Crate sklears_multioutput

Crate sklears_multioutput 

Source
Expand description

Multi-output regression and classification

This module provides meta-estimators for multi-target prediction problems. It includes strategies for independent multi-output prediction.

Re-exports§

pub use core::MultiOutputClassifier;
pub use core::MultiOutputClassifierTrained;
pub use core::MultiOutputRegressor;
pub use core::MultiOutputRegressorTrained;
pub use chains::BayesianClassifierChain;
pub use chains::BayesianClassifierChainTrained;
pub use chains::ChainMethod;
pub use chains::ClassifierChain;
pub use chains::ClassifierChainTrained;
pub use chains::EnsembleOfChains;
pub use chains::EnsembleOfChainsTrained;
pub use chains::RegressorChain;
pub use chains::RegressorChainTrained;
pub use ensemble::GradientBoostingMultiOutput;
pub use ensemble::GradientBoostingMultiOutputTrained;
pub use ensemble::WeakLearner;
pub use neural::ActivationFunction;
pub use neural::AdversarialMultiTaskNetwork;
pub use neural::AdversarialMultiTaskNetworkTrained;
pub use neural::AdversarialStrategy;
pub use neural::CellType;
pub use neural::GradientReversalConfig;
pub use neural::LambdaSchedule;
pub use neural::LossFunction;
pub use neural::MultiOutputMLP;
pub use neural::MultiOutputMLPClassifier;
pub use neural::MultiOutputMLPRegressor;
pub use neural::MultiOutputMLPTrained;
pub use neural::MultiTaskNeuralNetwork;
pub use neural::MultiTaskNeuralNetworkTrained;
pub use neural::RecurrentNeuralNetwork;
pub use neural::RecurrentNeuralNetworkTrained;
pub use neural::SequenceMode;
pub use neural::TaskBalancing;
pub use neural::TaskDiscriminator;
pub use adversarial::AdversarialConfig;
pub use regularization::GroupLasso;
pub use regularization::GroupLassoTrained;
pub use regularization::MetaLearningMultiTask;
pub use regularization::MetaLearningMultiTaskTrained;
pub use regularization::MultiTaskElasticNet;
pub use regularization::MultiTaskElasticNetTrained;
pub use regularization::NuclearNormRegression;
pub use regularization::NuclearNormRegressionTrained;
pub use regularization::RegularizationStrategy;
pub use regularization::TaskClusteringRegressionTrained;
pub use regularization::TaskClusteringRegularization;
pub use regularization::TaskRelationshipLearning;
pub use regularization::TaskRelationshipLearningTrained;
pub use regularization::TaskSimilarityMethod;
pub use correlation::CITestMethod;
pub use correlation::CITestResult;
pub use correlation::CITestResults;
pub use correlation::ConditionalIndependenceTester;
pub use correlation::CorrelationAnalysis;
pub use correlation::CorrelationType;
pub use correlation::DependencyGraph;
pub use correlation::DependencyGraphBuilder;
pub use correlation::DependencyMethod;
pub use correlation::GraphStatistics;
pub use correlation::OutputCorrelationAnalyzer;
pub use transfer_learning::ContinualLearning;
pub use transfer_learning::ContinualLearningTrained;
pub use transfer_learning::CrossTaskTransferLearning;
pub use transfer_learning::CrossTaskTransferLearningTrained;
pub use transfer_learning::DomainAdaptation;
pub use transfer_learning::DomainAdaptationTrained;
pub use transfer_learning::KnowledgeDistillation;
pub use transfer_learning::KnowledgeDistillationTrained;
pub use transfer_learning::ProgressiveTransferLearning;
pub use transfer_learning::ProgressiveTransferLearningTrained;
pub use optimization::JointLossConfig;
pub use optimization::JointLossOptimizer;
pub use optimization::JointLossOptimizerTrained;
pub use optimization::LossCombination;
pub use optimization::LossFunction as OptimizationLossFunction;
pub use optimization::MultiObjectiveConfig;
pub use optimization::MultiObjectiveOptimizer;
pub use optimization::MultiObjectiveOptimizerTrained;
pub use optimization::NSGA2Algorithm;
pub use optimization::NSGA2Config;
pub use optimization::NSGA2Optimizer;
pub use optimization::NSGA2OptimizerTrained;
pub use optimization::ParetoSolution;
pub use optimization::ScalarizationConfig;
pub use optimization::ScalarizationMethod;
pub use optimization::ScalarizationOptimizer;
pub use optimization::ScalarizationOptimizerTrained;
pub use probabilistic::BayesianMultiOutputConfig;
pub use probabilistic::BayesianMultiOutputModel;
pub use probabilistic::BayesianMultiOutputModelTrained;
pub use probabilistic::EnsembleBayesianConfig;
pub use probabilistic::EnsembleBayesianModel;
pub use probabilistic::EnsembleBayesianModelTrained;
pub use probabilistic::EnsembleStrategy;
pub use probabilistic::GaussianProcessMultiOutput;
pub use probabilistic::GaussianProcessMultiOutputTrained;
pub use probabilistic::InferenceMethod;
pub use probabilistic::KernelFunction;
pub use probabilistic::PosteriorDistribution;
pub use probabilistic::PredictionWithUncertainty;
pub use probabilistic::PriorDistribution;
pub use ranking::BinaryClassifierModel;
pub use ranking::IndependentLabelPrediction;
pub use ranking::IndependentLabelPredictionTrained;
pub use ranking::ThresholdStrategy as RankingThresholdStrategy;
pub use sparse_storage::sparse_utils;
pub use sparse_storage::CSRMatrix;
pub use sparse_storage::MemoryUsage;
pub use sparse_storage::SparseMultiOutput;
pub use sparse_storage::SparseMultiOutputTrained;
pub use sparse_storage::SparsityAnalysis;
pub use sparse_storage::StorageRecommendation;
pub use streaming::IncrementalMultiOutputRegression;
pub use streaming::IncrementalMultiOutputRegressionConfig;
pub use streaming::IncrementalMultiOutputRegressionTrained;
pub use streaming::StreamingMultiOutput;
pub use streaming::StreamingMultiOutputConfig;
pub use streaming::StreamingMultiOutputTrained;
pub use performance::EarlyStopping;
pub use performance::EarlyStoppingConfig;
pub use performance::PredictionCache;
pub use performance::WarmStartRegressor;
pub use performance::WarmStartRegressorConfig;
pub use performance::WarmStartRegressorTrained;
pub use multi_label::BinaryRelevance;
pub use multi_label::BinaryRelevanceTrained;
pub use multi_label::LabelPowerset;
pub use multi_label::LabelPowersetTrained;
pub use multi_label::OneVsRestClassifier;
pub use multi_label::OneVsRestClassifierTrained;
pub use multi_label::PrunedLabelPowerset;
pub use multi_label::PrunedLabelPowersetTrained;
pub use multi_label::PruningStrategy;
pub use tree::ClassificationCriterion;
pub use tree::DAGInferenceMethod;
pub use tree::MultiTargetDecisionTreeClassifier;
pub use tree::MultiTargetDecisionTreeClassifierTrained;
pub use tree::MultiTargetRegressionTree;
pub use tree::MultiTargetRegressionTreeTrained;
pub use tree::RandomForestMultiOutput;
pub use tree::RandomForestMultiOutputTrained;
pub use tree::TreeStructuredPredictor;
pub use tree::TreeStructuredPredictorTrained;
pub use neighbors::IBLRTrained;
pub use neighbors::WeightFunction;
pub use neighbors::IBLR;
pub use svm::MLTSVMTrained;
pub use svm::MultiOutputSVM;
pub use svm::MultiOutputSVMTrained;
pub use svm::RankSVM;
pub use svm::RankSVMTrained;
pub use svm::RankingSVMModel;
pub use svm::SVMKernel;
pub use svm::SVMModel;
pub use svm::ThresholdStrategy as SVMThresholdStrategy;
pub use svm::TwinSVMModel;
pub use svm::MLTSVM;
pub use sequence::FeatureFunction;
pub use sequence::FeatureType;
pub use sequence::HiddenMarkovModel;
pub use sequence::HiddenMarkovModelTrained;
pub use sequence::MaximumEntropyMarkovModel;
pub use sequence::MaximumEntropyMarkovModelTrained;
pub use sequence::StructuredPerceptron;
pub use sequence::StructuredPerceptronTrained;
pub use hierarchical::AggregationFunction;
pub use hierarchical::ConsistencyEnforcement;
pub use hierarchical::CostSensitiveHierarchicalClassifier;
pub use hierarchical::CostSensitiveHierarchicalClassifierTrained;
pub use hierarchical::CostStrategy;
pub use hierarchical::GraphNeuralNetwork;
pub use hierarchical::GraphNeuralNetworkTrained;
pub use hierarchical::MessagePassingVariant;
pub use hierarchical::OntologyAwareClassifier;
pub use hierarchical::OntologyAwareClassifierTrained;
pub use classification::CalibratedBinaryRelevance;
pub use classification::CalibratedBinaryRelevanceTrained;
pub use classification::CalibrationMethod;
pub use classification::CostMatrix;
pub use classification::CostSensitiveBinaryRelevance;
pub use classification::CostSensitiveBinaryRelevanceTrained;
pub use classification::DistanceMetric;
pub use classification::MLkNN;
pub use classification::MLkNNTrained;
pub use classification::RandomLabelCombinations;
pub use classification::SimpleBinaryModel;
pub use metrics::average_precision_score;
pub use metrics::confidence_interval;
pub use metrics::coverage_error;
pub use metrics::f1_score;
pub use metrics::hamming_loss;
pub use metrics::jaccard_score;
pub use metrics::label_ranking_average_precision;
pub use metrics::mcnemar_test;
pub use metrics::one_error;
pub use metrics::paired_t_test;
pub use metrics::per_label_metrics;
pub use metrics::precision_score_micro;
pub use metrics::ranking_loss;
pub use metrics::recall_score_micro;
pub use metrics::subset_accuracy;
pub use metrics::wilcoxon_signed_rank_test;
pub use metrics::ConfidenceInterval;
pub use metrics::PerLabelMetrics;
pub use metrics::StatisticalTestResult;

Modules§

activation
Activation functions for neural networks
adversarial
Adversarial Multi-Task Networks with Feature Disentanglement
chains
Chain-based multi-output learning algorithms
classification
Multi-label classification algorithms
core
Core multi-output algorithms
correlation
Output Correlation Analysis and Dependency Modeling
ensemble
Ensemble methods for multi-output learning
hierarchical
Hierarchical classification and graph neural network models
label_analysis
Label combination frequency analysis utilities
loss
Loss functions for neural network training
metrics
Multi-output and multi-label evaluation metrics
mlp
Multi-Layer Perceptron for Multi-Output Learning
multi_label
Multi-label learning algorithms
multitask
Multi-Task Neural Networks with Shared Representation Learning
neighbors
Instance-based learning algorithms for multi-label classification
neural
Neural Network Multi-Output Learning
optimization
Multi-Output Learning Optimization Framework
performance
Performance Optimization for Multi-Output Learning
probabilistic
Auto-generated module structure
ranking
Label ranking and threshold optimization algorithms
recurrent
Neural Sequence Models for Structured Output Prediction
regularization
Multi-Task Regularization Methods
sequence
Sequence and structured prediction models
sparse_storage
Memory-efficient storage for sparse output representations
streaming
Streaming and Incremental Learning for Multi-Output Prediction
svm
Support Vector Machine algorithms for multi-output learning
transfer_learning
Transfer Learning for Multi-Task Learning
tree
Tree-based multi-output algorithms
utilities
Multi-label utilities and analysis tools
utils
Utility functions and shared types for multi-output learning