sklears-multioutput
Latest release:
0.1.0-alpha.2(December 22, 2025). See the workspace release notes for highlights and upgrade guidance.
Overview
sklears-multioutput implements multi-output regression and classification wrappers that allow any estimator to generalize to multi-label and multi-output settings, mirroring scikit-learn’s multioutput module.
Key Features
- Wrappers: MultiOutputRegressor, MultiOutputClassifier, ClassifierChain, RegressorChain.
- Parallelism: Multi-threaded fitting of per-target estimators with shared caching.
- Integration: Works with pipelines, model selection, and calibration components out of the box.
- Advanced Modes: Supports probabilistic chaining, custom meta-estimators, and GPU-enabled base learners.
Quick Start
use MultiOutputRegressor;
use Ridge;
let base_estimator = builder
.alpha
.fit_intercept
.build;
let wrapper = new;
let fitted = wrapper.fit?;
let predictions = fitted.predict?;
Status
- Validated by the overall 11,292 passing workspace tests for
0.1.0-alpha.2. - Ensures full parity with scikit-learn’s multi-output utilities while leveraging Rust’s performance.
- Future enhancements (asynchronous chaining, probabilistic calibration) tracked in
TODO.md.