1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
use core::ops::Deref;
use core::default::Default;
use stm32f4xx_hal::stm32::ETHERNET_DMA;

use crate::{
    desc::Descriptor,
    ring::{RingEntry, RingDescriptor},
};


#[derive(Debug, PartialEq)]
pub enum RxError {
    WouldBlock,
    Truncated,
    DmaError,
}

/// Owned by DMA engine
const RXDESC_0_OWN: u32 = 1 << 31;
/// First descriptor
const RXDESC_0_FS: u32 = 1 << 9;
/// Last descriptor
const RXDESC_0_LS: u32 = 1 << 8;
/// Error summary
const RXDESC_0_ES: u32 = 1 << 15;
/// Frame length
const RXDESC_0_FL_MASK: u32 = 0x3FFF;
const RXDESC_0_FL_SHIFT: usize = 16;

const RXDESC_1_RBS_SHIFT: usize = 0;
const RXDESC_1_RBS_MASK: u32 = 0x0fff << RXDESC_1_RBS_SHIFT;
/// Second address chained
const RXDESC_1_RCH: u32 = 1 << 14;
/// End Of Ring
const RXDESC_1_RER: u32 = 1 << 15;

#[repr(C)]
#[derive(Clone)]
pub struct RxDescriptor {
    desc: Descriptor,
}

impl Default for RxDescriptor {
    fn default() -> Self {
        let mut desc = Descriptor::default();
        unsafe { desc.write(1, RXDESC_1_RCH); }
        RxDescriptor { desc }
    }
}

impl RxDescriptor {
    /// Is owned by the DMA engine?
    fn is_owned(&self) -> bool {
        (self.desc.read(0) & RXDESC_0_OWN) == RXDESC_0_OWN
    }

    /// Pass ownership to the DMA engine
    fn set_owned(&mut self) {
        unsafe { self.desc.modify(0, |w| w | RXDESC_0_OWN); }
    }

    fn has_error(&self) -> bool {
        (self.desc.read(0) & RXDESC_0_ES) == RXDESC_0_ES
    }

    /// Descriptor contains first buffer of frame
    fn is_first(&self) -> bool {
        (self.desc.read(0) & RXDESC_0_FS) == RXDESC_0_FS
    }

    /// Descriptor contains last buffers of frame
    fn is_last(&self) -> bool {
        (self.desc.read(0) & RXDESC_0_LS) == RXDESC_0_LS
    }

    fn set_buffer1(&mut self, buffer: *const u8, len: usize) {
        unsafe {
            self.desc.write(2, buffer as u32);
            self.desc.modify(1, |w| {
                (w & !RXDESC_1_RBS_MASK) |
                ((len as u32) << RXDESC_1_RBS_SHIFT)
            });
        }
    }

    // points to next descriptor (RCH)
    fn set_buffer2(&mut self, buffer: *const u8) {
        unsafe { self.desc.write(3, buffer as u32); }
    }

    fn set_end_of_ring(&mut self) {
        unsafe { self.desc.modify(1, |w| w | RXDESC_1_RER); }
    }

    fn get_frame_len(&self) -> usize {
        ((self.desc.read(0) >> RXDESC_0_FL_SHIFT) & RXDESC_0_FL_MASK) as usize
    }
}

pub type RxRingEntry = RingEntry<RxDescriptor>;

impl RingDescriptor for RxDescriptor {
    fn setup(&mut self, buffer: *const u8, len: usize, next: Option<&Self>) {
        self.set_buffer1(buffer, len);
        match next {
            Some(next) =>
                self.set_buffer2(&next.desc as *const Descriptor as *const u8),
            None => {
                self.set_buffer2(0 as *const u8);
                self.set_end_of_ring();
            },
        };
        self.set_owned();
    }
}

impl RxRingEntry {
    fn take_received(&mut self) -> Result<RxPacket, RxError> {
        match self.desc().is_owned() {
            true =>
                Err(RxError::WouldBlock),
            false if self.desc().has_error() => {
                self.desc_mut().set_owned();
                Err(RxError::DmaError)
            },
            false if self.desc().is_first() && self.desc().is_last() => {
                let frame_len = self.desc().get_frame_len();
                // TODO: obtain ethernet frame type (RDESC_1_FT)

                let pkt = RxPacket { entry: self, length: frame_len };
                Ok(pkt)
            },
            false => {
                self.desc_mut().set_owned();
                Err(RxError::Truncated)
            },
        }
    }
}

pub struct RxPacket<'a> {
    entry: &'a mut RxRingEntry,
    length: usize,
}

impl<'a> Deref for RxPacket<'a> {
    type Target = [u8];
    
    fn deref(&self) -> &Self::Target {
        &self.entry.as_slice()[0..self.length]
    }
}

impl<'a> Drop for RxPacket<'a> {
    fn drop(&mut self) {
        self.entry.desc_mut().set_owned();
    }
}

impl<'a> RxPacket<'a> {
    // Pass back to DMA engine
    pub fn free(self) {
        drop(self)
    }
}

/// Rx DMA state
pub struct RxRing<'a> {
    entries: &'a mut [RxRingEntry],
    next_entry: usize,
}

impl<'a> RxRing<'a> {
    /// Allocate
    pub fn new(entries: &'a mut [RxRingEntry]) -> Self {
        RxRing {
            entries,
            next_entry: 0,
        }
    }

    /// Setup the DMA engine (**required**)
    pub fn start(&mut self, eth_dma: &ETHERNET_DMA) {
        // Setup ring
        {
            let mut previous: Option<&mut RxRingEntry> = None;
            for entry in self.entries.iter_mut() {
                previous.map(|previous| previous.setup(Some(entry)));
                previous = Some(entry);
            }
            previous.map(|previous| previous.setup(None));
        }
        self.next_entry = 0;
        let ring_ptr = self.entries[0].desc() as *const RxDescriptor;
        // Register RxDescriptor
        eth_dma.dmardlar.write(|w| {
            w.srl().bits(ring_ptr as u32)
        });

        // Start receive
        eth_dma.dmaomr.modify(|_, w| w.sr().set_bit());

        self.demand_poll(eth_dma);
    }

    /// Demand that the DMA engine polls the current `RxDescriptor`
    /// (when in `RunningState::Stopped`.)
    pub fn demand_poll(&self, eth_dma: &ETHERNET_DMA) {
        eth_dma.dmarpdr.write(|w| unsafe { w.rpd().bits(1) });
    }

    /// Get current `RunningState`
    pub fn running_state(&self, eth_dma: &ETHERNET_DMA) -> RunningState {
        match eth_dma.dmasr.read().rps().bits() {
            //  Reset or Stop Receive Command issued
            0b000 => RunningState::Stopped,
            //  Fetching receive transfer descriptor
            0b001 => RunningState::Running,
            //  Waiting for receive packet
            0b011 => RunningState::Running,
            //  Receive descriptor unavailable
            0b100 => RunningState::Stopped,
            //  Closing receive descriptor
            0b101 => RunningState::Running,
            //  Transferring the receive packet data from receive buffer to host memory
            0b111 => RunningState::Running,
            _ => RunningState::Unknown,
        }
    }

    /// Receive the next packet (if any is ready), or return `None`
    /// immediately.
    pub fn recv_next(&mut self, eth_dma: &ETHERNET_DMA) -> Result<RxPacket, RxError>
    {
        if ! self.running_state(eth_dma).is_running() {
            self.demand_poll(eth_dma);
        }

        let entries_len = self.entries.len();
        let result = self.entries[self.next_entry].take_received();
        match result {
            Err(RxError::WouldBlock) => {}
            _ => {
                self.next_entry += 1;
                if self.next_entry >= entries_len {
                    self.next_entry = 0;
                }
            }
        }

        result
    }
}

/// Running state of the `RxRing`
#[derive(PartialEq, Eq, Debug)]
pub enum RunningState {
    Unknown,
    Stopped,
    Running,
}

impl RunningState {
    /// whether self equals to `RunningState::Running`
    pub fn is_running(&self) -> bool {
        *self == RunningState::Running
    }
}