 1;

        regs.cha().slotr.modify(|_, w| unsafe {
            w.sloten().bits(slot_en_bits);
            // The slot is the basic element in the audio frame. The number of slots in the audio frame is
            // equal to NBSLOT[3:0] + 1.
            w.nbslot().bits(config_a.num_slots - 1);
            // The slot size must be higher or equal to the data size. If this condition is not respected, the behavior
            // of the SAI will be undetermined.
            w.slotsz().bits(config_a.slotsize as u8);
            w.fboff().bits(config_a.first_bit_offset)
        });

        let slot_en_bits = 2_u16.pow(config_b.num_slots as u32) - 1;
        regs.chb().slotr.modify(|_, w| unsafe {
            w.sloten().bits(slot_en_bits);
            w.nbslot().bits(config_b.num_slots - 1);
            w.slotsz().bits(config_b.slotsize as u8);
            w.fboff().bits(config_b.first_bit_offset)
        });

        // The PDM function is intended to be used in conjunction with SAI_A subblock configured in
        // TDM master mode. It cannot be used with SAI_B subblock. The PDM interface uses the
        // timing signals provided by the TDM interface of SAI_A and adapts them to generate a
        // bitstream clock (SAI_CK[m]).

        // AN: The PDM function is intended to be used in conjunction with SAI_A sub-block, configured in
        // Time Division Multiplexing (TDM) master mode. It cannot be used with SAI_B sub-block

        // Enabling the PDM interface (H743 RM, section 51.4.10)
        // To enable the PDM interface, follow the sequence below:
        // 1. Configure SAI_A in TDM master mode (see Table 422).
        // (Above. Although we don't check this)
        // 2. Configure the PDM interface as follows:
        #[cfg(not(feature = "l4"))]
        if config_a.pdm_mode {
            assert!(config_a.pdm_clock_used <= 4 && config_a.pdm_clock_used >= 1);

            regs.pdmcr.modify(|_, w| unsafe {
                // a) Define the number of digital microphones via MICNBR.
                w.micnbr().bits(config_a.num_pdm_mics as u8);
                // b) Enable the bitstream clock needed in the application by setting the corresponding
                // bits on CKEN to 1.
                w.cken1().bit(config_a.pdm_clock_used == 1);
                w.cken2().bit(config_a.pdm_clock_used == 2);
                #[cfg(not(feature = "l5"))]
                w.cken3().bit(config_a.pdm_clock_used == 3);
                #[cfg(not(feature = "l5"))]
                w.cken4().bit(config_a.pdm_clock_used == 4);
                // 3. Enable the PDM interface, via PDMEN bit.
                w.pdmen().set_bit()
            })
        }

        // 4. Enable the SAI_A.
        // (Handled with the `enable()` function called by the user.)
        // Note: Once the PDM interface and SAI_A are enabled, the first 2 TDMA frames received on
        // SAI_ADR are invalid and shall be dropped.

        // Note that most register fields set in this initialization function must be done with
        // SAIEN disabled.

        Self {
            regs,
            config_a,
            config_b,
        }
    }

    /// Enable an audio subblock (channel).
    pub fn enable(&mut self, channel: SaiChannel) {
        // Each of the audio blocks in the SAI are enabled by SAIEN bit in the SAI_xCR1 register. As
        // soon as this bit is active, the transmitter or the receiver is sensitive to the activity on the
        // clock line, data line and synchronization line in slave mode.
        // In master TX mode, enabling the audio block immediately generates the bit clock for the
        // external slaves even if there is no data in the FIFO, However FS signal generation is
        // conditioned by the presence of data in the FIFO. After the FIFO receives the first data to
        // transmit, this data is output to external slaves. If there is no data to transmit in the FIFO, 0
        // values are then sent in the audio frame with an underrun flag generation.
        // In slave mode, the audio frame starts when the audio block is enabled and when a start of
        // frame is detected.
        // In Slave TX mode, no underrun event is possible on the first frame after the audio block is
        // enabled, because the mandatory operating sequence in this case is:
        // 1. Write into the SAI_xDR (by software or by DMA).
        // 2. Wait until the FIFO threshold (FLH) flag is different from 0b000 (FIFO empty).
        // 3. Enable the audio block in slave transmitter mode.

        match channel {
            SaiChannel::A => {
                // todo: Do we want to flush?
                self.regs.cha().cr2.modify(|_, w| w.fflush().set_bit());
                self.regs.cha().cr1.modify(|_, w| w.saien().set_bit());

                // Note: This read check only fires the WCKCFG bit if Master out is enabled.

                if self.regs.cha().sr.read().wckcfg().bit_is_set() {
                    panic!("Wrong clock configuration. Clock configuration does not respect the rule concerning
the frame length specification defined in Section 51.4.6: Frame synchronization (configuration of
FRL[7:0] bit in the SAI_xFRCR register)
This bit is used only when the audio block operates in master mode (MODE[1] = 0) and NOMCK = 0.
It can generate an interrupt if WCKCFGIE bit is set in SAI_xIM register");
                }
            }
            SaiChannel::B => {
                self.regs.chb().cr2.modify(|_, w| w.fflush().set_bit());
                self.regs.chb().cr1.modify(|_, w| w.saien().set_bit());

                if self.regs.chb().sr.read().wckcfg().bit_is_set() {
                    panic!("Wrong clock configuration. Clock configuration does not respect the rule concerning the frame length specification defined in
Section 51.4.6: Frame synchronization (configuration of FRL[7:0] bit in the SAI_xFRCR register)
This bit is used only when the audio block operates in master mode (MODE[1] = 0) and NOMCK = 0.
It can generate an interrupt if WCKCFGIE bit is set in SAI_xIM register");
                }
            }
        }
    }

    /// Disable an audio subblock (channel). See H743 RM, section 51.4.15.
    /// The SAI audio block can be disabled at any moment by clearing SAIEN bit in the SAI_xCR1
    /// register. All the already started frames are automatically completed before the SAI is stops
    /// working. SAIEN bit remains High until the SAI is completely switched-off at the end of the
    /// current audio frame transfer.
    /// If an audio block in the SAI operates synchronously with the other one, the one which is the
    /// master must be disabled first.
    pub fn disable(&mut self, channel: SaiChannel) {
        match channel {
            SaiChannel::A => self.regs.cha().cr1.modify(|_, w| w.saien().clear_bit()),
            SaiChannel::B => self.regs.chb().cr1.modify(|_, w| w.saien().clear_bit()),
        }
    }

    /// Read a word of data.
    pub fn read(&self, channel: SaiChannel) -> i32 {
        match channel {
            SaiChannel::A => self.regs.cha().dr.read().bits() as i32,
            SaiChannel::B => self.regs.chb().dr.read().bits() as i32,
        }
    }

    // /// Read 2 words of data from a channel: Left and Right channel, in that order.
    // pub fn read(&self, channel: SaiChannel) -> (u32, u32) {
    //     // // todo TEMP TS!
    //     let reading = self.regs.cha().dr.read().bits();
    //     return (reading, reading);
    //
    //     match channel {
    //         SaiChannel::A => (
    //             self.regs.cha().dr.read().bits(),
    //             self.regs.cha().dr.read().bits(),
    //         ),
    //         SaiChannel::B => (
    //             self.regs.chb().dr.read().bits(),
    //             self.regs.chb().dr.read().bits(),
    //         ),
    //     }
    // }

    /// Send 2 words of data to a single channel: Left and right channel, in that order.
    /// A write to the SR register loads the FIFO provided the FIFO is not full.
    pub fn write(&mut self, channel: SaiChannel, left_word: i32, right_word: i32) {
        match channel {
            SaiChannel::A => self
                .regs
                .cha()
                .dr
                .write(|w| unsafe { w.bits(left_word as u32).bits(right_word as u32) }),
            SaiChannel::B => self
                .regs
                .chb()
                .dr
                .write(|w| unsafe { w.bits(left_word as u32).bits(right_word as u32) }),
        }

        // todo: Why 2 words?
        // todo: Check FIFO level?

        // The FIFO is 8 words long. A write consists of 2 words, in stereo mode.
        // Therefore you need to wait for 3/4s to ensure 2 words are available for writing.
        // match audio_ch.sr.read().flvl().variant() {
        //     Val(sr::FLVL_A::FULL) => Err(nb::Error::WouldBlock),
        //     Val(sr::FLVL_A::QUARTER4) => Err(nb::Error::WouldBlock),
        //     _ => {
        //         unsafe {
        //             audio_ch.dr.write(|w| w.bits(left_word).bits(right_word));
        //         }
        //         Ok(())
        //     }
        // }
    }

    /// Send data over SAI with DMA. H743 RM, section 51.4.16: SAI DMA Interface.
    /// To free the CPU and to optimize bus bandwidth, each SAI audio block has an independent
    /// DMA interface to read/write from/to the SAI_xDR register (to access the internal FIFO).
    /// There is one DMA channel per audio subblock supporting basic DMA request/acknowledge
    /// protocol.
    /// Before configuring the SAI block, the SAI DMA channel must be disabled.
    #[cfg(not(any(feature = "f4", feature = "l552")))]
    pub unsafe fn write_dma<D>(
        &mut self,
        buf: &[i32], // todo size?
        sai_channel: SaiChannel,
        dma_channel: DmaChannel,
        channel_cfg: ChannelCfg,
        dma: &mut Dma<D>,
    ) where
        D: Deref<Target = dma_p::RegisterBlock>,
    {
        let (ptr, len) = (buf.as_ptr(), buf.len());

        // todo: DMA2 support.

        // L44 RM, Table 41. "DMA1 requests for each channel"
        #[cfg(any(feature = "f3", feature = "l4"))]
        let dma_channel = match sai_channel {
            SaiChannel::A => DmaInput::Sai1A.dma1_channel(),
            SaiChannel::B => DmaInput::Sai1B.dma1_channel(),
        };

        #[cfg(feature = "l4")]
        match sai_channel {
            SaiChannel::A => dma.channel_select(DmaInput::Sai1A),
            SaiChannel::B => dma.channel_select(DmaInput::Sai1B),
        };

        // To configure the audio subblock for DMA transfer, set DMAEN bit in the SAI_xCR1 register.
        // The DMA request is managed directly by the FIFO controller depending on the FIFO
        // threshold level (for more details refer to Section 51.4.9: Internal FIFOs). DMA transfer
        // direction is linked to the SAI audio subblock configuration:
        // • If the audio block operates as a transmitter, the audio block FIFO controller outputs a
        // DMA request to load the FIFO with data written in the SAI_xDR register.
        // • If the audio block is operates as a receiver, the DMA request is related to read
        // operations from the SAI_xDR register.
        match sai_channel {
            SaiChannel::A => self.regs.cha().cr1.modify(|_, w| w.dmaen().set_bit()),
            SaiChannel::B => self.regs.chb().cr1.modify(|_, w| w.dmaen().set_bit()),
        }

        // Follow the sequence below to configure the SAI interface in DMA mode:
        // 1. Configure SAI and FIFO threshold levels to specify when the DMA request will be
        // launched.
        // (Set in `new`).
        // 2. Configure SAI DMA channel. (handled by `dma.cfg_channel`)
        // 3. Enable the DMA. (handled by `dma.cfg_channel`)

        let periph_addr = match sai_channel {
            SaiChannel::A => &self.regs.cha().dr as *const _ as u32,
            SaiChannel::B => &self.regs.chb().dr as *const _ as u32,
        };

        #[cfg(feature = "h7")]
        let len = len as u32;
        #[cfg(not(feature = "h7"))]
        let len = len as u16;

        let cfg_datasize = match sai_channel {
            SaiChannel::A => self.config_a.datasize,
            SaiChannel::B => self.config_b.datasize,
        };

        let datasize = match cfg_datasize {
            DataSize::S8 => dma::DataSize::S8,
            DataSize::S10 => dma::DataSize::S16,
            DataSize::S16 => dma::DataSize::S16,
            _ => dma::DataSize::S32,
        };

        dma.cfg_channel(
            dma_channel,
            periph_addr,
            ptr as u32,
            len,
            dma::Direction::ReadFromMem,
            datasize,
            datasize,
            channel_cfg,
        );

        // 4. Enable the SAI interface. (handled by `Sai::enable() in user code`.)
    }

    /// Read data from SAI with DMA. H743 RM, section 51.4.16: SAI DMA Interface.
    /// To free the CPU and to optimize bus bandwidth, each SAI audio block has an independent
    /// DMA interface to read/write from/to the SAI_xDR register (to access the internal FIFO).
    /// There is one DMA channel per audio subblock supporting basic DMA request/acknowledge
    /// protocol.
    #[cfg(not(any(feature = "f4", feature = "l552")))]
    pub unsafe fn read_dma<D>(
        &mut self,
        buf: &mut [i32], // todo size?
        sai_channel: SaiChannel,
        dma_channel: DmaChannel,
        channel_cfg: ChannelCfg,
        dma: &mut Dma<D>,
    ) where
        D: Deref<Target = dma_p::RegisterBlock>,
    {
        let (ptr, len) = (buf.as_mut_ptr(), buf.len());

        // See commends on `write_dma`.

        // L44 RM, Table 41. "DMA1 requests for each channel
        // todo: DMA2 support.

        #[cfg(any(feature = "f3", feature = "l4"))]
        let dma_channel = match sai_channel {
            SaiChannel::A => DmaInput::Sai1A.dma1_channel(),
            SaiChannel::B => DmaInput::Sai1B.dma1_channel(),
        };

        #[cfg(feature = "l4")]
        match sai_channel {
            SaiChannel::A => dma.channel_select(DmaInput::Sai1A),
            SaiChannel::B => dma.channel_select(DmaInput::Sai1B),
        };

        match sai_channel {
            SaiChannel::A => self.regs.cha().cr1.modify(|_, w| w.dmaen().set_bit()),
            SaiChannel::B => self.regs.chb().cr1.modify(|_, w| w.dmaen().set_bit()),
        }

        let periph_addr = match sai_channel {
            SaiChannel::A => &self.regs.cha().dr as *const _ as u32,
            SaiChannel::B => &self.regs.chb().dr as *const _ as u32,
        };

        #[cfg(feature = "h7")]
        let num_data = len as u32;
        #[cfg(not(feature = "h7"))]
        let num_data = len as u16;

        let cfg_datasize = match sai_channel {
            SaiChannel::A => self.config_a.datasize,
            SaiChannel::B => self.config_b.datasize,
        };

        let datasize = match cfg_datasize {
            DataSize::S8 => dma::DataSize::S8,
            DataSize::S10 => dma::DataSize::S16,
            DataSize::S16 => dma::DataSize::S16,
            _ => dma::DataSize::S32,
        };

        dma.cfg_channel(
            dma_channel,
            periph_addr,
            ptr as u32,
            num_data,
            dma::Direction::ReadFromPeriph,
            datasize,
            datasize,
            channel_cfg,
        );

        // 4. Enable the SAI interface. (handled by `Sai::enable() in user code`.)
    }

    /// Enable a specific type of interrupt. See L4 RM, Table 220: "SAI interrupt sources".
    pub fn enable_interrupt(&mut self, interrupt_type: SaiInterrupt, channel: SaiChannel) {
        // Disable the UART to allow writing the `add` and `addm7` bits
        // L4 RM: Follow the sequence below to enable an interrupt:
        // 1. Disable SAI interrupt.
        // 2. Configure SAI.
        // 3. Configure SAI interrupt source.
        // 4. Enable SAI.

        //todo: Does that mean we need to disable and re-enable SAI here?

        match channel {
            SaiChannel::A => {
                self.regs.cha().im.modify(|_, w| match interrupt_type {
                    SaiInterrupt::Freq => w.freqie().set_bit(),
                    SaiInterrupt::Ovrudr => w.ovrudrie().set_bit(),
                    SaiInterrupt::AfsDet => w.afsdetie().set_bit(),
                    SaiInterrupt::LfsDet => w.lfsdetie().set_bit(),
                    SaiInterrupt::CnRdy => w.cnrdyie().set_bit(),
                    SaiInterrupt::MuteDet => w.mutedetie().set_bit(),
                    SaiInterrupt::WckCfg => w.wckcfgie().set_bit(),
                });
            }
            SaiChannel::B => {
                self.regs.chb().im.modify(|_, w| match interrupt_type {
                    SaiInterrupt::Freq => w.freqie().set_bit(),
                    SaiInterrupt::Ovrudr => w.ovrudrie().set_bit(),
                    SaiInterrupt::AfsDet => w.afsdetie().set_bit(),
                    SaiInterrupt::LfsDet => w.lfsdetie().set_bit(),
                    SaiInterrupt::CnRdy => w.cnrdyie().set_bit(),
                    SaiInterrupt::MuteDet => w.mutedetie().set_bit(),
                    SaiInterrupt::WckCfg => w.wckcfgie().set_bit(),
                });
            }
        }
    }

    /// Clears the interrupt pending flag for a specific type of interrupt.
    pub fn clear_interrupt(&mut self, interrupt_type: SaiInterrupt, channel: SaiChannel) {
        match channel {
            SaiChannel::A => {
                self.regs.cha().clrfr.write(|w| match interrupt_type {
                    // This Interrupt (FREQ bit in SAI_xSR register) is
                    // cleared by hardware when the FIFO becomes empty (FLVL[2:0] bits in SAI_xSR is equal
                    // to 0b000) i.e no data are stored in FIFO.
                    SaiInterrupt::Freq => w.cmutedet().set_bit(), // There is no Freq flag.
                    SaiInterrupt::Ovrudr => w.covrudr().set_bit(),
                    SaiInterrupt::AfsDet => w.cafsdet().set_bit(),
                    SaiInterrupt::LfsDet => w.clfsdet().set_bit(),
                    SaiInterrupt::CnRdy => w.ccnrdy().set_bit(),
                    SaiInterrupt::MuteDet => w.cmutedet().set_bit(),
                    SaiInterrupt::WckCfg => w.cwckcfg().set_bit(),
                });
            }
            SaiChannel::B => {
                self.regs.chb().clrfr.write(|w| match interrupt_type {
                    SaiInterrupt::Freq => w.cmutedet().set_bit(),
                    SaiInterrupt::Ovrudr => w.covrudr().set_bit(),
                    SaiInterrupt::AfsDet => w.cafsdet().set_bit(),
                    SaiInterrupt::LfsDet => w.clfsdet().set_bit(),
                    SaiInterrupt::CnRdy => w.ccnrdy().set_bit(),
                    SaiInterrupt::MuteDet => w.cmutedet().set_bit(),
                    SaiInterrupt::WckCfg => w.cwckcfg().set_bit(),
                });
            }
        }
    }

    /// Print the (raw) contents of the (A and B) status registers.
    pub fn read_status(&self) -> (u32, u32) {
        unsafe {
            (
                self.regs.cha().sr.read().bits(),
                self.regs.chb().sr.read().bits(),
            )
        }
    }
}