smartcore 0.4.8

Machine Learning in Rust.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
use std::collections::LinkedList;
use std::default::Default;
use std::fmt::Debug;
use std::marker::PhantomData;

use rand::seq::SliceRandom;
use rand::Rng;

#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};

use crate::error::Failed;
use crate::linalg::basic::arrays::{Array1, Array2, MutArrayView1};
use crate::numbers::basenum::Number;
use crate::rand_custom::get_rng_impl;

#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Debug, Clone, Default)]
pub enum Splitter {
    Random,
    #[default]
    Best,
}

#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Debug, Clone)]
/// Parameters of Regression base_tree
pub struct BaseTreeRegressorParameters {
    #[cfg_attr(feature = "serde", serde(default))]
    /// The maximum depth of the base_tree.
    pub max_depth: Option<u16>,
    #[cfg_attr(feature = "serde", serde(default))]
    /// The minimum number of samples required to be at a leaf node.
    pub min_samples_leaf: usize,
    #[cfg_attr(feature = "serde", serde(default))]
    /// The minimum number of samples required to split an internal node.
    pub min_samples_split: usize,
    #[cfg_attr(feature = "serde", serde(default))]
    /// Controls the randomness of the estimator
    pub seed: Option<u64>,
    #[cfg_attr(feature = "serde", serde(default))]
    /// Determines the strategy used to choose the split at each node.
    pub splitter: Splitter,
}

/// Regression base_tree
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Debug)]
pub struct BaseTreeRegressor<TX: Number + PartialOrd, TY: Number, X: Array2<TX>, Y: Array1<TY>> {
    nodes: Vec<Node>,
    parameters: Option<BaseTreeRegressorParameters>,
    depth: u16,
    _phantom_tx: PhantomData<TX>,
    _phantom_ty: PhantomData<TY>,
    _phantom_x: PhantomData<X>,
    _phantom_y: PhantomData<Y>,
}

impl<TX: Number + PartialOrd, TY: Number, X: Array2<TX>, Y: Array1<TY>>
    BaseTreeRegressor<TX, TY, X, Y>
{
    /// Get nodes, return a shared reference
    fn nodes(&self) -> &Vec<Node> {
        self.nodes.as_ref()
    }
    /// Get parameters, return a shared reference
    fn parameters(&self) -> &BaseTreeRegressorParameters {
        self.parameters.as_ref().unwrap()
    }
    /// Get estimate of intercept, return value
    fn depth(&self) -> u16 {
        self.depth
    }
}

#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Debug, Clone)]
struct Node {
    output: f64,
    split_feature: usize,
    split_value: Option<f64>,
    split_score: Option<f64>,
    true_child: Option<usize>,
    false_child: Option<usize>,
}

impl Node {
    fn new(output: f64) -> Self {
        Node {
            output,
            split_feature: 0,
            split_value: Option::None,
            split_score: Option::None,
            true_child: Option::None,
            false_child: Option::None,
        }
    }
}

impl PartialEq for Node {
    fn eq(&self, other: &Self) -> bool {
        (self.output - other.output).abs() < f64::EPSILON
            && self.split_feature == other.split_feature
            && match (self.split_value, other.split_value) {
                (Some(a), Some(b)) => (a - b).abs() < f64::EPSILON,
                (None, None) => true,
                _ => false,
            }
            && match (self.split_score, other.split_score) {
                (Some(a), Some(b)) => (a - b).abs() < f64::EPSILON,
                (None, None) => true,
                _ => false,
            }
    }
}

impl<TX: Number + PartialOrd, TY: Number, X: Array2<TX>, Y: Array1<TY>> PartialEq
    for BaseTreeRegressor<TX, TY, X, Y>
{
    fn eq(&self, other: &Self) -> bool {
        if self.depth != other.depth || self.nodes().len() != other.nodes().len() {
            false
        } else {
            self.nodes()
                .iter()
                .zip(other.nodes().iter())
                .all(|(a, b)| a == b)
        }
    }
}

struct NodeVisitor<'a, TX: Number + PartialOrd, TY: Number, X: Array2<TX>, Y: Array1<TY>> {
    x: &'a X,
    y: &'a Y,
    node: usize,
    samples: Vec<usize>,
    order: &'a [Vec<usize>],
    true_child_output: f64,
    false_child_output: f64,
    level: u16,
    _phantom_tx: PhantomData<TX>,
    _phantom_ty: PhantomData<TY>,
}

impl<'a, TX: Number + PartialOrd, TY: Number, X: Array2<TX>, Y: Array1<TY>>
    NodeVisitor<'a, TX, TY, X, Y>
{
    fn new(
        node_id: usize,
        samples: Vec<usize>,
        order: &'a [Vec<usize>],
        x: &'a X,
        y: &'a Y,
        level: u16,
    ) -> Self {
        NodeVisitor {
            x,
            y,
            node: node_id,
            samples,
            order,
            true_child_output: 0f64,
            false_child_output: 0f64,
            level,
            _phantom_tx: PhantomData,
            _phantom_ty: PhantomData,
        }
    }
}

impl<TX: Number + PartialOrd, TY: Number, X: Array2<TX>, Y: Array1<TY>>
    BaseTreeRegressor<TX, TY, X, Y>
{
    /// Build a decision base_tree regressor from the training data.
    /// * `x` - _NxM_ matrix with _N_ observations and _M_ features in each observation.
    /// * `y` - the target values
    pub fn fit(
        x: &X,
        y: &Y,
        parameters: BaseTreeRegressorParameters,
    ) -> Result<BaseTreeRegressor<TX, TY, X, Y>, Failed> {
        let (x_nrows, num_attributes) = x.shape();
        if x_nrows != y.shape() {
            return Err(Failed::fit("Size of x should equal size of y"));
        }

        let samples = vec![1; x_nrows];
        BaseTreeRegressor::fit_weak_learner(x, y, samples, num_attributes, parameters)
    }

    pub(crate) fn fit_weak_learner(
        x: &X,
        y: &Y,
        samples: Vec<usize>,
        mtry: usize,
        parameters: BaseTreeRegressorParameters,
    ) -> Result<BaseTreeRegressor<TX, TY, X, Y>, Failed> {
        let y_m = y.clone();

        let y_ncols = y_m.shape();
        let (_, num_attributes) = x.shape();

        let mut nodes: Vec<Node> = Vec::new();
        let mut rng = get_rng_impl(parameters.seed);

        let mut n = 0;
        let mut sum = 0f64;
        for (i, sample_i) in samples.iter().enumerate().take(y_ncols) {
            n += *sample_i;
            sum += *sample_i as f64 * y_m.get(i).to_f64().unwrap();
        }

        let root = Node::new(sum / (n as f64));
        nodes.push(root);
        let mut order: Vec<Vec<usize>> = Vec::new();

        for i in 0..num_attributes {
            let mut col_i: Vec<TX> = x.get_col(i).iterator(0).copied().collect();
            order.push(col_i.argsort_mut());
        }

        let mut base_tree = BaseTreeRegressor {
            nodes,
            parameters: Some(parameters),
            depth: 0u16,
            _phantom_tx: PhantomData,
            _phantom_ty: PhantomData,
            _phantom_x: PhantomData,
            _phantom_y: PhantomData,
        };

        let mut visitor = NodeVisitor::<TX, TY, X, Y>::new(0, samples, &order, x, &y_m, 1);

        let mut visitor_queue: LinkedList<NodeVisitor<'_, TX, TY, X, Y>> = LinkedList::new();

        if base_tree.find_best_cutoff(&mut visitor, mtry, &mut rng) {
            visitor_queue.push_back(visitor);
        }

        while base_tree.depth() < base_tree.parameters().max_depth.unwrap_or(u16::MAX) {
            match visitor_queue.pop_front() {
                Some(node) => base_tree.split(node, mtry, &mut visitor_queue, &mut rng),
                None => break,
            };
        }

        Ok(base_tree)
    }

    /// Predict regression value for `x`.
    /// * `x` - _KxM_ data where _K_ is number of observations and _M_ is number of features.
    pub fn predict(&self, x: &X) -> Result<Y, Failed> {
        let mut result = Y::zeros(x.shape().0);

        let (n, _) = x.shape();

        for i in 0..n {
            result.set(i, self.predict_for_row(x, i));
        }

        Ok(result)
    }

    pub(crate) fn predict_for_row(&self, x: &X, row: usize) -> TY {
        let mut result = 0f64;
        let mut queue: LinkedList<usize> = LinkedList::new();

        queue.push_back(0);

        while !queue.is_empty() {
            match queue.pop_front() {
                Some(node_id) => {
                    let node = &self.nodes()[node_id];
                    if node.true_child.is_none() && node.false_child.is_none() {
                        result = node.output;
                    } else if x.get((row, node.split_feature)).to_f64().unwrap()
                        <= node.split_value.unwrap_or(f64::NAN)
                    {
                        queue.push_back(node.true_child.unwrap());
                    } else {
                        queue.push_back(node.false_child.unwrap());
                    }
                }
                None => break,
            };
        }

        TY::from_f64(result).unwrap()
    }

    fn find_best_cutoff(
        &mut self,
        visitor: &mut NodeVisitor<'_, TX, TY, X, Y>,
        mtry: usize,
        rng: &mut impl Rng,
    ) -> bool {
        let (_, n_attr) = visitor.x.shape();

        let n: usize = visitor.samples.iter().sum();

        if n < self.parameters().min_samples_split {
            return false;
        }

        let sum = self.nodes()[visitor.node].output * n as f64;

        let mut variables = (0..n_attr).collect::<Vec<_>>();

        if mtry < n_attr {
            variables.shuffle(rng);
        }

        let parent_gain =
            n as f64 * self.nodes()[visitor.node].output * self.nodes()[visitor.node].output;

        let splitter = self.parameters().splitter.clone();

        for variable in variables.iter().take(mtry) {
            match splitter {
                Splitter::Random => {
                    self.find_random_split(visitor, n, sum, parent_gain, *variable, rng);
                }
                Splitter::Best => {
                    self.find_best_split(visitor, n, sum, parent_gain, *variable);
                }
            }
        }

        self.nodes()[visitor.node].split_score.is_some()
    }

    fn find_random_split(
        &mut self,
        visitor: &mut NodeVisitor<'_, TX, TY, X, Y>,
        n: usize,
        sum: f64,
        parent_gain: f64,
        j: usize,
        rng: &mut impl Rng,
    ) {
        let (min_val, max_val) = {
            let mut min_opt = None;
            let mut max_opt = None;
            for &i in &visitor.order[j] {
                if visitor.samples[i] > 0 {
                    min_opt = Some(*visitor.x.get((i, j)));
                    break;
                }
            }
            for &i in visitor.order[j].iter().rev() {
                if visitor.samples[i] > 0 {
                    max_opt = Some(*visitor.x.get((i, j)));
                    break;
                }
            }
            if min_opt.is_none() {
                return;
            }
            (min_opt.unwrap(), max_opt.unwrap())
        };

        if min_val >= max_val {
            return;
        }

        let split_value = rng.gen_range(min_val.to_f64().unwrap()..max_val.to_f64().unwrap());

        let mut true_sum = 0f64;
        let mut true_count = 0;
        for &i in &visitor.order[j] {
            if visitor.samples[i] > 0 {
                if visitor.x.get((i, j)).to_f64().unwrap() <= split_value {
                    true_sum += visitor.samples[i] as f64 * visitor.y.get(i).to_f64().unwrap();
                    true_count += visitor.samples[i];
                } else {
                    break;
                }
            }
        }

        let false_count = n - true_count;

        if true_count < self.parameters().min_samples_leaf
            || false_count < self.parameters().min_samples_leaf
        {
            return;
        }

        let true_mean = if true_count > 0 {
            true_sum / true_count as f64
        } else {
            0.0
        };
        let false_mean = if false_count > 0 {
            (sum - true_sum) / false_count as f64
        } else {
            0.0
        };
        let gain = (true_count as f64 * true_mean * true_mean
            + false_count as f64 * false_mean * false_mean)
            - parent_gain;

        if self.nodes[visitor.node].split_score.is_none()
            || gain > self.nodes[visitor.node].split_score.unwrap()
        {
            self.nodes[visitor.node].split_feature = j;
            self.nodes[visitor.node].split_value = Some(split_value);
            self.nodes[visitor.node].split_score = Some(gain);
            visitor.true_child_output = true_mean;
            visitor.false_child_output = false_mean;
        }
    }

    fn find_best_split(
        &mut self,
        visitor: &mut NodeVisitor<'_, TX, TY, X, Y>,
        n: usize,
        sum: f64,
        parent_gain: f64,
        j: usize,
    ) {
        let mut true_sum = 0f64;
        let mut true_count = 0;
        let mut prevx = Option::None;

        for i in visitor.order[j].iter() {
            if visitor.samples[*i] > 0 {
                let x_ij = *visitor.x.get((*i, j));

                if prevx.is_none() || x_ij == prevx.unwrap() {
                    prevx = Some(x_ij);
                    true_count += visitor.samples[*i];
                    true_sum += visitor.samples[*i] as f64 * visitor.y.get(*i).to_f64().unwrap();
                    continue;
                }

                let false_count = n - true_count;

                if true_count < self.parameters().min_samples_leaf
                    || false_count < self.parameters().min_samples_leaf
                {
                    prevx = Some(x_ij);
                    true_count += visitor.samples[*i];
                    true_sum += visitor.samples[*i] as f64 * visitor.y.get(*i).to_f64().unwrap();
                    continue;
                }

                let true_mean = true_sum / true_count as f64;
                let false_mean = (sum - true_sum) / false_count as f64;

                let gain = (true_count as f64 * true_mean * true_mean
                    + false_count as f64 * false_mean * false_mean)
                    - parent_gain;

                if self.nodes()[visitor.node].split_score.is_none()
                    || gain > self.nodes()[visitor.node].split_score.unwrap()
                {
                    self.nodes[visitor.node].split_feature = j;
                    self.nodes[visitor.node].split_value =
                        Option::Some((x_ij + prevx.unwrap()).to_f64().unwrap() / 2f64);
                    self.nodes[visitor.node].split_score = Option::Some(gain);

                    visitor.true_child_output = true_mean;
                    visitor.false_child_output = false_mean;
                }

                prevx = Some(x_ij);
                true_sum += visitor.samples[*i] as f64 * visitor.y.get(*i).to_f64().unwrap();
                true_count += visitor.samples[*i];
            }
        }
    }

    fn split<'a>(
        &mut self,
        mut visitor: NodeVisitor<'a, TX, TY, X, Y>,
        mtry: usize,
        visitor_queue: &mut LinkedList<NodeVisitor<'a, TX, TY, X, Y>>,
        rng: &mut impl Rng,
    ) -> bool {
        let (n, _) = visitor.x.shape();
        let mut tc = 0;
        let mut fc = 0;
        let mut true_samples: Vec<usize> = vec![0; n];

        for (i, true_sample) in true_samples.iter_mut().enumerate().take(n) {
            if visitor.samples[i] > 0 {
                if visitor
                    .x
                    .get((i, self.nodes()[visitor.node].split_feature))
                    .to_f64()
                    .unwrap()
                    <= self.nodes()[visitor.node].split_value.unwrap_or(f64::NAN)
                {
                    *true_sample = visitor.samples[i];
                    tc += *true_sample;
                    visitor.samples[i] = 0;
                } else {
                    fc += visitor.samples[i];
                }
            }
        }

        if tc < self.parameters().min_samples_leaf || fc < self.parameters().min_samples_leaf {
            self.nodes[visitor.node].split_feature = 0;
            self.nodes[visitor.node].split_value = Option::None;
            self.nodes[visitor.node].split_score = Option::None;

            return false;
        }

        let true_child_idx = self.nodes().len();

        self.nodes.push(Node::new(visitor.true_child_output));
        let false_child_idx = self.nodes().len();
        self.nodes.push(Node::new(visitor.false_child_output));

        self.nodes[visitor.node].true_child = Some(true_child_idx);
        self.nodes[visitor.node].false_child = Some(false_child_idx);

        self.depth = u16::max(self.depth, visitor.level + 1);

        let mut true_visitor = NodeVisitor::<TX, TY, X, Y>::new(
            true_child_idx,
            true_samples,
            visitor.order,
            visitor.x,
            visitor.y,
            visitor.level + 1,
        );

        if self.find_best_cutoff(&mut true_visitor, mtry, rng) {
            visitor_queue.push_back(true_visitor);
        }

        let mut false_visitor = NodeVisitor::<TX, TY, X, Y>::new(
            false_child_idx,
            visitor.samples,
            visitor.order,
            visitor.x,
            visitor.y,
            visitor.level + 1,
        );

        if self.find_best_cutoff(&mut false_visitor, mtry, rng) {
            visitor_queue.push_back(false_visitor);
        }

        true
    }
}