splintr 0.4.0

Fast Rust BPE tokenizer with Python bindings
Documentation

Splintr

Crates.io PyPI License: MIT

A high-performance BPE tokenizer built with Rust with Python bindings, focused on speed, safety, and resource optimization.

The Problem

Tokenization is everywhere in modern AI. Whether you're building LLM applications, training models, or processing data pipelines, you're tokenizing text constantly. But existing tokenizers have a problem: they're slow.

When you need to tokenize batches of prompts, documents, or training data, you're stuck waiting. Python-based tokenizers can't fully leverage modern multi-core CPUs. You need something faster.

The Solution

Splintr brings Rust performance to Python. Built from the ground up for speed and efficiency:

Batch Encoding Throughput

Configuration Splintr Tiktoken HuggingFace TokenDagger
1,000 texts 111 MB/s 9 MB/s 28 MB/s 9 MB/s
500 texts 107 MB/s 10 MB/s 27 MB/s 8 MB/s
100 texts 69 MB/s 7 MB/s 20 MB/s 6 MB/s

10-12x faster than tiktoken. 4x faster than HuggingFace. Built in Rust, accessible from Python.

Quick Start

Python

pip install splintr-rs
from splintr import Tokenizer

# Load a pretrained vocabulary (OpenAI)
tokenizer = Tokenizer.from_pretrained("cl100k_base")

# Or load Llama 3 tokenizer (Meta) - supports all versions up to Llama 3.3
# tokenizer = Tokenizer.from_pretrained("llama3")

# Encode text to token IDs
tokens = tokenizer.encode("Hello, world!")
print(tokens)  # [9906, 11, 1917, 0]

# Decode token IDs back to text
text = tokenizer.decode(tokens)
print(text)  # "Hello, world!"

# Batch encode multiple texts in parallel (this is where it shines)
texts = ["Hello, world!", "How are you?", "Machine learning is fun!"]
batch_tokens = tokenizer.encode_batch(texts)
print(batch_tokens)  # [[9906, 11, 1917, 0], [4438, 527, 499, 30], ...]

Rust

[dependencies]
splintr = "0.4.0"
use splintr::{Tokenizer, CL100K_BASE_PATTERN};
use rustc_hash::FxHashMap;

// Load vocabulary and create tokenizer
let encoder = load_tiktoken_bpe_file("cl100k_base.tiktoken")?;
let special_tokens = FxHashMap::default();
let tokenizer = Tokenizer::new(encoder, special_tokens, CL100K_BASE_PATTERN)?;

// Encode text
let tokens = tokenizer.encode("Hello, world!");
println!("{:?}", tokens);

// Batch encode
let texts = vec!["Hello".to_string(), "World".to_string()];
let batch_tokens = tokenizer.encode_batch(&texts);

Key Features

Performance where it matters:

  • 12x faster batch encoding - Parallel processing across multiple texts using Rayon
  • 3-4x faster single text encoding - Optimized sequential algorithm for typical use cases
  • Smart parallelization - Sequential for small texts (<1MB), parallel for large datasets
  • LRU caching - Avoid redundant encoding of frequently seen text chunks

Built for production:

  • Compatible vocabularies - Supports cl100k_base, o200k_base (OpenAI), and Llama 3 family (Meta), with a familiar API
  • Streaming decoder - Real-time LLM output display with proper UTF-8 handling
  • 54 agent tokens - Built-in support for chat, CoT reasoning, ReAct agents, tool calling, RAG citations
  • Battle-tested algorithms - PCRE2 with JIT, Aho-Corasick for special tokens, linked-list BPE

Cross-platform:

  • Python bindings via PyO3 (Linux, macOS, Windows)
  • Native Rust library for maximum performance

Performance Deep Dive

All benchmarks performed on Linux (6.16.8-arch3-1) with 24 CPU cores, comparing against tiktoken (reference Python implementation), Hugging Face tokenizers, and TokenDagger.

Single Text Encoding

For single texts, splintr achieves 3-4x faster encoding across various text sizes:

Single Text Encoding Comparison

Latency by content type:

Latency Comparison

Consistent low latency across Python code, JSON, English prose, and Chinese text makes splintr ideal for interactive applications and real-time processing.

Batch Encoding

The real magic happens with batches. Splintr parallelizes across texts to achieve 10-12x speedup:

Batch Speedup vs Tiktoken

Higher speedups on larger batches where parallelization overhead is amortized. Perfect for:

  • Training data preprocessing
  • Bulk document tokenization
  • API batch processing
  • Data pipeline throughput

Design Decision: Sequential by Default

Splintr uses sequential encoding for single texts and parallel encoding across batches based on empirical benchmarking:

Sequential vs Rayon Internal Parallelization

Key findings:

  • Sequential is faster for texts up to ~1MB (typical LLM prompts and documents)
  • Rayon's parallelization overhead only pays off at ~1MB+ text sizes
  • Most real-world inputs are well under 1MB
  • encode() uses sequential processing for optimal single-text performance
  • encode_batch() parallelizes across multiple texts for maximum throughput
  • encode_rayon() available for the rare cases where you have >1MB single texts

This architecture ensures splintr is optimized for the most common tokenization patterns in LLM applications.

Running Benchmarks Yourself

# Clone and install
git clone https://github.com/farhan-syah/splintr.git
cd splintr
pip install -e .
pip install tiktoken

# Run the benchmark suite
cd benchmarks
python benchmark.py --model cl100k_base --output results/my_benchmark.json

# View results
cat results/my_benchmark.md

The benchmark suite tests single text encoding, batch encoding, streaming decoder performance, and special token handling across various content types.

Streaming Decoder

The streaming decoder is essential for real-time LLM applications where tokens arrive one at a time:

# Create a streaming decoder
decoder = tokenizer.streaming_decoder()

# Process tokens one at a time (typical LLM streaming scenario)
for token_id in token_stream:
    # Returns text only when complete UTF-8 characters are available
    if text := decoder.add_token(token_id):
        print(text, end="", flush=True)

# Flush any remaining buffered bytes at the end
print(decoder.flush())

Why You Need This

BPE tokens don't align with UTF-8 character boundaries. A multi-byte Unicode character like "世" (3 bytes: 0xE4 0xB8 0x96) might split across tokens. The streaming decoder:

  1. Buffers incomplete byte sequences across token boundaries
  2. Only outputs text when complete UTF-8 characters are available
  3. Prevents display corruption in streaming LLM output
  4. Handles edge cases automatically

Real-World Example

import openai
from splintr import Tokenizer

tokenizer = Tokenizer.from_pretrained("cl100k_base")
decoder = tokenizer.streaming_decoder()

# Stream tokens from OpenAI API
response = openai.ChatCompletion.create(
    model="gpt-4",
    messages=[{"role": "user", "content": "Tell me a story"}],
    stream=True
)

for chunk in response:
    if chunk.choices[0].delta.content:
        # Process each token as it arrives
        token_ids = get_token_ids(chunk)  # pseudo-code
        for token_id in token_ids:
            if text := decoder.add_token(token_id):
                print(text, end="", flush=True)

# Don't forget to flush at the end
print(decoder.flush())

API Methods

Core operations:

  • add_token(token_id: int) -> str | None: Add a token, return complete characters or None if buffering
  • add_tokens(token_ids: list[int]) -> str | None: Add multiple tokens at once
  • flush() -> str: Flush buffered bytes (incomplete sequences become �)
  • reset(): Clear the buffer and start fresh

Properties:

  • has_pending: bool: Whether there are buffered bytes waiting
  • pending_bytes: int: Number of bytes currently buffered

API Reference

Python API

Tokenizer

Loading:

# Load pretrained model (includes vocabulary and special tokens)
tokenizer = Tokenizer.from_pretrained("cl100k_base")  # or "o200k_base", "llama3"

# Load from custom vocabulary file
tokenizer = Tokenizer(
    vocab_path="path/to/vocab.tiktoken",
    pattern=CL100K_BASE_PATTERN,
    special_tokens={"<|endoftext|>": 100257}
)

Encoding:

  • encode(text: str) -> list[int]: Encode text to token IDs (sequential, optimal for most use cases)
  • encode_with_special(text: str) -> list[int]: Encode text, recognizing special tokens in the input
  • encode_batch(texts: list[str]) -> list[list[int]]: Encode multiple texts in parallel (uses Rayon)
  • encode_rayon(text: str) -> list[int]: Encode using Rayon parallelization (only beneficial for texts >1MB)

Decoding:

  • decode(tokens: list[int]) -> str: Decode token IDs to text (raises error on invalid UTF-8)
  • decode_bytes(tokens: list[int]) -> bytes: Decode token IDs to raw bytes
  • decode_lossy(tokens: list[int]) -> str: Decode token IDs, replacing invalid UTF-8 with �

Properties:

  • vocab_size: int: Total vocabulary size including special tokens
  • cache_len: int: Number of entries in the LRU cache

Cache management:

  • clear_cache(): Clear the encoding cache

Rust API

The Rust API provides similar functionality with strongly-typed interfaces:

Encoding:

  • encode(&self, text: &str) -> Vec<u32>: Sequential encoding (optimal for texts <1MB)
  • encode_with_special(&self, text: &str) -> Vec<u32>: Encode with special token recognition
  • encode_batch(&self, texts: &[String]) -> Vec<Vec<u32>>: Parallel encoding across texts
  • encode_rayon(&self, text: &str) -> Vec<u32>: Parallel encoding within text (for texts >1MB)

Decoding:

  • decode(&self, tokens: &[u32]) -> Result<String, TokenizerError>: Decode to UTF-8 string
  • decode_bytes(&self, tokens: &[u32]) -> Vec<u8>: Decode to raw bytes
  • decode_lossy(&self, tokens: &[u32]) -> String: Decode with replacement for invalid UTF-8

See the API documentation for complete details.

Supported Vocabularies

Vocabulary Used By Vocabulary Size Special Tokens Import Constant
cl100k_base GPT-4, GPT-3.5-turbo ~100,000 5 + 54 agent CL100K_BASE_PATTERN
o200k_base GPT-4o ~200,000 2 + 54 agent O200K_BASE_PATTERN
llama3 Llama 3, 3.1, 3.2, 3.3 (Meta) ~128,000 11 + 54 agent LLAMA3_PATTERN

OpenAI standard tokens:

  • cl100k_base: <|endoftext|>, <|fim_prefix|>, <|fim_middle|>, <|fim_suffix|>, <|endofprompt|>
  • o200k_base: <|endoftext|>, <|endofprompt|>

Meta Llama 3 standard tokens:

  • llama3: <|begin_of_text|>, <|end_of_text|>, <|start_header_id|>, <|end_header_id|>, <|eot_id|>, <|eom_id|> (3.1+), <|python_tag|> (3.1+), <|step_id|> (3.2-Vision), <|image|> (3.2-Vision)

Agent Tokens (54 per model)

Splintr extends all vocabularies with tokens for building agent systems. See docs/special_tokens.md for complete documentation.

from splintr import Tokenizer, CL100K_AGENT_TOKENS, LLAMA3_AGENT_TOKENS

# OpenAI models
tokenizer = Tokenizer.from_pretrained("cl100k_base")
text = "<|think|>Let me reason...<|/think|>The answer is 42."
tokens = tokenizer.encode_with_special(text)
print(CL100K_AGENT_TOKENS.THINK)      # 100282
print(CL100K_AGENT_TOKENS.FUNCTION)   # 100292

# Llama 3 models (vocabulary includes all special tokens up to Llama 3.3)
tokenizer = Tokenizer.from_pretrained("llama3")
tokens = tokenizer.encode_with_special(text)
print(LLAMA3_AGENT_TOKENS.THINK)           # 128305
print(LLAMA3_AGENT_TOKENS.FUNCTION)        # 128315
print(LLAMA3_AGENT_TOKENS.BEGIN_OF_TEXT)   # 128000 (official Meta token)
print(LLAMA3_AGENT_TOKENS.IMAGE)           # 128256 (official Meta 3.2-Vision token)
Category Tokens Purpose
Conversation system, user, assistant, im_start, im_end ChatML format
Thinking think Chain-of-Thought reasoning
ReAct plan, step, act, observe Agent action loops
Tools function, result, error Function calling
Code code, output, lang Code execution
RAG context, quote, cite, source Citations
Memory memory, recall State persistence
Control pad, stop, sep Sequence control
Multimodal image, audio, video Non-text content
Document title, section, summary Structured docs

How It Works

Splintr implements several optimizations that make tokenization faster:

  • PCRE2 with JIT compilation: 2-4x speedup on regex pattern matching
  • Rayon parallelism: Leverages multiple CPU cores for batch encoding
  • Linked-list BPE algorithm: Avoids O(N²) complexity on pathological inputs
  • FxHashMap: Faster lookups than default SipHash for non-adversarial contexts
  • Aho-Corasick for special tokens: Fast multi-pattern matching without regex alternation
  • LRU cache: Avoids redundant BPE encoding of frequently seen chunks

Use Cases

LLM Applications:

  • Tokenizing prompts with 3-4x lower latency
  • Streaming decoder for real-time output display
  • Token counting for API cost estimation

Agent Systems:

  • Building ReAct agents with structured reasoning tokens
  • Tool-calling systems with function tokens
  • Chain-of-Thought reasoning with thinking tokens

Training Pipelines:

  • Fast batch encoding of large datasets (10-12x speedup)
  • Preprocessing millions of documents efficiently
  • Parallel tokenization across distributed systems

RAG Applications:

  • Structured context injection with citation tokens
  • Document chunking with section markers
  • Source tracking through tokenization

Data Processing:

  • Bulk document tokenization
  • Multi-language text processing
  • Real-time text preprocessing

Contributing

Contributions are welcome! Here's how you can help:

  1. Report bugs: Open an issue with a minimal reproduction case
  2. Suggest features: Describe your use case and why the feature would be helpful
  3. Submit pull requests:
    • Add tests for new functionality
    • Run cargo test and cargo clippy before submitting
    • Update documentation as needed

Development Setup

# Clone the repository
git clone https://github.com/farhan-syah/splintr.git
cd splintr

# Install pre-commit hook (recommended)
cp hooks/pre-commit .git/hooks/pre-commit
chmod +x .git/hooks/pre-commit

# Build the Rust library
cargo build --release

# Build Python bindings
pip install maturin
maturin develop --release

# Run tests
cargo test                    # Rust tests
cargo clippy --all-targets    # Linting
cargo fmt --all --check       # Format check

The pre-commit hook automatically runs formatting, clippy, and tests before each commit.

Acknowledgments

Splintr builds upon concepts from:

  • tiktoken - OpenAI's reference BPE tokenizer
  • tokenizers - Hugging Face's tokenization library

The performance optimizations are informed by profiling real-world usage patterns in LLM applications.

Citation

If you use Splintr in your research, please cite:

@software{splintr,
  author = {Farhan Syah},
  title = {Splintr: High-Performance BPE Tokenizer},
  year = {2025},
  url = {https://github.com/farhan-syah/splintr}
}