sci_rs/stats.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
use core::{borrow::Borrow, iter::Sum, ops::Add};
use itertools::Itertools;
use num_traits::{Float, Num, NumCast, Signed};
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
// Quick select finds the `i`th smallest element with 2N comparisons
#[cfg(feature = "alloc")]
fn quickselect<B, T>(y: &[B], k: usize) -> T
where
B: Borrow<T>,
T: Num + NumCast + PartialOrd + Copy,
{
use num_traits::{Num, NumCast};
let n = y.len();
if n == 1 {
return *y[0].borrow();
}
let pivot = y.get(n / 2).unwrap().borrow();
let lower = y
.iter()
.filter(|yi| *(*yi).borrow() < *pivot)
.map(|yi| *yi.borrow())
.collect::<Vec<_>>();
let lowers = lower.len();
let upper = y
.iter()
.filter(|yi| *(*yi).borrow() > *pivot)
.map(|yi| *yi.borrow())
.collect::<Vec<_>>();
let uppers = upper.len();
let pivots = n - lowers - uppers;
if k < lowers {
quickselect(&lower, k)
} else if k < lowers + pivots {
*pivot
} else {
quickselect(&upper, k - lowers - pivots)
}
}
///
/// Compute the median of the signal, `y`
///
/// Return the median and the number of points averaged
///
/// ```
/// use approx::assert_relative_eq;
/// use sci_rs::stats::median;
///
/// let y: [f64; 5] = [1.,2.,3.,4.,5.];
/// assert_relative_eq!(3f64, median(y.iter()).0);
///
/// let y: [i32; 5] = [1,2,3,4,5];
/// assert_eq!(3, median(y.iter()).0);
///
/// let y: [f64; 4] = [1.,2.,3.,4.];
/// assert_relative_eq!(2.5f64, median(y.iter()).0);
///
/// let y: [f32; 5] = [3.,1.,4.,2.,5.];
/// assert_relative_eq!(3f32, median(y.iter()).0);
///
/// let y: [f64; 6] = [3.,1.,4.,2.,3.,5.];
/// assert_relative_eq!(3f64, median(y.iter()).0);
///
/// let y: &[f32] = &[];
/// assert_eq!((0f32, 0), median(y.iter()));
///
/// let y: &[f32] = &[1.];
/// assert_eq!((1f32, 1), median(y.iter()));
///
/// let y: [i64; 4] = [1,2,3,4];
/// assert_eq!(2i64, median(y.iter()).0);
///
/// ```
///
#[cfg(feature = "alloc")]
pub fn median<YI, T>(y: YI) -> (T, usize)
where
T: Num + NumCast + PartialOrd + Copy + Default,
YI: Iterator,
YI::Item: Borrow<T>,
{
// Materialize the values in the iterator in order to run O(n) quick select
use num_traits::NumCast;
let y = y.collect::<Vec<_>>();
let n = y.len();
if n == 0 {
Default::default()
} else if n == 1 {
(*y[0].borrow(), 1)
} else if n % 2 == 1 {
(quickselect(&y, n / 2), n)
} else {
(
(quickselect(&y, n / 2 - 1) + quickselect(&y, n / 2)) / T::from(2).unwrap(),
n,
)
}
}
///
/// Compute the mean of the signal, `y`
///
/// Return the mean and the number of points averaged
///
/// ```
/// use approx::assert_relative_eq;
/// use sci_rs::stats::mean;
///
/// let y: [f64; 5] = [1.,2.,3.,4.,5.];
/// assert_relative_eq!(3f64, mean(y.iter()).0);
///
/// let y: [i64; 5] = [1,2,3,4,5];
/// assert_eq!(3i64, mean(y.iter()).0);
///
/// let y: &[f32] = &[];
/// assert_eq!((0f32, 0), mean(y.iter()));
///
/// ```
///
pub fn mean<YI, F>(y: YI) -> (F, usize)
where
F: Num + NumCast + Default + Copy + Add,
YI: Iterator,
YI::Item: Borrow<F>,
{
let (sum, count) = y.fold(Default::default(), |acc: (F, usize), yi| {
(acc.0 + *yi.borrow(), acc.1 + 1)
});
if count > 0 {
(sum / F::from(count).unwrap(), count)
} else {
Default::default()
}
}
///
/// Compute the variance of the signal, `y`
///
/// Return the variance and the number of points averaged
///
/// ```
/// use approx::assert_relative_eq;
/// use sci_rs::stats::variance;
///
/// let y: [f64; 5] = [1.,2.,3.,4.,5.];
/// assert_relative_eq!(2f64, variance(y.iter()).0);
///
/// let y: &[f32] = &[];
/// assert_eq!((0f32, 0), variance(y.iter()));
///
/// ```
///
pub fn variance<YI, F>(y: YI) -> (F, usize)
where
F: Float + Default + Sum,
YI: Iterator + Clone,
YI::Item: Borrow<F>,
{
let (avg, n) = mean(y.clone());
let sum: F = y
.map(|f| {
let delta = *f.borrow() - avg;
delta * delta
})
.sum::<F>();
if n > 0 {
(sum / F::from(n).unwrap(), n)
} else {
Default::default()
}
}
///
/// Compute the standard deviation of the signal, `y`
///
/// Return the standard deviation and the number of points averaged
///
/// ```
/// use approx::assert_relative_eq;
/// use sci_rs::stats::stdev;
///
/// let y: [f64; 5] = [1.,2.,3.,4.,5.];
/// assert_relative_eq!(1.41421356237, stdev(y.iter()).0, max_relative = 1e-8);
///
/// let y: &[f32] = &[];
/// assert_eq!((0f32, 0), stdev(y.iter()));
///
/// ```
pub fn stdev<YI, F>(y: YI) -> (F, usize)
where
F: Float + Default + Sum,
YI: Iterator + Clone,
YI::Item: Borrow<F>,
{
match variance(y) {
(_, 0) => Default::default(),
(v, n) => (v.sqrt(), n),
}
}
///
/// Autocorrelate the signal `y` with lag `k`,
/// using 1/N formulation
///
/// <https://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm>
///
pub fn autocorr<YI, F>(y: YI, k: usize) -> F
where
F: Float + Add + Sum + Default,
YI: Iterator + Clone,
YI::Item: Borrow<F>,
{
let (avg, n) = mean(y.clone());
let n = F::from(n).unwrap();
let (var, _) = variance(y.clone());
let autocovariance: F = y
.clone()
.zip(y.skip(k))
.map(|(fi, fik)| (*fi.borrow() - avg) * (*fik.borrow() - avg))
.sum::<F>()
/ n;
autocovariance / var
}
///
/// Unscaled tiled autocorrelation of signal `y` with itself into `x`.
///
/// This skips variance normalization and only computes lags in `SKIP..SKIP+x.len()`
///
/// The autocorrelation is not normalized by 1/y.len() or variance. The variance of the signal
/// is returned. The returned variance may be used to normalize lags of interest after the fact.
///
/// <https://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm>
///
pub fn autocorr_fast32<const N: usize, const M: usize, const SKIP: usize>(
y: &mut [f32; N],
x: &mut [f32; M],
) -> f32 {
assert!(N >= M + SKIP);
// Subtract the mean
let sum = y.iter().sum::<f32>();
let avg = sum / y.len() as f32;
y.iter_mut().for_each(|yi| *yi -= avg);
// Compute the variance of the signal
let var = y.iter().map(|yi| yi * yi).sum::<f32>() / y.len() as f32;
// Compute the autocorrelation for lag 1 to lag n
let lag_skip = y.len() - x.len();
for (h, xi) in (SKIP..y.len()).zip(x.iter_mut()) {
let left = &y[..y.len() - h];
let right = &y[h..];
const TILE: usize = 4;
let left = left.chunks_exact(TILE);
let right = right.chunks_exact(TILE);
*xi = left
.remainder()
.iter()
.zip(right.remainder().iter())
.map(|(a, b)| a * b)
.sum::<f32>();
*xi = left
.zip(right)
.map(|(left, right)| {
left.iter()
.zip(right.iter())
.map(|(a, b)| a * b)
.sum::<f32>()
})
.sum();
}
var
}
///
/// Root Mean Square (RMS) of signal `y`.
///
/// It is assumed that the mean of the signal is zero.
///
pub fn rms_fast32<const N: usize>(y: &[f32; N]) -> f32 {
const TILE: usize = 4;
let tiles = y.chunks_exact(TILE);
let sum = tiles.remainder().iter().map(|yi| yi * yi).sum::<f32>()
+ tiles
.map(|yi| yi.iter().map(|yi| yi * yi).sum::<f32>())
.sum::<f32>();
(sum / y.len() as f32).sqrt()
}
///
/// Produce an iterator yielding the lag difference, yi1 - yi0,
///
/// <https://www.itl.nist.gov/div898/handbook/eda/section3/lagplot.htm>
///
/// ```
/// use approx::assert_relative_eq;
/// use sci_rs::stats::lag_diff;
///
/// // Flat signal perfectly correlates with itself
/// let y: [f64; 4] = [1.,2.,4.,7.];
/// let z = lag_diff(y.iter()).collect::<Vec<_>>();
/// for i in 0..3 {
/// assert_relative_eq!(i as f64 + 1f64, z[i]);
/// }
/// ```
///
pub fn lag_diff<'a, YI, F>(y: YI) -> impl Iterator<Item = F>
where
F: Float + 'a,
YI: Iterator + Clone,
YI::Item: Borrow<F>,
{
y.clone()
.zip(y.skip(1))
.map(|(yi0, yi1)| *yi1.borrow() - *yi0.borrow())
}
///
/// Compute the root mean square of successive differences
///
/// ```
/// use approx::assert_relative_eq;
/// use sci_rs::stats::rmssd;
///
/// // Differences are 1, 2, 3
/// // Square differences are 1, 4, 9
/// // Mean is 4.666666666666667
/// // RMSSD is 2.1602468995
/// let y: [f64; 4] = [1.,2.,4.,7.];
/// assert_relative_eq!(2.1602468995, rmssd(y.iter()), max_relative = 1e-8);
/// ```
///
pub fn rmssd<YI, F>(y: YI) -> F
where
F: Float + Add + Sum + Default,
YI: Iterator + Clone,
YI::Item: Borrow<F> + Copy,
{
let square_diffs = y
.tuple_windows()
.map(|(yi0, yi1)| (*yi1.borrow() - *yi0.borrow()).powi(2));
let (sum, n): (F, usize) = mean(square_diffs);
sum.sqrt()
}
///
/// Compute the z score of each value in the sample, relative to the sample mean and standard deviation.
///
/// <https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.zscore.html>
///
/// # Arguments
///
/// * `y` - An array of floating point values
///
/// # Examples
///
/// ```
/// use sci_rs::stats::zscore;
/// use approx::assert_relative_eq;
///
/// let y: [f32; 5] = [1.,2.,3.,4.,5.];
/// let z : Vec<f32> = zscore(y.iter()).collect::<Vec<_>>();
/// let answer: [f32; 5] = [-1.4142135, -0.70710677, 0., 0.70710677, 1.4142135];
/// for i in 0..5 {
/// assert_relative_eq!(answer[i], z[i], epsilon = 1e-6);
/// }
///
/// // Example from scipy docs
/// let a: [f32; 10] = [ 0.7972, 0.0767, 0.4383, 0.7866, 0.8091, 0.1954, 0.6307, 0.6599, 0.1065, 0.0508];
/// let z : Vec<f32> = zscore(a.iter()).collect::<Vec<_>>();
/// let answer: [f32; 10] =[ 1.12724554, -1.2469956 , -0.05542642, 1.09231569, 1.16645923, -0.8558472 , 0.57858329, 0.67480514, -1.14879659, -1.33234306];
/// for i in 0..10 {
/// assert_relative_eq!(answer[i], z[i], epsilon = 1e-6);
/// }
/// ```
pub fn zscore<YI, F>(y: YI) -> impl Iterator<Item = F>
where
F: Float + Default + Copy + Add + Sum,
YI: Iterator + Clone,
YI::Item: Borrow<F>,
{
let mean = mean(y.clone()).0;
let standard_deviation = stdev(y.clone()).0;
y.map(move |yi| ((*yi.borrow() - mean) / standard_deviation))
}
///
/// Compute the modified Z-score of each value in the sample, relative to the sample median over the mean absolute deviation.
///
/// <https://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm>
///
/// # Arguments
///
/// * `y` - An array of floating point values
///
/// # Examples
///
/// ```
/// use sci_rs::stats::mod_zscore;
/// use approx::assert_relative_eq;
///
/// let y: [f32; 5] = [1.,2.,3.,4.,5.];
/// let z : Vec<f32> = mod_zscore(y.iter()).collect::<Vec<_>>();
/// let answer: [f32; 5] = [-1.349, -0.6745, 0., 0.6745, 1.349];
/// for i in 0..5 {
/// assert_relative_eq!(answer[i], z[i], epsilon = 1e-5);
/// }
/// ```
pub fn mod_zscore<YI, F>(y: YI) -> impl Iterator<Item = F>
where
F: Float + Default + Copy + Add + Sum,
YI: Iterator + Clone,
YI::Item: Borrow<F>,
{
let median = median(y.clone()).0;
let mad = median_abs_deviation(y.clone()).0;
y.map(move |yi| ((*yi.borrow() - median) * F::from(0.6745).unwrap() / mad))
}
/// The median absolute deviation (MAD, [1]) computes the median over the absolute deviations from the median.
/// It is a measure of dispersion similar to the standard deviation but more robust to outliers
///
/// # Arguments
///
/// * `y` - An array of floating point values
///
/// # Examples
///
/// ```
/// use sci_rs::stats::median_abs_deviation;
/// use approx::assert_relative_eq;
///
/// let y: [f64; 16] = [6., 7., 7., 8., 12., 14., 15., 16., 16., 19., 22., 24., 26., 26., 29., 46.];
/// let z = median_abs_deviation(y.iter());
///
/// assert_relative_eq!(8., z.0);
/// ```
pub fn median_abs_deviation<YI, F>(y: YI) -> (F, usize)
where
F: Float + Default + Sum,
YI: Iterator + Clone,
YI::Item: Borrow<F>,
{
let med = median(y.clone()).0;
let abs_vals = y.map(|yi| (*yi.borrow() - med).abs());
median(abs_vals.into_iter())
}
#[cfg(test)]
mod tests {
use super::*;
use approx::assert_relative_eq;
#[cfg(feature = "std")]
use {std::f64::consts::PI, std::vec::Vec};
#[cfg(feature = "std")]
#[test]
fn can_median() {
let y: [f64; 4] = [1., 2., 3., 4.];
println!("y = {:?}", y);
println!("y = {:?}", median::<_, f64>(y.iter()));
assert_relative_eq!(2.5, median::<_, f64>(y.iter()).0);
let y: [f64; 5] = [1., 2., 3., 4., 5.];
println!("y = {:?}", y);
println!("y = {:?}", median::<_, f64>(y.iter()));
assert_relative_eq!(3.0, median::<_, f64>(y.iter()).0);
}
#[cfg(feature = "std")]
#[test]
fn can_autocorrelate() {
// sin wave w/ multiple periods
let periods = 1.;
let points = 100;
let radians_per_pt = (periods * 2. * PI) / points as f64;
let sin_wave = (0..points)
.map(|i| (i as f64 * radians_per_pt).sin())
.collect::<Vec<_>>();
// println!("sin_wave = {:?}", sin_wave);
let _correlations: Vec<f64> = (0..points)
.map(|i| autocorr(sin_wave.iter(), i))
.collect::<Vec<_>>();
let correlations: Vec<f32> = (0..points)
.map(|i| autocorr(sin_wave.iter().map(|f| *f as f32), i))
.collect::<Vec<_>>();
println!("correlations = {:?}", correlations);
}
#[test]
fn it_works() {
let result = 2 + 2;
assert_eq!(result, 4);
}
}