sklears-isotonic
Latest release:
0.1.0-beta.1(January 1, 2026). See the workspace release notes for highlights and upgrade guidance.
Overview
sklears-isotonic delivers isotonic regression utilities that mirror scikit-learn while taking advantage of Rust performance. The crate powers monotonic calibration, pairwise ranking, and constrained curve fitting across the wider sklears ecosystem.
Key Features
- Isotonic Regression: Fit monotonic functions for regression, probability calibration, and ranking tasks.
- Sparse + Dense Support: Optimized for both dense
ndarrayinputs and sparse CSR matrices. - GPU-Ready Kernels: Optional CUDA/WebGPU acceleration for large calibration workloads.
- Pipeline Integration: Seamlessly composes with
sklearspreprocessing, model selection, and calibration APIs.
Quick Start
use IsotonicRegression;
use ;
let x = array!;
let y = from;
let model = builder
.increasing
.y_min
.y_max
.build;
let fitted = model.fit?;
let predictions = fitted.predict?;
Status
- Validated via the 10,013-passing workspace test suite included with
0.1.0-beta.1. - API surface aligns with scikit-learn 1.5 isotonic regression modules.
- Detailed roadmap items live in
TODO.mdwithin this crate.