use std::marker::PhantomData;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use crate::linalg::basic::arrays::ArrayView1;
use crate::metrics::cluster_helpers::*;
use crate::numbers::basenum::Number;
use crate::metrics::Metrics;
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Debug)]
pub struct HCVScore<T> {
_phantom: PhantomData<T>,
homogeneity: Option<f64>,
completeness: Option<f64>,
v_measure: Option<f64>,
}
impl<T: Number + Ord> HCVScore<T> {
pub fn homogeneity(&self) -> Option<f64> {
self.homogeneity
}
pub fn completeness(&self) -> Option<f64> {
self.completeness
}
pub fn v_measure(&self) -> Option<f64> {
self.v_measure
}
pub fn compute(&mut self, y_true: &dyn ArrayView1<T>, y_pred: &dyn ArrayView1<T>) {
let entropy_c: Option<f64> = entropy(y_true);
let entropy_k: Option<f64> = entropy(y_pred);
let contingency = contingency_matrix(y_true, y_pred);
let mi = mutual_info_score(&contingency);
let homogeneity = entropy_c.map(|e| mi / e).unwrap_or(0f64);
let completeness = entropy_k.map(|e| mi / e).unwrap_or(0f64);
let v_measure_score = if homogeneity + completeness == 0f64 {
0f64
} else {
2.0f64 * homogeneity * completeness / (1.0f64 * homogeneity + completeness)
};
self.homogeneity = Some(homogeneity);
self.completeness = Some(completeness);
self.v_measure = Some(v_measure_score);
}
}
impl<T: Number + Ord> Metrics<T> for HCVScore<T> {
fn new() -> Self {
Self {
_phantom: PhantomData,
homogeneity: Option::None,
completeness: Option::None,
v_measure: Option::None,
}
}
fn new_with(_parameter: f64) -> Self {
Self {
_phantom: PhantomData,
homogeneity: Option::None,
completeness: Option::None,
v_measure: Option::None,
}
}
fn get_score(&self, _y_true: &dyn ArrayView1<T>, _y_pred: &dyn ArrayView1<T>) -> f64 {
0f64
}
}
#[cfg(test)]
mod tests {
use super::*;
#[cfg_attr(
all(target_arch = "wasm32", not(target_os = "wasi")),
wasm_bindgen_test::wasm_bindgen_test
)]
#[test]
fn homogeneity_score() {
let v1 = vec![0, 0, 1, 1, 2, 0, 4];
let v2 = vec![1, 0, 0, 0, 0, 1, 0];
let mut scores = HCVScore::new();
scores.compute(&v1, &v2);
assert!((0.2548 - scores.homogeneity.unwrap()).abs() < 1e-4);
assert!((0.5440 - scores.completeness.unwrap()).abs() < 1e-4);
assert!((0.3471 - scores.v_measure.unwrap()).abs() < 1e-4);
}
}