splintr 0.1.0-beta.1

Fast Rust BPE tokenizer with Python bindings
Documentation

splintr

Crates.io PyPI License: MIT

A high-performance BPE tokenizer implemented in Rust with Python bindings, designed for efficient tokenization of text in machine learning applications, particularly for large language models.

Features

splintr implements several optimizations that make tokenization faster and more efficient:

  • PCRE2 with JIT compilation: Uses PCRE2's just-in-time compilation for regex matching, providing 2-4x speedup over fancy-regex on pattern matching operations
  • Rayon parallelism: Leverages multiple CPU cores for encoding batches of text and individual regex chunks within each text
  • Linked-list BPE algorithm: Implements BPE using a linked-list structure that avoids O(N²) complexity on pathological inputs with many repetitive patterns
  • FxHashMap: Uses rustc's FxHasher for faster lookups compared to the default SipHash, trading cryptographic security for speed in non-adversarial contexts
  • Aho-Corasick for special tokens: Employs the Aho-Corasick algorithm for fast multi-pattern matching of special tokens, avoiding regex alternation overhead
  • LRU cache: Caches frequently encoded text chunks to avoid redundant BPE encoding operations
  • UTF-8 streaming decoder: Safely handles token-by-token decoding for LLM output, buffering incomplete UTF-8 sequences across token boundaries

Installation

Python

pip install splintr-rs

Rust

[dependencies]
splintr = "0.1.0-beta.1"

Quick Start

Python

from splintr import Tokenizer

# Load a pretrained tokenizer
tokenizer = Tokenizer.from_pretrained("cl100k_base")

# Encode text to token IDs
tokens = tokenizer.encode("Hello, world!")
print(tokens)  # [9906, 11, 1917, 0]

# Decode token IDs back to text
text = tokenizer.decode(tokens)
print(text)  # "Hello, world!"

# Batch encode multiple texts in parallel
texts = ["Hello, world!", "How are you?", "Machine learning is fun!"]
batch_tokens = tokenizer.encode_batch(texts)
print(batch_tokens)  # [[9906, 11, 1917, 0], [4438, 527, 499, 30], ...]

Rust

use splintr::{Tokenizer, CL100K_BASE_PATTERN};
use rustc_hash::FxHashMap;

// Load vocabulary and create tokenizer
let encoder = load_tiktoken_bpe_file("cl100k_base.tiktoken")?;
let special_tokens = FxHashMap::default();
let tokenizer = Tokenizer::new(encoder, special_tokens, CL100K_BASE_PATTERN)?;

// Encode text
let tokens = tokenizer.encode("Hello, world!");
println!("{:?}", tokens);

// Decode tokens
let text = tokenizer.decode(&tokens)?;
println!("{}", text);

// Batch encode
let texts = vec!["Hello".to_string(), "World".to_string()];
let batch_tokens = tokenizer.encode_batch(&texts);

API Reference

Python API

Tokenizer

Loading a tokenizer:

# Load a pretrained model (includes vocabulary and special tokens)
tokenizer = Tokenizer.from_pretrained("cl100k_base")  # or "o200k_base"

# Load from a custom vocabulary file
tokenizer = Tokenizer(
    vocab_path="path/to/vocab.tiktoken",
    pattern=CL100K_BASE_PATTERN,
    special_tokens={"<|endoftext|>": 100257}
)

Encoding:

  • encode(text: str) -> list[int]: Encode text to token IDs, treating special tokens as regular text
  • encode_with_special(text: str) -> list[int]: Encode text, recognizing special tokens in the input
  • encode_batch(texts: list[str]) -> list[list[int]]: Encode multiple texts in parallel

Decoding:

  • decode(tokens: list[int]) -> str: Decode token IDs to text (raises error on invalid UTF-8)
  • decode_bytes(tokens: list[int]) -> bytes: Decode token IDs to raw bytes
  • decode_lossy(tokens: list[int]) -> str: Decode token IDs, replacing invalid UTF-8 with �

Properties:

  • vocab_size: int: Total vocabulary size including special tokens
  • cache_len: int: Number of entries in the LRU cache

Cache management:

  • clear_cache(): Clear the encoding cache

StreamingDecoder

The streaming decoder is essential for real-time LLM applications where you receive tokens one at a time and need to display text incrementally:

# Create a streaming decoder
decoder = tokenizer.streaming_decoder()

# Process tokens one at a time (typical LLM streaming scenario)
for token_id in token_stream:
    # Returns text only when complete UTF-8 characters are available
    if text := decoder.add_token(token_id):
        print(text, end="", flush=True)

# Flush any remaining buffered bytes at the end
print(decoder.flush())

Why use streaming decoder?

BPE tokens don't always align with UTF-8 character boundaries. For example, a multi-byte Unicode character like "世" (3 bytes: 0xE4 0xB8 0x96) might be split across multiple tokens. The streaming decoder buffers incomplete byte sequences and only outputs text when complete characters are available, preventing display corruption.

Methods:

  • add_token(token_id: int) -> str | None: Add a token and return complete characters, or None if still buffering
  • add_tokens(token_ids: list[int]) -> str | None: Add multiple tokens at once
  • flush() -> str: Flush remaining buffered bytes (incomplete sequences become �)
  • reset(): Clear the buffer and start fresh

Properties:

  • has_pending: bool: Whether there are buffered bytes waiting for completion
  • pending_bytes: int: Number of bytes currently buffered

Rust API

The Rust API provides similar functionality with strongly-typed interfaces. See the API documentation for detailed information.

Streaming Decoder

The streaming decoder is particularly important when working with LLM APIs that stream tokens:

import openai
from splintr import Tokenizer

tokenizer = Tokenizer.from_pretrained("cl100k_base")
decoder = tokenizer.streaming_decoder()

# Example with OpenAI streaming API
response = openai.ChatCompletion.create(
    model="gpt-4",
    messages=[{"role": "user", "content": "Tell me a story"}],
    stream=True
)

for chunk in response:
    if chunk.choices[0].delta.content:
        # Get token IDs from the API (pseudo-code, actual API may vary)
        token_ids = get_token_ids(chunk)

        for token_id in token_ids:
            if text := decoder.add_token(token_id):
                print(text, end="", flush=True)

# Don't forget to flush at the end
print(decoder.flush())

This approach ensures that:

  1. Users see text as soon as complete characters are available
  2. Multi-byte Unicode characters display correctly
  3. No corruption occurs at token boundaries

Performance

Benchmarks performed on Linux (6.16.8-arch3-1) with 24 CPU cores, comparing splintr to tiktoken (the reference Python implementation).

Single Text Encoding

Performance on various text types:

Content Type Size splintr (ms) tiktoken (ms) Speedup
Long English 450,000 chars 7.94 19.91 2.5x
Python Code 59,200 chars 1.67 5.90 3.5x
JSON 29,000 chars 1.20 2.76 2.3x
Numbers 55,000 chars 2.27 6.09 2.7x
Whitespace-heavy 50,000 chars 1.36 4.91 3.6x
Chinese 11,500 chars 1.09 1.45 1.3x

Batch Encoding

Batch operations show significant speedup through parallelism:

Configuration splintr parallel (ms) tiktoken (ms) Speedup vs tiktoken
10 × 1,000 chars 0.25 0.48 1.9x
100 × 1,000 chars 1.11 4.66 4.2x
1,000 × 100 chars 1.42 6.95 4.9x
100 × 10,000 chars 8.24 45.72 5.5x

Parallel speedup within splintr:

  • 100 × 1,000 chars: 8.6x faster (parallel vs sequential)
  • 1,000 × 100 chars: 16.8x faster (parallel vs sequential)

Running Benchmarks

To reproduce these benchmarks or test on your own hardware:

# Clone the repository
git clone https://github.com/farhan/splintr.git
cd splintr

# Install dependencies (requires Python 3.8+)
pip install -e .
pip install tiktoken

# Run the benchmark suite
cd benchmarks
python benchmark.py --model cl100k_base --output results/my_benchmark.json

# View results
cat results/my_benchmark.md

The benchmark suite tests:

  • Single text encoding across various content types (English, code, multilingual, etc.)
  • Batch encoding with different batch sizes and text lengths
  • Streaming decoder performance
  • Special token handling

You can customize the benchmark by modifying benchmark.py or adding your own test data in the data/ directory.

Supported Models

Model Use Case Vocabulary Size Special Tokens Import Constant
cl100k_base GPT-4, GPT-3.5-turbo ~100,000 5 CL100K_BASE_PATTERN
o200k_base GPT-4o ~200,000 2 O200K_BASE_PATTERN

Special tokens:

  • cl100k_base: <|endoftext|>, <|fim_prefix|>, <|fim_middle|>, <|fim_suffix|>, <|endofprompt|>
  • o200k_base: <|endoftext|>, <|endofprompt|>

Use Cases

splintr is designed for:

  • LLM applications: Tokenizing prompts and streaming decoder for real-time output display
  • Training pipelines: Fast batch encoding of large datasets for model training
  • Token counting: Estimating API costs or enforcing token limits
  • Text preprocessing: Converting text to tokens for embedding models or other NLP tasks

Contributing

Contributions are welcome! Here's how you can help:

  1. Report bugs: Open an issue with a minimal reproduction case
  2. Suggest features: Describe your use case and why the feature would be helpful
  3. Submit pull requests:
    • Add tests for new functionality
    • Run cargo test and cargo clippy before submitting
    • Update documentation as needed

Development Setup

# Clone the repository
git clone https://github.com/farhan/splintr.git
cd splintr

# Install pre-commit hook (recommended)
cp hooks/pre-commit .git/hooks/pre-commit
chmod +x .git/hooks/pre-commit

# Build the Rust library
cargo build --release

# Build Python bindings
pip install maturin
maturin develop --release

# Run tests
cargo test                    # Rust tests
cargo clippy --all-targets    # Linting
cargo fmt --all --check       # Format check

The pre-commit hook automatically runs formatting, clippy, and tests before each commit.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments

splintr builds upon concepts from:

  • tiktoken - OpenAI's reference BPE tokenizer
  • tokenizers - Hugging Face's tokenization library

The performance optimizations are informed by profiling real-world usage patterns in LLM applications.