smartcore 0.4.8

Machine Learning in Rust.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
//! # Decision Tree Regressor
//!
//! The process of building a decision tree can be simplified to these two steps:
//!
//! 1. Divide the predictor space \\(X\\) into K distinct and non-overlapping regions, \\(R_1, R_2, ..., R_K\\).
//! 1. For every observation that falls into the region \\(R_k\\), we make the same prediction, which is simply the mean of the response values for the training observations in \\(R_k\\).
//!
//! Regions \\(R_1, R_2, ..., R_K\\) are build in such a way that minimizes the residual sum of squares (RSS) given by
//!
//! \\[RSS = \sum_{k=1}^K\sum_{i \in R_k} (y_i - \hat{y}_{Rk})^2\\]
//!
//! where \\(\hat{y}_{Rk}\\) is the mean response for the training observations withing region _k_.
//!
//! `smartcore` uses recursive binary splitting approach to build \\(R_1, R_2, ..., R_K\\) regions. The approach begins at the top of the tree and then successively splits the predictor space
//! one predictor at a time. At each step of the tree-building process, the best split is made at that particular step, rather than looking ahead and picking a split that will lead to a better
//! tree in some future step.
//!
//! Example:
//!
//! ```
//! use smartcore::linalg::basic::matrix::DenseMatrix;
//! use smartcore::tree::decision_tree_regressor::*;
//!
//! // Longley dataset (https://www.statsmodels.org/stable/datasets/generated/longley.html)
//! let x = DenseMatrix::from_2d_array(&[
//!             &[234.289, 235.6, 159., 107.608, 1947., 60.323],
//!             &[259.426, 232.5, 145.6, 108.632, 1948., 61.122],
//!             &[258.054, 368.2, 161.6, 109.773, 1949., 60.171],
//!             &[284.599, 335.1, 165., 110.929, 1950., 61.187],
//!             &[328.975, 209.9, 309.9, 112.075, 1951., 63.221],
//!             &[346.999, 193.2, 359.4, 113.27, 1952., 63.639],
//!             &[365.385, 187., 354.7, 115.094, 1953., 64.989],
//!             &[363.112, 357.8, 335., 116.219, 1954., 63.761],
//!             &[397.469, 290.4, 304.8, 117.388, 1955., 66.019],
//!             &[419.18, 282.2, 285.7, 118.734, 1956., 67.857],
//!             &[442.769, 293.6, 279.8, 120.445, 1957., 68.169],
//!             &[444.546, 468.1, 263.7, 121.95, 1958., 66.513],
//!             &[482.704, 381.3, 255.2, 123.366, 1959., 68.655],
//!             &[502.601, 393.1, 251.4, 125.368, 1960., 69.564],
//!             &[518.173, 480.6, 257.2, 127.852, 1961., 69.331],
//!             &[554.894, 400.7, 282.7, 130.081, 1962., 70.551],
//!        ]).unwrap();
//! let y: Vec<f64> = vec![
//!             83.0, 88.5, 88.2, 89.5, 96.2, 98.1, 99.0, 100.0,
//!             101.2, 104.6, 108.4, 110.8, 112.6, 114.2, 115.7, 116.9,
//!        ];
//!
//! let tree = DecisionTreeRegressor::fit(&x, &y, Default::default()).unwrap();
//!
//! let y_hat = tree.predict(&x).unwrap(); // use the same data for prediction
//! ```
//!
//! ## References:
//!
//! * ["Classification and regression trees", Breiman, L, Friedman, J H, Olshen, R A, and Stone, C J, 1984](https://www.sciencebase.gov/catalog/item/545d07dfe4b0ba8303f728c1)
//! * ["An Introduction to Statistical Learning", James G., Witten D., Hastie T., Tibshirani R., Chapter 8](http://faculty.marshall.usc.edu/gareth-james/ISL/)
//!
//! <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
//! <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>

use std::default::Default;
use std::fmt::Debug;

#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};

use super::base_tree_regressor::{BaseTreeRegressor, BaseTreeRegressorParameters, Splitter};
use crate::api::{Predictor, SupervisedEstimator};
use crate::error::Failed;
use crate::linalg::basic::arrays::{Array1, Array2};
use crate::numbers::basenum::Number;

#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Debug, Clone)]
/// Parameters of Regression Tree
pub struct DecisionTreeRegressorParameters {
    #[cfg_attr(feature = "serde", serde(default))]
    /// The maximum depth of the tree.
    pub max_depth: Option<u16>,
    #[cfg_attr(feature = "serde", serde(default))]
    /// The minimum number of samples required to be at a leaf node.
    pub min_samples_leaf: usize,
    #[cfg_attr(feature = "serde", serde(default))]
    /// The minimum number of samples required to split an internal node.
    pub min_samples_split: usize,
    #[cfg_attr(feature = "serde", serde(default))]
    /// Controls the randomness of the estimator
    pub seed: Option<u64>,
}

/// Regression Tree
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Debug)]
pub struct DecisionTreeRegressor<TX: Number + PartialOrd, TY: Number, X: Array2<TX>, Y: Array1<TY>>
{
    tree_regressor: Option<BaseTreeRegressor<TX, TY, X, Y>>,
}

impl DecisionTreeRegressorParameters {
    /// The maximum depth of the tree.
    pub fn with_max_depth(mut self, max_depth: u16) -> Self {
        self.max_depth = Some(max_depth);
        self
    }
    /// The minimum number of samples required to be at a leaf node.
    pub fn with_min_samples_leaf(mut self, min_samples_leaf: usize) -> Self {
        self.min_samples_leaf = min_samples_leaf;
        self
    }
    /// The minimum number of samples required to split an internal node.
    pub fn with_min_samples_split(mut self, min_samples_split: usize) -> Self {
        self.min_samples_split = min_samples_split;
        self
    }
}

impl Default for DecisionTreeRegressorParameters {
    fn default() -> Self {
        DecisionTreeRegressorParameters {
            max_depth: Option::None,
            min_samples_leaf: 1,
            min_samples_split: 2,
            seed: Option::None,
        }
    }
}

/// DecisionTreeRegressor grid search parameters
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Debug, Clone)]
pub struct DecisionTreeRegressorSearchParameters {
    #[cfg_attr(feature = "serde", serde(default))]
    /// Tree max depth. See [Decision Tree Regressor](../../tree/decision_tree_regressor/index.html)
    pub max_depth: Vec<Option<u16>>,
    #[cfg_attr(feature = "serde", serde(default))]
    /// The minimum number of samples required to be at a leaf node. See [Decision Tree Regressor](../../tree/decision_tree_regressor/index.html)
    pub min_samples_leaf: Vec<usize>,
    #[cfg_attr(feature = "serde", serde(default))]
    /// The minimum number of samples required to split an internal node. See [Decision Tree Regressor](../../tree/decision_tree_regressor/index.html)
    pub min_samples_split: Vec<usize>,
    #[cfg_attr(feature = "serde", serde(default))]
    /// Controls the randomness of the estimator
    pub seed: Vec<Option<u64>>,
}

/// DecisionTreeRegressor grid search iterator
pub struct DecisionTreeRegressorSearchParametersIterator {
    decision_tree_regressor_search_parameters: DecisionTreeRegressorSearchParameters,
    current_max_depth: usize,
    current_min_samples_leaf: usize,
    current_min_samples_split: usize,
    current_seed: usize,
}

impl IntoIterator for DecisionTreeRegressorSearchParameters {
    type Item = DecisionTreeRegressorParameters;
    type IntoIter = DecisionTreeRegressorSearchParametersIterator;

    fn into_iter(self) -> Self::IntoIter {
        DecisionTreeRegressorSearchParametersIterator {
            decision_tree_regressor_search_parameters: self,
            current_max_depth: 0,
            current_min_samples_leaf: 0,
            current_min_samples_split: 0,
            current_seed: 0,
        }
    }
}

impl Iterator for DecisionTreeRegressorSearchParametersIterator {
    type Item = DecisionTreeRegressorParameters;

    fn next(&mut self) -> Option<Self::Item> {
        if self.current_max_depth
            == self
                .decision_tree_regressor_search_parameters
                .max_depth
                .len()
            && self.current_min_samples_leaf
                == self
                    .decision_tree_regressor_search_parameters
                    .min_samples_leaf
                    .len()
            && self.current_min_samples_split
                == self
                    .decision_tree_regressor_search_parameters
                    .min_samples_split
                    .len()
            && self.current_seed == self.decision_tree_regressor_search_parameters.seed.len()
        {
            return None;
        }

        let next = DecisionTreeRegressorParameters {
            max_depth: self.decision_tree_regressor_search_parameters.max_depth
                [self.current_max_depth],
            min_samples_leaf: self
                .decision_tree_regressor_search_parameters
                .min_samples_leaf[self.current_min_samples_leaf],
            min_samples_split: self
                .decision_tree_regressor_search_parameters
                .min_samples_split[self.current_min_samples_split],
            seed: self.decision_tree_regressor_search_parameters.seed[self.current_seed],
        };

        if self.current_max_depth + 1
            < self
                .decision_tree_regressor_search_parameters
                .max_depth
                .len()
        {
            self.current_max_depth += 1;
        } else if self.current_min_samples_leaf + 1
            < self
                .decision_tree_regressor_search_parameters
                .min_samples_leaf
                .len()
        {
            self.current_max_depth = 0;
            self.current_min_samples_leaf += 1;
        } else if self.current_min_samples_split + 1
            < self
                .decision_tree_regressor_search_parameters
                .min_samples_split
                .len()
        {
            self.current_max_depth = 0;
            self.current_min_samples_leaf = 0;
            self.current_min_samples_split += 1;
        } else if self.current_seed + 1 < self.decision_tree_regressor_search_parameters.seed.len()
        {
            self.current_max_depth = 0;
            self.current_min_samples_leaf = 0;
            self.current_min_samples_split = 0;
            self.current_seed += 1;
        } else {
            self.current_max_depth += 1;
            self.current_min_samples_leaf += 1;
            self.current_min_samples_split += 1;
            self.current_seed += 1;
        }

        Some(next)
    }
}

impl Default for DecisionTreeRegressorSearchParameters {
    fn default() -> Self {
        let default_params = DecisionTreeRegressorParameters::default();

        DecisionTreeRegressorSearchParameters {
            max_depth: vec![default_params.max_depth],
            min_samples_leaf: vec![default_params.min_samples_leaf],
            min_samples_split: vec![default_params.min_samples_split],
            seed: vec![default_params.seed],
        }
    }
}

impl<TX: Number + PartialOrd, TY: Number, X: Array2<TX>, Y: Array1<TY>> PartialEq
    for DecisionTreeRegressor<TX, TY, X, Y>
{
    fn eq(&self, other: &Self) -> bool {
        self.tree_regressor == other.tree_regressor
    }
}

impl<TX: Number + PartialOrd, TY: Number, X: Array2<TX>, Y: Array1<TY>>
    SupervisedEstimator<X, Y, DecisionTreeRegressorParameters>
    for DecisionTreeRegressor<TX, TY, X, Y>
{
    fn new() -> Self {
        Self {
            tree_regressor: None,
        }
    }

    fn fit(x: &X, y: &Y, parameters: DecisionTreeRegressorParameters) -> Result<Self, Failed> {
        DecisionTreeRegressor::fit(x, y, parameters)
    }
}

impl<TX: Number + PartialOrd, TY: Number, X: Array2<TX>, Y: Array1<TY>> Predictor<X, Y>
    for DecisionTreeRegressor<TX, TY, X, Y>
{
    fn predict(&self, x: &X) -> Result<Y, Failed> {
        self.predict(x)
    }
}

impl<TX: Number + PartialOrd, TY: Number, X: Array2<TX>, Y: Array1<TY>>
    DecisionTreeRegressor<TX, TY, X, Y>
{
    /// Build a decision tree regressor from the training data.
    /// * `x` - _NxM_ matrix with _N_ observations and _M_ features in each observation.
    /// * `y` - the target values
    pub fn fit(
        x: &X,
        y: &Y,
        parameters: DecisionTreeRegressorParameters,
    ) -> Result<DecisionTreeRegressor<TX, TY, X, Y>, Failed> {
        let tree_parameters = BaseTreeRegressorParameters {
            max_depth: parameters.max_depth,
            min_samples_leaf: parameters.min_samples_leaf,
            min_samples_split: parameters.min_samples_split,
            seed: parameters.seed,
            splitter: Splitter::Best,
        };
        let tree = BaseTreeRegressor::fit(x, y, tree_parameters)?;
        Ok(Self {
            tree_regressor: Some(tree),
        })
    }

    /// Predict regression value for `x`.
    /// * `x` - _KxM_ data where _K_ is number of observations and _M_ is number of features.
    pub fn predict(&self, x: &X) -> Result<Y, Failed> {
        self.tree_regressor.as_ref().unwrap().predict(x)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::linalg::basic::matrix::DenseMatrix;

    #[test]
    fn search_parameters() {
        let parameters = DecisionTreeRegressorSearchParameters {
            max_depth: vec![Some(10), Some(100)],
            min_samples_split: vec![1, 2],
            ..Default::default()
        };
        let mut iter = parameters.into_iter();
        let next = iter.next().unwrap();
        assert_eq!(next.max_depth, Some(10));
        assert_eq!(next.min_samples_split, 1);
        let next = iter.next().unwrap();
        assert_eq!(next.max_depth, Some(100));
        assert_eq!(next.min_samples_split, 1);
        let next = iter.next().unwrap();
        assert_eq!(next.max_depth, Some(10));
        assert_eq!(next.min_samples_split, 2);
        let next = iter.next().unwrap();
        assert_eq!(next.max_depth, Some(100));
        assert_eq!(next.min_samples_split, 2);
        assert!(iter.next().is_none());
    }

    #[cfg_attr(
        all(target_arch = "wasm32", not(target_os = "wasi")),
        wasm_bindgen_test::wasm_bindgen_test
    )]
    #[test]
    fn fit_longley() {
        let x = DenseMatrix::from_2d_array(&[
            &[234.289, 235.6, 159., 107.608, 1947., 60.323],
            &[259.426, 232.5, 145.6, 108.632, 1948., 61.122],
            &[258.054, 368.2, 161.6, 109.773, 1949., 60.171],
            &[284.599, 335.1, 165., 110.929, 1950., 61.187],
            &[328.975, 209.9, 309.9, 112.075, 1951., 63.221],
            &[346.999, 193.2, 359.4, 113.27, 1952., 63.639],
            &[365.385, 187., 354.7, 115.094, 1953., 64.989],
            &[363.112, 357.8, 335., 116.219, 1954., 63.761],
            &[397.469, 290.4, 304.8, 117.388, 1955., 66.019],
            &[419.18, 282.2, 285.7, 118.734, 1956., 67.857],
            &[442.769, 293.6, 279.8, 120.445, 1957., 68.169],
            &[444.546, 468.1, 263.7, 121.95, 1958., 66.513],
            &[482.704, 381.3, 255.2, 123.366, 1959., 68.655],
            &[502.601, 393.1, 251.4, 125.368, 1960., 69.564],
            &[518.173, 480.6, 257.2, 127.852, 1961., 69.331],
            &[554.894, 400.7, 282.7, 130.081, 1962., 70.551],
        ])
        .unwrap();
        let y: Vec<f64> = vec![
            83.0, 88.5, 88.2, 89.5, 96.2, 98.1, 99.0, 100.0, 101.2, 104.6, 108.4, 110.8, 112.6,
            114.2, 115.7, 116.9,
        ];

        let y_hat = DecisionTreeRegressor::fit(&x, &y, Default::default())
            .and_then(|t| t.predict(&x))
            .unwrap();

        for i in 0..y_hat.len() {
            assert!((y_hat[i] - y[i]).abs() < 0.1);
        }

        let expected_y = [
            87.3, 87.3, 87.3, 87.3, 98.9, 98.9, 98.9, 98.9, 98.9, 107.9, 107.9, 107.9, 114.85,
            114.85, 114.85, 114.85,
        ];
        let y_hat = DecisionTreeRegressor::fit(
            &x,
            &y,
            DecisionTreeRegressorParameters {
                max_depth: Option::None,
                min_samples_leaf: 2,
                min_samples_split: 6,
                seed: Option::None,
            },
        )
        .and_then(|t| t.predict(&x))
        .unwrap();

        for i in 0..y_hat.len() {
            assert!((y_hat[i] - expected_y[i]).abs() < 0.1);
        }

        let expected_y = [
            83.0, 88.35, 88.35, 89.5, 97.15, 97.15, 99.5, 99.5, 101.2, 104.6, 109.6, 109.6, 113.4,
            113.4, 116.30, 116.30,
        ];
        let y_hat = DecisionTreeRegressor::fit(
            &x,
            &y,
            DecisionTreeRegressorParameters {
                max_depth: Option::None,
                min_samples_leaf: 1,
                min_samples_split: 3,
                seed: Option::None,
            },
        )
        .and_then(|t| t.predict(&x))
        .unwrap();

        for i in 0..y_hat.len() {
            assert!((y_hat[i] - expected_y[i]).abs() < 0.1);
        }
    }

    #[cfg_attr(
        all(target_arch = "wasm32", not(target_os = "wasi")),
        wasm_bindgen_test::wasm_bindgen_test
    )]
    #[test]
    #[cfg(feature = "serde")]
    fn serde() {
        let x = DenseMatrix::from_2d_array(&[
            &[234.289, 235.6, 159., 107.608, 1947., 60.323],
            &[259.426, 232.5, 145.6, 108.632, 1948., 61.122],
            &[258.054, 368.2, 161.6, 109.773, 1949., 60.171],
            &[284.599, 335.1, 165., 110.929, 1950., 61.187],
            &[328.975, 209.9, 309.9, 112.075, 1951., 63.221],
            &[346.999, 193.2, 359.4, 113.27, 1952., 63.639],
            &[365.385, 187., 354.7, 115.094, 1953., 64.989],
            &[363.112, 357.8, 335., 116.219, 1954., 63.761],
            &[397.469, 290.4, 304.8, 117.388, 1955., 66.019],
            &[419.18, 282.2, 285.7, 118.734, 1956., 67.857],
            &[442.769, 293.6, 279.8, 120.445, 1957., 68.169],
            &[444.546, 468.1, 263.7, 121.95, 1958., 66.513],
            &[482.704, 381.3, 255.2, 123.366, 1959., 68.655],
            &[502.601, 393.1, 251.4, 125.368, 1960., 69.564],
            &[518.173, 480.6, 257.2, 127.852, 1961., 69.331],
            &[554.894, 400.7, 282.7, 130.081, 1962., 70.551],
        ])
        .unwrap();
        let y: Vec<f64> = vec![
            83.0, 88.5, 88.2, 89.5, 96.2, 98.1, 99.0, 100.0, 101.2, 104.6, 108.4, 110.8, 112.6,
            114.2, 115.7, 116.9,
        ];

        let tree = DecisionTreeRegressor::fit(&x, &y, Default::default()).unwrap();

        let deserialized_tree: DecisionTreeRegressor<f64, f64, DenseMatrix<f64>, Vec<f64>> =
            bincode::deserialize(&bincode::serialize(&tree).unwrap()).unwrap();

        assert_eq!(tree, deserialized_tree);
    }
}