use std::marker::PhantomData;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use crate::linalg::basic::arrays::ArrayView1;
use crate::numbers::basenum::Number;
use crate::numbers::floatnum::FloatNumber;
use crate::metrics::Metrics;
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Debug)]
pub struct MeanSquareError<T> {
_phantom: PhantomData<T>,
}
impl<T: Number + FloatNumber> Metrics<T> for MeanSquareError<T> {
fn new() -> Self {
Self {
_phantom: PhantomData,
}
}
fn new_with(_parameter: f64) -> Self {
Self {
_phantom: PhantomData,
}
}
fn get_score(&self, y_true: &dyn ArrayView1<T>, y_pred: &dyn ArrayView1<T>) -> f64 {
if y_true.shape() != y_pred.shape() {
panic!(
"The vector sizes don't match: {} != {}",
y_true.shape(),
y_pred.shape()
);
}
let n = y_true.shape();
let mut rss = T::zero();
for i in 0..n {
let res = *y_true.get(i) - *y_pred.get(i);
rss += res * res;
}
rss.to_f64().unwrap() / n as f64
}
}
#[cfg(test)]
mod tests {
use super::*;
#[cfg_attr(
all(target_arch = "wasm32", not(target_os = "wasi")),
wasm_bindgen_test::wasm_bindgen_test
)]
#[test]
fn mean_squared_error() {
let y_true: Vec<f64> = vec![3., -0.5, 2., 7.];
let y_pred: Vec<f64> = vec![2.5, 0.0, 2., 8.];
let score1: f64 = MeanSquareError::new().get_score(&y_true, &y_pred);
let score2: f64 = MeanSquareError::new().get_score(&y_true, &y_true);
assert!((score1 - 0.375).abs() < 1e-8);
assert!((score2 - 0.0).abs() < 1e-8);
}
}