# Sklears Python Bindings
[](https://crates.io/crates/sklears-python)
[](https://docs.rs/sklears-python)
[](../../LICENSE)
[](https://www.rust-lang.org)
Python bindings for the sklears machine learning library, providing a high-performance, scikit-learn compatible interface through PyO3.
> **Latest release:** `0.1.0-alpha.1` (October 13, 2025). See the [workspace release notes](../../docs/releases/0.1.0-alpha.1.md) for highlights and upgrade guidance.
## Features
- **Drop-in replacement** for scikit-learn's most common algorithms
- **3-100x performance improvements** over scikit-learn
- **Full NumPy array compatibility** with zero-copy operations where possible
- **Comprehensive error handling** with Python exceptions
- **Memory-safe operations** with automatic reference counting
- **Scikit-learn compatible API** for easy migration
## Supported Algorithms
### Linear Models
- `LinearRegression` - Ordinary least squares linear regression
- `Ridge` - Ridge regression with L2 regularization
- `Lasso` - Lasso regression with L1 regularization
- `LogisticRegression` - Logistic regression for classification
### Clustering
- `KMeans` - K-Means clustering algorithm
- `DBSCAN` - Density-based spatial clustering
### Preprocessing
- `StandardScaler` - Standardize features by removing mean and scaling to unit variance
- `MinMaxScaler` - Scale features to a given range
- `LabelEncoder` - Encode target labels with value between 0 and n_classes-1
### Model Selection
- `train_test_split` - Split arrays into random train and test subsets
- `KFold` - K-Fold cross-validator
- `StratifiedKFold` - Stratified K-Fold cross-validator
- `cross_val_score` - Evaluate metric(s) by cross-validation
- `cross_val_predict` - Generate cross-validated estimates
### Metrics
- `accuracy_score` - Classification accuracy
- `mean_squared_error` - Mean squared error for regression
- `mean_absolute_error` - Mean absolute error for regression
- `r2_score` - R² (coefficient of determination) score
- `precision_score` - Precision for classification
- `recall_score` - Recall for classification
- `f1_score` - F1 score for classification
- `confusion_matrix` - Confusion matrix for classification
- `classification_report` - Text report of classification metrics
## Installation
### Prerequisites
- Python 3.8 or later
- NumPy
- Rust 1.70 or later
- PyO3 and Maturin for building
### Building from Source
1. **Clone the repository:**
```bash
git clone https://github.com/cool-japan/sklears.git
cd sklears/crates/sklears-python
```
2. **Install Maturin:**
```bash
pip install maturin
```
3. **Build and install the package:**
```bash
maturin develop --release
```
4. **Or build a wheel:**
```bash
maturin build --release
pip install target/wheels/sklears_python-*.whl
```
## Quick Start
```python
import numpy as np
import sklears_python as skl
# Generate sample data
X = np.random.randn(100, 4)
y = np.random.randn(100)
# Train a linear regression model
model = skl.LinearRegression()
model.fit(X, y)
predictions = model.predict(X)
# Calculate R² score
score = model.score(X, y)
print(f"R² score: {score:.3f}")
```
## Performance Comparison
Here's a typical performance comparison with scikit-learn:
```python
import time
import numpy as np
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
import sklears_python as skl
from sklearn.linear_model import LinearRegression as SklearnLR
# Generate data
X, y = make_regression(n_samples=10000, n_features=100, noise=0.1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# Sklears
start = time.time()
model = skl.LinearRegression()
model.fit(X_train, y_train)
predictions = model.predict(X_test)
sklears_time = time.time() - start
# Scikit-learn
start = time.time()
sklearn_model = SklearnLR()
sklearn_model.fit(X_train, y_train)
sklearn_predictions = sklearn_model.predict(X_test)
sklearn_time = time.time() - start
print(f"Sklears time: {sklears_time:.4f}s")
print(f"Sklearn time: {sklearn_time:.4f}s")
print(f"Speedup: {sklearn_time / sklears_time:.2f}x")
```
## API Compatibility
The sklears Python bindings are designed to be API-compatible with scikit-learn. Most existing scikit-learn code should work with minimal changes:
### Before (scikit-learn):
```python
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
```
### After (sklears):
```python
import sklears_python as skl
# All functions and classes are available in the main module
model = skl.LinearRegression()
scaler = skl.StandardScaler()
X_train, X_test, y_train, y_test = skl.train_test_split(X, y)
mse = skl.mean_squared_error(y_true, y_pred)
```
## Memory Management
The bindings are designed to be memory-efficient:
- **Zero-copy operations** where possible using NumPy's C API
- **Automatic memory management** through PyO3's reference counting
- **Efficient data structures** using ndarray and sprs for sparse matrices
- **Streaming support** for large datasets that don't fit in memory
## Error Handling
All Rust errors are properly converted to Python exceptions:
```python
import sklears_python as skl
import numpy as np
try:
# This will raise a ValueError if arrays have incompatible shapes
model = skl.LinearRegression()
model.fit(np.array([[1, 2], [3, 4]]), np.array([1, 2, 3])) # Shape mismatch
except ValueError as e:
print(f"Error: {e}")
```
## System Information
Get information about your sklears installation:
```python
import sklears_python as skl
# Version information
print(f"Version: {skl.get_version()}")
# Build information
build_info = skl.get_build_info()
for key, value in build_info.items():
print(f"{key}: {value}")
# Hardware capabilities
hardware_info = skl.get_hardware_info()
print("Hardware support:")
for feature, supported in hardware_info.items():
print(f" {feature}: {supported}")
# Performance benchmarks
benchmarks = skl.benchmark_basic_operations()
print("Performance benchmarks:")
for operation, time_ms in benchmarks.items():
print(f" {operation}: {time_ms:.2f} ms")
```
## Configuration
Set global configuration options:
```python
import sklears_python as skl
# Set number of threads for parallel operations
skl.set_config("n_jobs", "4")
# Get current configuration
config = skl.get_config()
print(config)
```
## Examples
See the `examples/` directory for comprehensive usage examples:
- `python_demo.py` - Complete demonstration of all features
- Performance comparison scripts
- Real-world use cases
## Contributing
Contributions are welcome! Please see the main sklears repository for contribution guidelines.
## License
This project is licensed under the MIT OR Apache-2.0 license.
## Acknowledgments
- Built with [PyO3](https://pyo3.rs/) for Rust-Python interoperability
- Compatible with [NumPy](https://numpy.org/) arrays
- API inspired by [scikit-learn](https://scikit-learn.org/)