[−][src]Struct rustnomial::SparsePolynomial
Fields
terms: HashMap<usize, N>
Implementations
impl SparsePolynomial<f64>
[src]
pub fn roots(self) -> Roots<f64>
[src]
Return the roots of the SparsePolynomial
.
Example
use rustnomial::{SparsePolynomial, Roots, GenericPolynomial}; let zero = SparsePolynomial::<f64>::zero(); assert_eq!(Roots::InfiniteRoots, zero.roots()); let constant = SparsePolynomial::from_vec(vec![1.]); assert_eq!(Roots::NoRoots, constant.roots()); let monomial = SparsePolynomial::from_vec(vec![1.0, 0.,]); assert_eq!(Roots::ManyRealRoots(vec![0.]), monomial.roots()); let binomial = SparsePolynomial::from_vec(vec![1.0, 2.0]); assert_eq!(Roots::ManyRealRoots(vec![-2.0]), binomial.roots()); let trinomial = SparsePolynomial::from_vec(vec![1.0, 4.0, 4.0]); assert_eq!(Roots::ManyRealRoots(vec![-2.0, -2.0]), trinomial.roots()); let quadnomial = SparsePolynomial::from_vec(vec![1.0, 6.0, 12.0, 8.0]); assert_eq!(Roots::ManyRealRoots(vec![-2.0, -2.0, -2.0]), quadnomial.roots());
impl<N> SparsePolynomial<N>
[src]
pub fn new(terms: HashMap<usize, N>) -> SparsePolynomial<N>
[src]
impl<N> SparsePolynomial<N> where
N: Zero + Copy,
[src]
N: Zero + Copy,
pub fn from_vec(term_vec: Vec<N>) -> SparsePolynomial<N>
[src]
Returns a SparsePolynomial
with the corresponding terms,
in order of ax^n + bx^(n-1) + ... + cx + d
Arguments
term_vec
- A vector of constants, in decreasing order of degree.
Example
use rustnomial::SparsePolynomial; // Corresponds to 1.0x^2 + 4.0x + 4.0 let polynomial = SparsePolynomial::from_vec(vec![1.0, 4.0, 4.0]);
pub fn trim(&mut self)
[src]
Reduces the size of the SparsePolynomial
in memory by removing zero terms.
impl<N> SparsePolynomial<N> where
N: Mul<Output = N> + AddAssign + Copy + Zero + One,
[src]
N: Mul<Output = N> + AddAssign + Copy + Zero + One,
pub fn borrow_mul(&self, _rhs: &SparsePolynomial<N>) -> SparsePolynomial<N>
[src]
pub fn pow(&self, exp: usize) -> SparsePolynomial<N>
[src]
Raises the SparsePolynomial
to the power of exp, using exponentiation by squaring.
Example
use rustnomial::SparsePolynomial; let polynomial = SparsePolynomial::from_vec(vec![1.0, 2.0]); let polynomial_sqr = polynomial.pow(2); let polynomial_cub = polynomial.pow(3); assert_eq!(polynomial.clone() * polynomial.clone(), polynomial_sqr); assert_eq!(polynomial_sqr.clone() * polynomial.clone(), polynomial_cub);
impl<N> SparsePolynomial<N> where
N: Copy + Zero + Neg<Output = N> + Sub<Output = N> + SubAssign + Mul<Output = N> + Div<Output = N> + AddAssign,
[src]
N: Copy + Zero + Neg<Output = N> + Sub<Output = N> + SubAssign + Mul<Output = N> + Div<Output = N> + AddAssign,
pub fn div_mod(
&self,
_rhs: &SparsePolynomial<N>
) -> (SparsePolynomial<N>, SparsePolynomial<N>)
[src]
&self,
_rhs: &SparsePolynomial<N>
) -> (SparsePolynomial<N>, SparsePolynomial<N>)
Divides self by the given SparsePolynomial
, and returns the quotient and remainder.
Example
use rustnomial::SparsePolynomial; let polynomial = SparsePolynomial::from_vec(vec![1.0, 2.0]);
Trait Implementations
impl<N> Add<SparsePolynomial<N>> for SparsePolynomial<N> where
N: Copy + AddAssign,
[src]
N: Copy + AddAssign,
type Output = SparsePolynomial<N>
The resulting type after applying the +
operator.
fn add(self, _rhs: SparsePolynomial<N>) -> SparsePolynomial<N>
[src]
impl<N: Copy + AddAssign> AddAssign<SparsePolynomial<N>> for SparsePolynomial<N>
[src]
fn add_assign(&mut self, _rhs: SparsePolynomial<N>)
[src]
impl<N: Clone> Clone for SparsePolynomial<N>
[src]
fn clone(&self) -> SparsePolynomial<N>
[src]
fn clone_from(&mut self, source: &Self)
1.0.0[src]
impl<N: Debug> Debug for SparsePolynomial<N>
[src]
impl<N> Derivable<N> for SparsePolynomial<N> where
N: Zero + From<u8> + Copy + Mul<Output = N>,
[src]
N: Zero + From<u8> + Copy + Mul<Output = N>,
fn derivative(&self) -> SparsePolynomial<N>
[src]
Returns the derivative of the SparsePolynomial
.
Example
use rustnomial::{SparsePolynomial, Derivable}; let polynomial = SparsePolynomial::from_vec(vec![4, 1, 5]); assert_eq!(SparsePolynomial::from_vec(vec![8, 1]), polynomial.derivative());
impl<N> Display for SparsePolynomial<N> where
N: Zero + One + IsPositive + PartialEq + Abs + Copy + IsNegativeOne + Display,
[src]
N: Zero + One + IsPositive + PartialEq + Abs + Copy + IsNegativeOne + Display,
impl<N> Div<N> for SparsePolynomial<N> where
N: Copy + Div<Output = N>,
[src]
N: Copy + Div<Output = N>,
type Output = SparsePolynomial<N>
The resulting type after applying the /
operator.
fn div(self, _rhs: N) -> SparsePolynomial<N>
[src]
impl<N> DivAssign<N> for SparsePolynomial<N> where
N: Copy + DivAssign,
[src]
N: Copy + DivAssign,
fn div_assign(&mut self, _rhs: N)
[src]
impl<N> Evaluable<N> for SparsePolynomial<N> where
N: Zero + PowUsize + Copy + AddAssign + Mul<Output = N>,
[src]
N: Zero + PowUsize + Copy + AddAssign + Mul<Output = N>,
impl<N> FreeSizePolynomial<N> for SparsePolynomial<N> where
N: Zero + Copy + AddAssign,
[src]
N: Zero + Copy + AddAssign,
fn from_terms(terms: Vec<(N, usize)>) -> Self
[src]
Returns a SparsePolynomial
with the corresponding terms.
Arguments
terms
- A hashmap, where keys correspond to degrees and values correspond to coefficients.
Example
use rustnomial::SparsePolynomial; // Corresponds to 1.0x^2 + 4.0x + 4.0 let polynomial = SparsePolynomial::from_vec(vec![1.0, 4.0, 4.0]);
fn add_term(&mut self, term: N, degree: usize)
[src]
impl From<SparsePolynomial<f32>> for SparsePolynomial<f64>
[src]
fn from(item: SparsePolynomial<f32>) -> Self
[src]
impl From<SparsePolynomial<i16>> for SparsePolynomial<i32>
[src]
fn from(item: SparsePolynomial<i16>) -> Self
[src]
impl From<SparsePolynomial<i16>> for SparsePolynomial<i64>
[src]
fn from(item: SparsePolynomial<i16>) -> Self
[src]
impl From<SparsePolynomial<i16>> for SparsePolynomial<i128>
[src]
fn from(item: SparsePolynomial<i16>) -> Self
[src]
impl From<SparsePolynomial<i16>> for SparsePolynomial<f32>
[src]
fn from(item: SparsePolynomial<i16>) -> Self
[src]
impl From<SparsePolynomial<i16>> for SparsePolynomial<f64>
[src]
fn from(item: SparsePolynomial<i16>) -> Self
[src]
impl From<SparsePolynomial<i32>> for SparsePolynomial<i64>
[src]
fn from(item: SparsePolynomial<i32>) -> Self
[src]
impl From<SparsePolynomial<i32>> for SparsePolynomial<i128>
[src]
fn from(item: SparsePolynomial<i32>) -> Self
[src]
impl From<SparsePolynomial<i32>> for SparsePolynomial<f64>
[src]
fn from(item: SparsePolynomial<i32>) -> Self
[src]
impl From<SparsePolynomial<i64>> for SparsePolynomial<i128>
[src]
fn from(item: SparsePolynomial<i64>) -> Self
[src]
impl From<SparsePolynomial<i8>> for SparsePolynomial<i16>
[src]
fn from(item: SparsePolynomial<i8>) -> Self
[src]
impl From<SparsePolynomial<i8>> for SparsePolynomial<i32>
[src]
fn from(item: SparsePolynomial<i8>) -> Self
[src]
impl From<SparsePolynomial<i8>> for SparsePolynomial<i64>
[src]
fn from(item: SparsePolynomial<i8>) -> Self
[src]
impl From<SparsePolynomial<i8>> for SparsePolynomial<i128>
[src]
fn from(item: SparsePolynomial<i8>) -> Self
[src]
impl From<SparsePolynomial<i8>> for SparsePolynomial<f32>
[src]
fn from(item: SparsePolynomial<i8>) -> Self
[src]
impl From<SparsePolynomial<i8>> for SparsePolynomial<f64>
[src]
fn from(item: SparsePolynomial<i8>) -> Self
[src]
impl From<SparsePolynomial<u16>> for SparsePolynomial<u32>
[src]
fn from(item: SparsePolynomial<u16>) -> Self
[src]
impl From<SparsePolynomial<u16>> for SparsePolynomial<u64>
[src]
fn from(item: SparsePolynomial<u16>) -> Self
[src]
impl From<SparsePolynomial<u16>> for SparsePolynomial<u128>
[src]
fn from(item: SparsePolynomial<u16>) -> Self
[src]
impl From<SparsePolynomial<u16>> for SparsePolynomial<i32>
[src]
fn from(item: SparsePolynomial<u16>) -> Self
[src]
impl From<SparsePolynomial<u16>> for SparsePolynomial<i64>
[src]
fn from(item: SparsePolynomial<u16>) -> Self
[src]
impl From<SparsePolynomial<u16>> for SparsePolynomial<i128>
[src]
fn from(item: SparsePolynomial<u16>) -> Self
[src]
impl From<SparsePolynomial<u16>> for SparsePolynomial<f32>
[src]
fn from(item: SparsePolynomial<u16>) -> Self
[src]
impl From<SparsePolynomial<u16>> for SparsePolynomial<f64>
[src]
fn from(item: SparsePolynomial<u16>) -> Self
[src]
impl From<SparsePolynomial<u32>> for SparsePolynomial<u64>
[src]
fn from(item: SparsePolynomial<u32>) -> Self
[src]
impl From<SparsePolynomial<u32>> for SparsePolynomial<u128>
[src]
fn from(item: SparsePolynomial<u32>) -> Self
[src]
impl From<SparsePolynomial<u32>> for SparsePolynomial<i64>
[src]
fn from(item: SparsePolynomial<u32>) -> Self
[src]
impl From<SparsePolynomial<u32>> for SparsePolynomial<i128>
[src]
fn from(item: SparsePolynomial<u32>) -> Self
[src]
impl From<SparsePolynomial<u32>> for SparsePolynomial<f64>
[src]
fn from(item: SparsePolynomial<u32>) -> Self
[src]
impl From<SparsePolynomial<u64>> for SparsePolynomial<u128>
[src]
fn from(item: SparsePolynomial<u64>) -> Self
[src]
impl From<SparsePolynomial<u64>> for SparsePolynomial<i128>
[src]
fn from(item: SparsePolynomial<u64>) -> Self
[src]
impl From<SparsePolynomial<u8>> for SparsePolynomial<u16>
[src]
fn from(item: SparsePolynomial<u8>) -> Self
[src]
impl From<SparsePolynomial<u8>> for SparsePolynomial<u32>
[src]
fn from(item: SparsePolynomial<u8>) -> Self
[src]
impl From<SparsePolynomial<u8>> for SparsePolynomial<u64>
[src]
fn from(item: SparsePolynomial<u8>) -> Self
[src]
impl From<SparsePolynomial<u8>> for SparsePolynomial<u128>
[src]
fn from(item: SparsePolynomial<u8>) -> Self
[src]
impl From<SparsePolynomial<u8>> for SparsePolynomial<i16>
[src]
fn from(item: SparsePolynomial<u8>) -> Self
[src]
impl From<SparsePolynomial<u8>> for SparsePolynomial<i32>
[src]
fn from(item: SparsePolynomial<u8>) -> Self
[src]
impl From<SparsePolynomial<u8>> for SparsePolynomial<i64>
[src]
fn from(item: SparsePolynomial<u8>) -> Self
[src]
impl From<SparsePolynomial<u8>> for SparsePolynomial<i128>
[src]
fn from(item: SparsePolynomial<u8>) -> Self
[src]
impl From<SparsePolynomial<u8>> for SparsePolynomial<f32>
[src]
fn from(item: SparsePolynomial<u8>) -> Self
[src]
impl From<SparsePolynomial<u8>> for SparsePolynomial<f64>
[src]
fn from(item: SparsePolynomial<u8>) -> Self
[src]
impl<N> FromStr for SparsePolynomial<N> where
N: Zero + One + Copy + AddAssign + FromStr,
[src]
N: Zero + One + Copy + AddAssign + FromStr,
type Err = PolynomialFromStringError
The associated error which can be returned from parsing.
fn from_str(s: &str) -> Result<Self, Self::Err>
[src]
impl<N: Zero + Copy> GenericPolynomial<N> for SparsePolynomial<N>
[src]
fn zero() -> SparsePolynomial<N>
[src]
Returns a SparsePolynomial
with no terms.
Example
use rustnomial::{GenericPolynomial, SparsePolynomial}; let zero = SparsePolynomial::<i32>::zero(); assert!(zero.is_zero()); assert!(zero.term_iter().next().is_none()); assert!(zero.terms.is_empty());
fn len(&self) -> usize
[src]
fn nth_term(&self, index: usize) -> Term<N>
[src]
fn term_iter(&self) -> TermIterator<N>
[src]
Returns an iterator for the SparsePolynomial
, yielding the term constant and degree. Terms are
iterated over in descending degree order, excluding zero terms.
Example
use rustnomial::{SparsePolynomial, GenericPolynomial}; let spolynomial = SparsePolynomial::from_vec(vec![1, 0, 2, 3]); let mut iter = spolynomial.term_iter(); assert_eq!(Some((1, 3)), iter.next()); assert_eq!(Some((2, 1)), iter.next()); assert_eq!(Some((3, 0)), iter.next()); assert_eq!(None, iter.next());
fn degree(&self) -> Degree
[src]
Returns the degree of the SparsePolynomial
it is called on, corresponding to the
largest non-zero term.
Example
use rustnomial::{GenericPolynomial, SparsePolynomial, Degree}; let polynomial = SparsePolynomial::from_vec(vec![1.0, 4.0, 4.0]); assert_eq!(Degree::Num(2), polynomial.degree());
fn is_zero(&self) -> bool
[src]
Returns true if all terms are zero, and false if a non-zero term exists.
Example
use rustnomial::{SparsePolynomial, GenericPolynomial}; let zero = SparsePolynomial::from_vec(vec![0, 0]); assert!(zero.is_zero()); let non_zero = SparsePolynomial::from_vec(vec![0, 1]); assert!(!non_zero.is_zero());
impl<N, '_> Mul<&'_ SparsePolynomial<N>> for SparsePolynomial<N> where
N: Mul<Output = N> + AddAssign + Copy + Zero,
[src]
N: Mul<Output = N> + AddAssign + Copy + Zero,
type Output = SparsePolynomial<N>
The resulting type after applying the *
operator.
fn mul(self, _rhs: &SparsePolynomial<N>) -> SparsePolynomial<N>
[src]
impl<N: Copy + Mul<Output = N>> Mul<N> for SparsePolynomial<N>
[src]
type Output = SparsePolynomial<N>
The resulting type after applying the *
operator.
fn mul(self, _rhs: N) -> SparsePolynomial<N>
[src]
impl<N> Mul<SparsePolynomial<N>> for SparsePolynomial<N> where
N: Mul<Output = N> + AddAssign + Copy + Zero,
[src]
N: Mul<Output = N> + AddAssign + Copy + Zero,
type Output = SparsePolynomial<N>
The resulting type after applying the *
operator.
fn mul(self, _rhs: SparsePolynomial<N>) -> SparsePolynomial<N>
[src]
impl<N, '_> MulAssign<&'_ SparsePolynomial<N>> for SparsePolynomial<N> where
N: Mul<Output = N> + AddAssign + Copy + Zero,
[src]
N: Mul<Output = N> + AddAssign + Copy + Zero,
fn mul_assign(&mut self, _rhs: &SparsePolynomial<N>)
[src]
impl<N: Copy + MulAssign> MulAssign<N> for SparsePolynomial<N>
[src]
fn mul_assign(&mut self, _rhs: N)
[src]
impl<N> MulAssign<SparsePolynomial<N>> for SparsePolynomial<N> where
N: Mul<Output = N> + AddAssign + Copy + Zero,
[src]
N: Mul<Output = N> + AddAssign + Copy + Zero,
fn mul_assign(&mut self, _rhs: SparsePolynomial<N>)
[src]
impl<N> MutablePolynomial<N> for SparsePolynomial<N> where
N: Zero + Copy + AddAssign,
[src]
N: Zero + Copy + AddAssign,
fn try_add_term(&mut self, term: N, degree: usize) -> Result<(), TryAddError>
[src]
fn set_to_zero(&mut self)
[src]
impl<N> Neg for SparsePolynomial<N> where
N: Zero + Copy + Neg<Output = N>,
[src]
N: Zero + Copy + Neg<Output = N>,
type Output = SparsePolynomial<N>
The resulting type after applying the -
operator.
fn neg(self) -> SparsePolynomial<N>
[src]
impl<N> PartialEq<SparsePolynomial<N>> for SparsePolynomial<N> where
N: Zero + PartialEq + Copy,
[src]
N: Zero + PartialEq + Copy,
fn eq(&self, other: &Self) -> bool
[src]
Returns true if self has the same terms as other.
Example
use rustnomial::SparsePolynomial; let a = SparsePolynomial::from_vec(vec![1.0, 2.0]); let b = SparsePolynomial::from_vec(vec![2.0, 2.0]); let c = SparsePolynomial::from_vec(vec![1.0, 0.0]); assert_ne!(a, b); assert_ne!(a, c); assert_eq!(a, b - c);
#[must_use]fn ne(&self, other: &Rhs) -> bool
1.0.0[src]
impl<N> Rem<SparsePolynomial<N>> for SparsePolynomial<N> where
N: Copy + Zero + Neg<Output = N> + Sub<Output = N> + SubAssign + Mul<Output = N> + Div<Output = N> + AddAssign,
[src]
N: Copy + Zero + Neg<Output = N> + Sub<Output = N> + SubAssign + Mul<Output = N> + Div<Output = N> + AddAssign,
type Output = SparsePolynomial<N>
The resulting type after applying the %
operator.
fn rem(self, _rhs: SparsePolynomial<N>) -> SparsePolynomial<N>
[src]
Returns the remainder of dividing self
by _rhs
.
impl<N> RemAssign<SparsePolynomial<N>> for SparsePolynomial<N> where
N: Copy + Zero + Neg<Output = N> + Sub<Output = N> + SubAssign + Mul<Output = N> + Div<Output = N> + AddAssign,
[src]
N: Copy + Zero + Neg<Output = N> + Sub<Output = N> + SubAssign + Mul<Output = N> + Div<Output = N> + AddAssign,
fn rem_assign(&mut self, _rhs: SparsePolynomial<N>)
[src]
Assign the remainder of dividing self
by _rhs
to self
.
impl<N: Copy> Shl<i32> for SparsePolynomial<N>
[src]
type Output = SparsePolynomial<N>
The resulting type after applying the <<
operator.
fn shl(self, _rhs: i32) -> SparsePolynomial<N>
[src]
impl<N: Copy> ShlAssign<i32> for SparsePolynomial<N>
[src]
fn shl_assign(&mut self, _rhs: i32)
[src]
impl<N: Copy> Shr<i32> for SparsePolynomial<N>
[src]
type Output = SparsePolynomial<N>
The resulting type after applying the >>
operator.
fn shr(self, _rhs: i32) -> SparsePolynomial<N>
[src]
impl<N: Copy> ShrAssign<i32> for SparsePolynomial<N>
[src]
fn shr_assign(&mut self, _rhs: i32)
[src]
impl<N> Sub<Polynomial<N>> for SparsePolynomial<N> where
N: Zero + Copy + Sub<Output = N> + SubAssign + Neg<Output = N>,
[src]
N: Zero + Copy + Sub<Output = N> + SubAssign + Neg<Output = N>,
type Output = SparsePolynomial<N>
The resulting type after applying the -
operator.
fn sub(self, _rhs: Polynomial<N>) -> SparsePolynomial<N>
[src]
impl<N> Sub<SparsePolynomial<N>> for SparsePolynomial<N> where
N: Zero + Copy + Sub<Output = N> + SubAssign + Neg<Output = N>,
[src]
N: Zero + Copy + Sub<Output = N> + SubAssign + Neg<Output = N>,
type Output = SparsePolynomial<N>
The resulting type after applying the -
operator.
fn sub(self, _rhs: SparsePolynomial<N>) -> SparsePolynomial<N>
[src]
impl<N> SubAssign<SparsePolynomial<N>> for SparsePolynomial<N> where
N: Neg<Output = N> + Sub<Output = N> + SubAssign + Copy,
[src]
N: Neg<Output = N> + Sub<Output = N> + SubAssign + Copy,
fn sub_assign(&mut self, _rhs: SparsePolynomial<N>)
[src]
Auto Trait Implementations
impl<N> RefUnwindSafe for SparsePolynomial<N> where
N: RefUnwindSafe,
N: RefUnwindSafe,
impl<N> Send for SparsePolynomial<N> where
N: Send,
N: Send,
impl<N> Sync for SparsePolynomial<N> where
N: Sync,
N: Sync,
impl<N> Unpin for SparsePolynomial<N> where
N: Unpin,
N: Unpin,
impl<N> UnwindSafe for SparsePolynomial<N> where
N: UnwindSafe,
N: UnwindSafe,
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T, Rhs> NumAssignOps<Rhs> for T where
T: AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs> + RemAssign<Rhs>,
[src]
T: AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs> + RemAssign<Rhs>,
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
fn to_owned(&self) -> T
[src]
fn clone_into(&self, target: &mut T)
[src]
impl<T> ToString for T where
T: Display + ?Sized,
[src]
T: Display + ?Sized,
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,