Crate sklears_isotonic

Crate sklears_isotonic 

Source
Expand description

Isotonic regression

This module is part of sklears, providing scikit-learn compatible machine learning algorithms in Rust.

This crate provides comprehensive isotonic regression functionality including:

  • Basic isotonic regression with Pool Adjacent Violators Algorithm
  • Robust loss functions (L1, L2, Huber, Quantile)
  • Weighted isotonic regression
  • Constraint handling and validation

Additional advanced features are being progressively enabled as they pass compilation and testing.

Re-exports§

pub use robust::huber_weighted_mean;
pub use robust::loss_functions;
pub use robust::robust_statistics;
pub use optimization::create_partial_order;
pub use optimization::interpolate_multidimensional;
pub use optimization::isotonic_regression_active_set;
pub use optimization::isotonic_regression_dual_decomposition;
pub use optimization::isotonic_regression_interior_point;
pub use optimization::isotonic_regression_projected_gradient;
pub use optimization::isotonic_regression_qp;
pub use optimization::non_separable_isotonic_regression;
pub use optimization::parallel_dual_decomposition;
pub use optimization::separable_isotonic_regression;
pub use optimization::simd_constraint_violations;
pub use optimization::simd_dot_product;
pub use optimization::simd_gradient_computation;
pub use optimization::simd_hessian_approximation;
pub use optimization::simd_isotonic_projection;
pub use optimization::simd_newton_step;
pub use optimization::simd_qp_matrix_vector_multiply;
pub use optimization::simd_vector_norm;
pub use optimization::sparse_isotonic_regression;
pub use optimization::ActiveSetIsotonicRegressor;
pub use optimization::BenchmarkResults;
pub use optimization::DualDecompositionIsotonicRegressor;
pub use optimization::InteriorPointIsotonicRegressor;
pub use optimization::NonSeparableMultiDimensionalIsotonicRegression;
pub use optimization::OptimizationAlgorithm;
pub use optimization::OptimizationConfig;
pub use optimization::ProjectedGradientIsotonicRegressor;
pub use optimization::QuadraticProgrammingIsotonicRegressor;
pub use optimization::SeparableMultiDimensionalIsotonicRegression;
pub use optimization::SparseIsotonicRegression;
pub use constraints::*;
pub use core::*;
pub use pav::*;
pub use utils::*;
pub use algorithms::*;
pub use fluent_api::*;
pub use serialization::*;
pub use regularized::*;
pub use differential_equations::*;
pub use engineering_applications::*;
pub use environmental_science::*;
pub use ml_integration::*;
pub use advanced_bayesian::*;
pub use graph_methods::*;
pub use middleware::*;
pub use case_studies::*;
pub use unsafe_optimizations::*;
pub use advanced_benchmarks::*;

Modules§

advanced_bayesian
advanced_benchmarks
Advanced benchmarking suite for isotonic regression
algorithms
Core isotonic regression algorithms
case_studies
Real-world case studies and practical examples for isotonic regression
constraints
Constraint handling and validation for isotonic regression
convex_optimization
Convex Optimization Module for Isotonic Regression
core
Core isotonic regression types and implementations
differential_equations
engineering_applications
environmental_science
fluent_api
Fluent API for isotonic regression configuration
graph_methods
Advanced graph-based methods for isotonic regression
middleware
Middleware for constraint pipelines
ml_integration
optimization
Advanced optimization algorithms for isotonic regression
pav
Pool Adjacent Violators Algorithm (PAVA) implementations
regularized
Regularized isotonic regression algorithms
robust
Robust loss functions and utilities for isotonic regression
serialization
Serialization and deserialization for isotonic regression models
unsafe_optimizations
Unsafe optimizations for performance-critical paths
utils
Utility functions for isotonic regression