1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
/*
* Copyright 2008 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
use rxing_one_d_proc_derive::OneDReader;
use crate::common::{BitArray, Result};
use crate::Exceptions;
use crate::RXingResult;
use crate::{point, BarcodeFormat};
use crate::{RXingResultMetadataType, RXingResultMetadataValue};
use super::OneDReader;
/**
* <p>Decodes Codabar barcodes.</p>
*
* @author Bas Vijfwinkel
* @author David Walker
*/
#[derive(OneDReader)]
pub struct CodaBarReader {
// Keep some instance variables to avoid reallocations
decodeRowRXingResult: String,
counters: Vec<u32>,
counterLength: usize,
}
impl Default for CodaBarReader {
fn default() -> Self {
Self {
decodeRowRXingResult: String::with_capacity(20),
counters: vec![0; 80],
counterLength: 0,
}
}
}
impl OneDReader for CodaBarReader {
fn decode_row(
&mut self,
rowNumber: u32,
row: &crate::common::BitArray,
hints: &crate::DecodeHints,
) -> Result<crate::RXingResult> {
self.counters.fill(0);
// Arrays.fill(counters, 0);
self.setCounters(row)?;
let startOffset = self.findStartPattern()? as usize;
let mut nextStart = startOffset;
self.decodeRowRXingResult.clear();
loop {
let charOffset = self.toNarrowWidePattern(nextStart);
if charOffset == -1 {
return Err(Exceptions::NOT_FOUND);
}
// Hack: We store the position in the alphabet table into a
// StringBuilder, so that we can access the decoded patterns in
// validatePattern. We'll translate to the actual characters later.
self.decodeRowRXingResult
.push(char::from_u32(charOffset as u32).ok_or(Exceptions::PARSE)?);
nextStart += 8;
// Stop as soon as we see the end character.
if self.decodeRowRXingResult.chars().count() > 1
&& Self::STARTEND_ENCODING.contains(&Self::ALPHABET[charOffset as usize])
{
break;
}
// no fixed end pattern so keep on reading while data is available
if nextStart >= self.counterLength {
break;
}
}
// Look for whitespace after pattern:
let trailingWhitespace = self.counters[nextStart - 1];
let mut lastPatternSize = 0;
for i in -8..-1 {
lastPatternSize += self.counters[(nextStart as isize + i) as usize];
}
// We need to see whitespace equal to 50% of the last pattern size,
// otherwise this is probably a false positive. The exception is if we are
// at the end of the row. (I.e. the barcode barely fits.)
if nextStart < self.counterLength && trailingWhitespace < lastPatternSize / 2 {
return Err(Exceptions::NOT_FOUND);
}
let mut cached_drrr = self.decodeRowRXingResult.chars().collect::<Vec<_>>();
self.validatePattern(startOffset, &cached_drrr)?;
// Translate character table offsets to actual characters.
for i in 0..cached_drrr.len() {
// for (int i = 0; i < decodeRowRXingResult.length(); i++) {
let ch = *cached_drrr.get(i).ok_or(Exceptions::INDEX_OUT_OF_BOUNDS)? as usize;
// self.decodeRowRXingResult
// .replace_range(i..=i, &Self::ALPHABET[ch].to_string());
cached_drrr[i] = Self::ALPHABET[ch];
}
// Ensure a valid start and end character
let startchar = cached_drrr.first().ok_or(Exceptions::INDEX_OUT_OF_BOUNDS)?;
if !Self::STARTEND_ENCODING.contains(startchar) {
return Err(Exceptions::NOT_FOUND);
}
let endchar = cached_drrr.last().ok_or(Exceptions::INDEX_OUT_OF_BOUNDS)?;
if !Self::STARTEND_ENCODING.contains(endchar) {
return Err(Exceptions::NOT_FOUND);
}
// remove stop/start characters character and check if a long enough string is contained
if (cached_drrr.len()) <= Self::MIN_CHARACTER_LENGTH as usize {
// Almost surely a false positive ( start + stop + at least 1 character)
return Err(Exceptions::NOT_FOUND);
}
if !hints.ReturnCodabarStartEnd.unwrap_or(false) {
self.decodeRowRXingResult = cached_drrr[1..cached_drrr.len() - 1].iter().collect();
}
let mut runningCount = 0;
runningCount += self.counters.iter().take(startOffset).sum::<u32>();
// for i in 0..startOffset {
// runningCount += self.counters[i];
// }
let left: f32 = runningCount as f32;
runningCount += self
.counters
.iter()
.skip(startOffset)
.take(nextStart)
.sum::<u32>();
// for i in startOffset..(nextStart - 1) {
// runningCount += self.counters[i];
// }
let right: f32 = runningCount as f32;
let mut result = RXingResult::new(
&self.decodeRowRXingResult,
Vec::new(),
vec![
point(left, rowNumber as f32),
point(right, rowNumber as f32),
],
BarcodeFormat::CODABAR,
);
result.putMetadata(
RXingResultMetadataType::SYMBOLOGY_IDENTIFIER,
RXingResultMetadataValue::SymbologyIdentifier("]F0".to_owned()),
);
Ok(result)
}
}
impl CodaBarReader {
// These values are critical for determining how permissive the decoding
// will be. All stripe sizes must be within the window these define, as
// compared to the average stripe size.
pub const MAX_ACCEPTABLE: f32 = 2.0;
pub const PADDING: f32 = 1.5;
// const ALPHABET_STRING : &str= "0123456789-$:/.+ABCD";
pub const ALPHABET: [char; 20] = [
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '-', '$', ':', '/', '.', '+', 'A', 'B',
'C', 'D',
];
/**
* These represent the encodings of characters, as patterns of wide and narrow bars. The 7 least-significant bits of
* each int correspond to the pattern of wide and narrow, with 1s representing "wide" and 0s representing narrow.
*/
pub const CHARACTER_ENCODINGS: [u32; 20] = [
0x003, 0x006, 0x009, 0x060, 0x012, 0x042, 0x021, 0x024, 0x030, 0x048, // 0-9
0x00c, 0x018, 0x045, 0x051, 0x054, 0x015, 0x01A, 0x029, 0x00B, 0x00E, // -$:/.+ABCD
];
// minimal number of characters that should be present (including start and stop characters)
// under normal circumstances this should be set to 3, but can be set higher
// as a last-ditch attempt to reduce false positives.
pub const MIN_CHARACTER_LENGTH: u32 = 3;
// official start and end patterns
pub const STARTEND_ENCODING: [char; 4] = ['A', 'B', 'C', 'D'];
// some Codabar generator allow the Codabar string to be closed by every
// character. This will cause lots of false positives!
// some industries use a checksum standard but this is not part of the original Codabar standard
// for more information see : http://www.mecsw.com/specs/codabar.html
pub fn new() -> Self {
Self {
decodeRowRXingResult: String::with_capacity(20),
counters: vec![0; 80], //Vec::with_capacity(80),
counterLength: 0,
}
}
fn validatePattern(&self, start: usize, cached: &[char]) -> Result<()> {
// First, sum up the total size of our four categories of stripe sizes;
let mut sizes = [0, 0, 0, 0];
let mut counts = [0, 0, 0, 0];
let end = cached.len() - 1;
// We break out of this loop in the middle, in order to handle
// inter-character spaces properly.
let mut pos = start;
for i in 0..=end {
// for (int i = 0; i <= end; i++) {
let mut pattern = Self::CHARACTER_ENCODINGS
[*cached.get(i).ok_or(Exceptions::INDEX_OUT_OF_BOUNDS)? as usize];
for j in (0_usize..=6).rev() {
// Even j = bars, while odd j = spaces. Categories 2 and 3 are for
// long stripes, while 0 and 1 are for short stripes.
let category = (j & 1) + ((pattern as usize) & 1) * 2;
sizes[category] += self.counters[pos + j];
counts[category] += 1;
pattern >>= 1;
}
// We ignore the inter-character space - it could be of any size.
pos += 8;
}
// Calculate our allowable size thresholds using fixed-point math.
let mut maxes = [0.0; 4]; //new float[4];
let mut mins = [0.0; 4]; //new float[4];
// Define the threshold of acceptability to be the midpoint between the
// average small stripe and the average large stripe. No stripe lengths
// should be on the "wrong" side of that line.
for i in 0..2 {
// for (int i = 0; i < 2; i++) {
mins[i] = 0.0; // Accept arbitrarily small "short" stripes.
mins[i + 2] = ((sizes[i] as f32) / (counts[i] as f32)
+ (sizes[i + 2] as f32) / (counts[i + 2] as f32))
/ 2.0;
maxes[i] = mins[i + 2];
maxes[i + 2] = ((sizes[i + 2] as f32) * Self::MAX_ACCEPTABLE + Self::PADDING)
/ (counts[i + 2] as f32);
}
// Now verify that all of the stripes are within the thresholds.
pos = start;
for i in 0..=end {
// for (int i = 0; i <= end; i++) {
let mut pattern = Self::CHARACTER_ENCODINGS
[*cached.get(i).ok_or(Exceptions::INDEX_OUT_OF_BOUNDS)? as usize];
for j in (0..=6).rev() {
// Even j = bars, while odd j = spaces. Categories 2 and 3 are for
// long stripes, while 0 and 1 are for short stripes.
let category = (j & 1) + ((pattern as usize) & 1) * 2;
let size = self.counters[pos + j];
if (size as f32) < mins[category] || (size as f32) > maxes[category] {
return Err(Exceptions::NOT_FOUND);
}
pattern >>= 1;
}
pos += 8;
}
Ok(())
}
/**
* Records the size of all runs of white and black pixels, starting with white.
* This is just like recordPattern, except it records all the counters, and
* uses our builtin "counters" member for storage.
* @param row row to count from
*/
fn setCounters(&mut self, row: &BitArray) -> Result<()> {
self.counterLength = 0;
// Start from the first white bit.
let mut i = row.getNextUnset(0);
let end = row.get_size();
if i >= end {
return Err(Exceptions::NOT_FOUND);
}
let mut isWhite = true;
let mut count = 0;
while i < end {
if row.get(i) != isWhite {
count += 1;
} else {
self.counterAppend(count);
count = 1;
isWhite = !isWhite;
}
i += 1;
}
self.counterAppend(count);
Ok(())
}
fn counterAppend(&mut self, e: u32) {
self.counters[self.counterLength] = e;
self.counterLength += 1;
if self.counterLength >= self.counters.len() {
let mut temp = vec![0; self.counterLength * 2];
temp[0..self.counterLength].clone_from_slice(&self.counters[..]);
self.counters = temp;
}
}
fn findStartPattern(&mut self) -> Result<u32> {
let mut i = 1;
while i < self.counterLength {
// for (int i = 1; i < counterLength; i += 2) {
let charOffset = self.toNarrowWidePattern(i);
if charOffset != -1
&& Self::STARTEND_ENCODING.contains(&Self::ALPHABET[charOffset as usize])
{
// Look for whitespace before start pattern, >= 50% of width of start pattern
// We make an exception if the whitespace is the first element.
let mut patternSize = 0;
for j in i..(i + 7) {
patternSize += self.counters[j];
}
if i == 1 || self.counters[i - 1] >= patternSize / 2 {
return Ok(i as u32);
}
}
i += 2;
}
Err(Exceptions::NOT_FOUND)
}
// Assumes that counters[position] is a bar.
fn toNarrowWidePattern(&mut self, position: usize) -> i32 {
let end = position + 7;
if end >= self.counterLength {
return -1;
}
let theCounters = &self.counters;
let mut maxBar = 0;
let mut minBar = u32::MAX;
let mut j = position;
while j < end {
let currentCounter = theCounters[j];
if currentCounter < minBar {
minBar = currentCounter;
}
if currentCounter > maxBar {
maxBar = currentCounter;
}
j += 2;
}
let thresholdBar = (minBar + maxBar) / 2;
let mut maxSpace = 0;
let mut minSpace = u32::MAX;
let mut j = position + 1;
while j < end {
let currentCounter = theCounters[j];
minSpace = std::cmp::min(currentCounter, minSpace);
maxSpace = std::cmp::max(currentCounter, maxSpace);
j += 2;
}
let thresholdSpace = (minSpace + maxSpace) / 2;
let mut bitmask = 1 << 7;
let mut pattern = 0;
for i in 0..7 {
let threshold = if (i & 1) == 0 {
thresholdBar
} else {
thresholdSpace
};
bitmask >>= 1;
if theCounters[position + i] > threshold {
pattern |= bitmask;
}
}
for i in 0..Self::CHARACTER_ENCODINGS.len() {
if Self::CHARACTER_ENCODINGS[i] == pattern {
return i as i32;
}
}
-1
}
}