sci_rs/
stats.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
use core::{borrow::Borrow, iter::Sum, ops::Add};
use itertools::Itertools;
use num_traits::{Float, Num, NumCast, Signed};

#[cfg(feature = "alloc")]
use alloc::vec::Vec;

// Quick select finds the `i`th smallest element with 2N comparisons
#[cfg(feature = "alloc")]
fn quickselect<B, T>(y: &[B], k: usize) -> T
where
    B: Borrow<T>,
    T: Num + NumCast + PartialOrd + Copy,
{
    use num_traits::{Num, NumCast};

    let n = y.len();
    if n == 1 {
        return *y[0].borrow();
    }

    let pivot = y.get(n / 2).unwrap().borrow();
    let lower = y
        .iter()
        .filter(|yi| *(*yi).borrow() < *pivot)
        .map(|yi| *yi.borrow())
        .collect::<Vec<_>>();
    let lowers = lower.len();
    let upper = y
        .iter()
        .filter(|yi| *(*yi).borrow() > *pivot)
        .map(|yi| *yi.borrow())
        .collect::<Vec<_>>();
    let uppers = upper.len();
    let pivots = n - lowers - uppers;

    if k < lowers {
        quickselect(&lower, k)
    } else if k < lowers + pivots {
        *pivot
    } else {
        quickselect(&upper, k - lowers - pivots)
    }
}

///
/// Compute the median of the signal, `y`
///
/// Return the median and the number of points averaged
///
/// ```
/// use approx::assert_relative_eq;
/// use sci_rs::stats::median;
///
/// let y: [f64; 5] = [1.,2.,3.,4.,5.];
/// assert_relative_eq!(3f64, median(y.iter()).0);
///
/// let y: [i32; 5] = [1,2,3,4,5];
/// assert_eq!(3, median(y.iter()).0);
///
/// let y: [f64; 4] = [1.,2.,3.,4.];
/// assert_relative_eq!(2.5f64, median(y.iter()).0);
///
/// let y: [f32; 5] = [3.,1.,4.,2.,5.];
/// assert_relative_eq!(3f32, median(y.iter()).0);
///
/// let y: [f64; 6] = [3.,1.,4.,2.,3.,5.];
/// assert_relative_eq!(3f64, median(y.iter()).0);
///
/// let y: &[f32] = &[];
/// assert_eq!((0f32, 0), median(y.iter()));
///
/// let y: &[f32] = &[1.];
/// assert_eq!((1f32, 1), median(y.iter()));
///
/// let y: [i64; 4] = [1,2,3,4];
/// assert_eq!(2i64, median(y.iter()).0);
///
/// ```
///
#[cfg(feature = "alloc")]
pub fn median<YI, T>(y: YI) -> (T, usize)
where
    T: Num + NumCast + PartialOrd + Copy + Default,
    YI: Iterator,
    YI::Item: Borrow<T>,
{
    // Materialize the values in the iterator in order to run O(n) quick select

    use num_traits::NumCast;
    let y = y.collect::<Vec<_>>();
    let n = y.len();

    if n == 0 {
        Default::default()
    } else if n == 1 {
        (*y[0].borrow(), 1)
    } else if n % 2 == 1 {
        (quickselect(&y, n / 2), n)
    } else {
        (
            (quickselect(&y, n / 2 - 1) + quickselect(&y, n / 2)) / T::from(2).unwrap(),
            n,
        )
    }
}

///
/// Compute the mean of the signal, `y`
///
/// Return the mean and the number of points averaged
///
/// ```
/// use approx::assert_relative_eq;
/// use sci_rs::stats::mean;
///
/// let y: [f64; 5] = [1.,2.,3.,4.,5.];
/// assert_relative_eq!(3f64, mean(y.iter()).0);
///
/// let y: [i64; 5] = [1,2,3,4,5];
/// assert_eq!(3i64, mean(y.iter()).0);
///
/// let y: &[f32] = &[];
/// assert_eq!((0f32, 0), mean(y.iter()));
///
/// ```
///
pub fn mean<YI, F>(y: YI) -> (F, usize)
where
    F: Num + NumCast + Default + Copy + Add,
    YI: Iterator,
    YI::Item: Borrow<F>,
{
    let (sum, count) = y.fold(Default::default(), |acc: (F, usize), yi| {
        (acc.0 + *yi.borrow(), acc.1 + 1)
    });
    if count > 0 {
        (sum / F::from(count).unwrap(), count)
    } else {
        Default::default()
    }
}

///
/// Compute the variance of the signal, `y`
///
/// Return the variance and the number of points averaged
///
/// ```
/// use approx::assert_relative_eq;
/// use sci_rs::stats::variance;
///
/// let y: [f64; 5] = [1.,2.,3.,4.,5.];
/// assert_relative_eq!(2f64, variance(y.iter()).0);
///
/// let y: &[f32] = &[];
/// assert_eq!((0f32, 0), variance(y.iter()));
///
/// ```
///
pub fn variance<YI, F>(y: YI) -> (F, usize)
where
    F: Float + Default + Sum,
    YI: Iterator + Clone,
    YI::Item: Borrow<F>,
{
    let (avg, n) = mean(y.clone());
    let sum: F = y
        .map(|f| {
            let delta = *f.borrow() - avg;
            delta * delta
        })
        .sum::<F>();
    if n > 0 {
        (sum / F::from(n).unwrap(), n)
    } else {
        Default::default()
    }
}

///
/// Compute the standard deviation of the signal, `y`
///
/// Return the standard deviation and the number of points averaged
///
/// ```
/// use approx::assert_relative_eq;
/// use sci_rs::stats::stdev;
///
/// let y: [f64; 5] = [1.,2.,3.,4.,5.];
/// assert_relative_eq!(1.41421356237, stdev(y.iter()).0, max_relative = 1e-8);
///
/// let y: &[f32] = &[];
/// assert_eq!((0f32, 0), stdev(y.iter()));
///
/// ```
pub fn stdev<YI, F>(y: YI) -> (F, usize)
where
    F: Float + Default + Sum,
    YI: Iterator + Clone,
    YI::Item: Borrow<F>,
{
    match variance(y) {
        (_, 0) => Default::default(),
        (v, n) => (v.sqrt(), n),
    }
}

///
/// Autocorrelate the signal `y` with lag `k`,
/// using 1/N formulation
///
/// <https://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm>
///
pub fn autocorr<YI, F>(y: YI, k: usize) -> F
where
    F: Float + Add + Sum + Default,
    YI: Iterator + Clone,
    YI::Item: Borrow<F>,
{
    let (avg, n) = mean(y.clone());
    let n = F::from(n).unwrap();
    let (var, _) = variance(y.clone());
    let autocovariance: F = y
        .clone()
        .zip(y.skip(k))
        .map(|(fi, fik)| (*fi.borrow() - avg) * (*fik.borrow() - avg))
        .sum::<F>()
        / n;
    autocovariance / var
}

///
/// Unscaled tiled autocorrelation of signal `y` with itself into `x`.
///
/// This skips variance normalization and only computes lags in `SKIP..SKIP+x.len()`
///
/// The autocorrelation is not normalized by 1/y.len() or variance. The variance of the signal
/// is returned. The returned variance may be used to normalize lags of interest after the fact.
///
/// <https://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm>
///
pub fn autocorr_fast32<const N: usize, const M: usize, const SKIP: usize>(
    y: &mut [f32; N],
    x: &mut [f32; M],
) -> f32 {
    assert!(N >= M + SKIP);

    // Subtract the mean
    let sum = y.iter().sum::<f32>();
    let avg = sum / y.len() as f32;
    y.iter_mut().for_each(|yi| *yi -= avg);

    // Compute the variance of the signal
    let var = y.iter().map(|yi| yi * yi).sum::<f32>() / y.len() as f32;

    // Compute the autocorrelation for lag 1 to lag n
    let lag_skip = y.len() - x.len();
    for (h, xi) in (SKIP..y.len()).zip(x.iter_mut()) {
        let left = &y[..y.len() - h];
        let right = &y[h..];
        const TILE: usize = 4;
        let left = left.chunks_exact(TILE);
        let right = right.chunks_exact(TILE);
        *xi = left
            .remainder()
            .iter()
            .zip(right.remainder().iter())
            .map(|(a, b)| a * b)
            .sum::<f32>();
        *xi = left
            .zip(right)
            .map(|(left, right)| {
                left.iter()
                    .zip(right.iter())
                    .map(|(a, b)| a * b)
                    .sum::<f32>()
            })
            .sum();
    }

    var
}

///
/// Root Mean Square (RMS) of signal `y`.
///
/// It is assumed that the mean of the signal is zero.
///
pub fn rms_fast32<const N: usize>(y: &[f32; N]) -> f32 {
    const TILE: usize = 4;
    let tiles = y.chunks_exact(TILE);
    let sum = tiles.remainder().iter().map(|yi| yi * yi).sum::<f32>()
        + tiles
            .map(|yi| yi.iter().map(|yi| yi * yi).sum::<f32>())
            .sum::<f32>();
    (sum / y.len() as f32).sqrt()
}

///
/// Produce an iterator yielding the lag difference, yi1 - yi0,
///
/// <https://www.itl.nist.gov/div898/handbook/eda/section3/lagplot.htm>
///
/// ```
/// use approx::assert_relative_eq;
/// use sci_rs::stats::lag_diff;
///
/// // Flat signal perfectly correlates with itself
/// let y: [f64; 4] = [1.,2.,4.,7.];
/// let z = lag_diff(y.iter()).collect::<Vec<_>>();
/// for i in 0..3 {
///     assert_relative_eq!(i as f64 + 1f64, z[i]);
/// }
/// ```
///
pub fn lag_diff<'a, YI, F>(y: YI) -> impl Iterator<Item = F>
where
    F: Float + 'a,
    YI: Iterator + Clone,
    YI::Item: Borrow<F>,
{
    y.clone()
        .zip(y.skip(1))
        .map(|(yi0, yi1)| *yi1.borrow() - *yi0.borrow())
}

///
/// Compute the root mean square of successive differences
///
/// ```
/// use approx::assert_relative_eq;
/// use sci_rs::stats::rmssd;
///
/// // Differences are 1, 2, 3
/// // Square differences are 1, 4, 9
/// // Mean is 4.666666666666667
/// // RMSSD is 2.1602468995
/// let y: [f64; 4] = [1.,2.,4.,7.];
/// assert_relative_eq!(2.1602468995, rmssd(y.iter()), max_relative = 1e-8);
/// ```
///
pub fn rmssd<YI, F>(y: YI) -> F
where
    F: Float + Add + Sum + Default,
    YI: Iterator + Clone,
    YI::Item: Borrow<F> + Copy,
{
    let square_diffs = y
        .tuple_windows()
        .map(|(yi0, yi1)| (*yi1.borrow() - *yi0.borrow()).powi(2));
    let (sum, n): (F, usize) = mean(square_diffs);
    sum.sqrt()
}

///
/// Compute the z score of each value in the sample, relative to the sample mean and standard deviation.
///
/// <https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.zscore.html>
///
/// # Arguments
///
/// * `y` - An array of floating point values
///
/// # Examples
///
/// ```
/// use sci_rs::stats::zscore;
/// use approx::assert_relative_eq;
///
/// let y: [f32; 5] = [1.,2.,3.,4.,5.];
/// let z : Vec<f32> = zscore(y.iter()).collect::<Vec<_>>();
/// let answer: [f32; 5] = [-1.4142135, -0.70710677, 0.,  0.70710677,  1.4142135];
/// for i in 0..5 {
///     assert_relative_eq!(answer[i], z[i], epsilon = 1e-6);
/// }
///
/// // Example from scipy docs
/// let a: [f32; 10] = [ 0.7972,  0.0767,  0.4383,  0.7866,  0.8091, 0.1954,  0.6307,  0.6599,  0.1065,  0.0508];
/// let z : Vec<f32> = zscore(a.iter()).collect::<Vec<_>>();
/// let answer: [f32; 10] =[ 1.12724554, -1.2469956 , -0.05542642,  1.09231569,  1.16645923, -0.8558472 ,  0.57858329,  0.67480514, -1.14879659, -1.33234306];
/// for i in 0..10 {
///    assert_relative_eq!(answer[i], z[i], epsilon = 1e-6);
/// }
/// ```
pub fn zscore<YI, F>(y: YI) -> impl Iterator<Item = F>
where
    F: Float + Default + Copy + Add + Sum,
    YI: Iterator + Clone,
    YI::Item: Borrow<F>,
{
    let mean = mean(y.clone()).0;
    let standard_deviation = stdev(y.clone()).0;
    y.map(move |yi| ((*yi.borrow() - mean) / standard_deviation))
}

///
/// Compute the modified Z-score of each value in the sample, relative to the sample median over the mean absolute deviation.
///
/// <https://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm>
///
/// # Arguments
///
/// * `y` - An array of floating point values
///
/// # Examples
///
/// ```
/// use sci_rs::stats::mod_zscore;
/// use approx::assert_relative_eq;
///
/// let y: [f32; 5] = [1.,2.,3.,4.,5.];
/// let z : Vec<f32> = mod_zscore(y.iter()).collect::<Vec<_>>();
/// let answer: [f32; 5] = [-1.349, -0.6745, 0.,  0.6745,  1.349];
/// for i in 0..5 {
///     assert_relative_eq!(answer[i], z[i], epsilon = 1e-5);
/// }
/// ```
pub fn mod_zscore<YI, F>(y: YI) -> impl Iterator<Item = F>
where
    F: Float + Default + Copy + Add + Sum,
    YI: Iterator + Clone,
    YI::Item: Borrow<F>,
{
    let median = median(y.clone()).0;

    let mad = median_abs_deviation(y.clone()).0;
    y.map(move |yi| ((*yi.borrow() - median) * F::from(0.6745).unwrap() / mad))
}

/// The median absolute deviation (MAD, [1]) computes the median over the absolute deviations from the median.
/// It is a measure of dispersion similar to the standard deviation but more robust to outliers
///
/// # Arguments
///
/// * `y` - An array of floating point values
///
/// # Examples
///
/// ```
/// use sci_rs::stats::median_abs_deviation;
/// use approx::assert_relative_eq;
///
/// let y: [f64; 16] = [6., 7., 7., 8., 12., 14., 15., 16., 16., 19., 22., 24., 26., 26., 29., 46.];
/// let z = median_abs_deviation(y.iter());
///
/// assert_relative_eq!(8., z.0);
/// ```
pub fn median_abs_deviation<YI, F>(y: YI) -> (F, usize)
where
    F: Float + Default + Sum,
    YI: Iterator + Clone,
    YI::Item: Borrow<F>,
{
    let med = median(y.clone()).0;

    let abs_vals = y.map(|yi| (*yi.borrow() - med).abs());

    median(abs_vals.into_iter())
}

#[cfg(test)]
mod tests {
    use super::*;
    use approx::assert_relative_eq;

    #[cfg(feature = "std")]
    use {std::f64::consts::PI, std::vec::Vec};

    #[cfg(feature = "std")]
    #[test]
    fn can_median() {
        let y: [f64; 4] = [1., 2., 3., 4.];
        println!("y = {:?}", y);
        println!("y = {:?}", median::<_, f64>(y.iter()));
        assert_relative_eq!(2.5, median::<_, f64>(y.iter()).0);
        let y: [f64; 5] = [1., 2., 3., 4., 5.];
        println!("y = {:?}", y);
        println!("y = {:?}", median::<_, f64>(y.iter()));
        assert_relative_eq!(3.0, median::<_, f64>(y.iter()).0);
    }

    #[cfg(feature = "std")]
    #[test]
    fn can_autocorrelate() {
        // sin wave w/ multiple periods
        let periods = 1.;
        let points = 100;
        let radians_per_pt = (periods * 2. * PI) / points as f64;
        let sin_wave = (0..points)
            .map(|i| (i as f64 * radians_per_pt).sin())
            .collect::<Vec<_>>();
        // println!("sin_wave = {:?}", sin_wave);

        let _correlations: Vec<f64> = (0..points)
            .map(|i| autocorr(sin_wave.iter(), i))
            .collect::<Vec<_>>();
        let correlations: Vec<f32> = (0..points)
            .map(|i| autocorr(sin_wave.iter().map(|f| *f as f32), i))
            .collect::<Vec<_>>();
        println!("correlations = {:?}", correlations);
    }

    #[test]
    fn it_works() {
        let result = 2 + 2;
        assert_eq!(result, 4);
    }
}