[−][src]Struct rustnomial::Polynomial
Fields
terms: Vec<N>
Implementations
impl<N> Polynomial<N> where
N: Zero + Copy,
[src]
N: Zero + Copy,
pub fn new(terms: Vec<N>) -> Polynomial<N>
[src]
Returns a Polynomial
with the corresponding terms,
in order of ax^n + bx^(n-1) + ... + cx + d
Arguments
terms
- A vector of constants, in decreasing order of degree.
Example
use rustnomial::Polynomial; // Corresponds to 1.0x^2 + 4.0x + 4.0 let polynomial = Polynomial::new(vec![1.0, 4.0, 4.0]);
pub fn trim(&mut self)
[src]
Reduces the size of the Polynomial
in memory if the leading terms are zero.
Example
use rustnomial::Polynomial; let mut polynomial = Polynomial::new(vec![1.0, 4.0, 4.0]); polynomial.terms = vec![0.0, 0.0, 0.0, 0.0, 1.0, 4.0, 4.0]; polynomial.trim(); assert_eq!(vec![1.0, 4.0, 4.0], polynomial.terms);
impl Polynomial<f64>
[src]
pub fn roots(self) -> Roots<f64>
[src]
Return the roots of the Polynomial
.
Example
use rustnomial::{Polynomial, Roots, GenericPolynomial}; let zero = Polynomial::<f64>::zero(); assert_eq!(Roots::InfiniteRoots, zero.roots()); let constant = Polynomial::new(vec![1.]); assert_eq!(Roots::NoRoots, constant.roots()); let monomial = Polynomial::new(vec![1.0, 0.,]); assert_eq!(Roots::ManyRealRoots(vec![0.]), monomial.roots()); let binomial = Polynomial::new(vec![1.0, 2.0]); assert_eq!(Roots::ManyRealRoots(vec![-2.0]), binomial.roots()); let trinomial = Polynomial::new(vec![1.0, 4.0, 4.0]); assert_eq!(Roots::ManyRealRoots(vec![-2.0, -2.0]), trinomial.roots()); let quadnomial = Polynomial::new(vec![1.0, 6.0, 12.0, 8.0]); assert_eq!(Roots::ManyRealRoots(vec![-2.0, -2.0, -2.0]), quadnomial.roots());
impl<N> Polynomial<N> where
N: Mul<Output = N> + AddAssign + Copy + Zero + One,
[src]
N: Mul<Output = N> + AddAssign + Copy + Zero + One,
pub fn pow(&self, exp: usize) -> Polynomial<N>
[src]
Raises the Polynomial
to the power of exp, using exponentiation by squaring.
Example
use rustnomial::Polynomial; let polynomial = Polynomial::new(vec![1.0, 2.0]); let polynomial_sqr = polynomial.pow(2); let polynomial_cub = polynomial.pow(3); assert_eq!(polynomial.clone() * polynomial.clone(), polynomial_sqr); assert_eq!(polynomial_sqr.clone() * polynomial.clone(), polynomial_cub);
impl<N> Polynomial<N> where
N: Copy + Zero + SubAssign + Mul<Output = N> + Div<Output = N>,
[src]
N: Copy + Zero + SubAssign + Mul<Output = N> + Div<Output = N>,
pub fn div_mod(&self, _rhs: &Polynomial<N>) -> (Polynomial<N>, Polynomial<N>)
[src]
Divides self by the given Polynomial
, and returns the quotient and remainder.
impl<N> Polynomial<N> where
N: Copy + Zero + SubAssign + Mul<Output = N> + Div<Output = N>,
[src]
N: Copy + Zero + SubAssign + Mul<Output = N> + Div<Output = N>,
pub fn floor_div(&self, _rhs: &Polynomial<N>) -> Polynomial<N>
[src]
Divides self by the given Polynomial
, and returns the quotient.
Trait Implementations
impl<N> Add<Polynomial<N>> for Polynomial<N> where
N: Zero + Copy + AddAssign,
[src]
N: Zero + Copy + AddAssign,
type Output = Polynomial<N>
The resulting type after applying the +
operator.
fn add(self, _rhs: Polynomial<N>) -> Polynomial<N>
[src]
impl<N: Copy + Zero + AddAssign> AddAssign<Polynomial<N>> for Polynomial<N>
[src]
fn add_assign(&mut self, _rhs: Polynomial<N>)
[src]
impl<N: Clone> Clone for Polynomial<N>
[src]
fn clone(&self) -> Polynomial<N>
[src]
fn clone_from(&mut self, source: &Self)
1.0.0[src]
impl<N: Debug> Debug for Polynomial<N>
[src]
impl<N> Derivable<N> for Polynomial<N> where
N: Zero + From<u8> + Copy + MulAssign,
[src]
N: Zero + From<u8> + Copy + MulAssign,
fn derivative(&self) -> Polynomial<N>
[src]
Returns the derivative of the Polynomial
.
Example
use rustnomial::{Polynomial, Derivable}; let polynomial = Polynomial::new(vec![4, 1, 5]); assert_eq!(Polynomial::new(vec![8, 1]), polynomial.derivative());
impl<N> Display for Polynomial<N> where
N: Zero + One + IsPositive + PartialEq + Abs + Copy + IsNegativeOne + Display,
[src]
N: Zero + One + IsPositive + PartialEq + Abs + Copy + IsNegativeOne + Display,
impl<N> Div<N> for Polynomial<N> where
N: Zero + Copy + Div<Output = N>,
[src]
N: Zero + Copy + Div<Output = N>,
type Output = Polynomial<N>
The resulting type after applying the /
operator.
fn div(self, _rhs: N) -> Polynomial<N>
[src]
impl<N: Copy + DivAssign> DivAssign<N> for Polynomial<N>
[src]
fn div_assign(&mut self, _rhs: N)
[src]
impl<N> Evaluable<N> for Polynomial<N> where
N: Zero + One + Copy + AddAssign + MulAssign + Mul<Output = N>,
[src]
N: Zero + One + Copy + AddAssign + MulAssign + Mul<Output = N>,
impl<N> FreeSizePolynomial<N> for Polynomial<N> where
N: Zero + Copy + AddAssign,
[src]
N: Zero + Copy + AddAssign,
fn from_terms(terms: Vec<(N, usize)>) -> Self
[src]
Returns a Polynomial
with the corresponding terms,
in order of ax^n + bx^(n-1) + ... + cx + d
Arguments
terms
- A vector of constants, in decreasing order of degree.
Example
use rustnomial::Polynomial; // Corresponds to 1.0x^2 + 4.0x + 4.0 let polynomial = Polynomial::new(vec![1.0, 4.0, 4.0]);
fn add_term(&mut self, term: N, degree: usize)
[src]
impl From<Polynomial<f32>> for Polynomial<f64>
[src]
fn from(item: Polynomial<f32>) -> Self
[src]
impl From<Polynomial<i16>> for Polynomial<i32>
[src]
fn from(item: Polynomial<i16>) -> Self
[src]
impl From<Polynomial<i16>> for Polynomial<i64>
[src]
fn from(item: Polynomial<i16>) -> Self
[src]
impl From<Polynomial<i16>> for Polynomial<i128>
[src]
fn from(item: Polynomial<i16>) -> Self
[src]
impl From<Polynomial<i16>> for Polynomial<f32>
[src]
fn from(item: Polynomial<i16>) -> Self
[src]
impl From<Polynomial<i16>> for Polynomial<f64>
[src]
fn from(item: Polynomial<i16>) -> Self
[src]
impl From<Polynomial<i32>> for Polynomial<i64>
[src]
fn from(item: Polynomial<i32>) -> Self
[src]
impl From<Polynomial<i32>> for Polynomial<i128>
[src]
fn from(item: Polynomial<i32>) -> Self
[src]
impl From<Polynomial<i32>> for Polynomial<f64>
[src]
fn from(item: Polynomial<i32>) -> Self
[src]
impl From<Polynomial<i64>> for Polynomial<i128>
[src]
fn from(item: Polynomial<i64>) -> Self
[src]
impl From<Polynomial<i8>> for Polynomial<i16>
[src]
fn from(item: Polynomial<i8>) -> Self
[src]
impl From<Polynomial<i8>> for Polynomial<i32>
[src]
fn from(item: Polynomial<i8>) -> Self
[src]
impl From<Polynomial<i8>> for Polynomial<i64>
[src]
fn from(item: Polynomial<i8>) -> Self
[src]
impl From<Polynomial<i8>> for Polynomial<i128>
[src]
fn from(item: Polynomial<i8>) -> Self
[src]
impl From<Polynomial<i8>> for Polynomial<f32>
[src]
fn from(item: Polynomial<i8>) -> Self
[src]
impl From<Polynomial<i8>> for Polynomial<f64>
[src]
fn from(item: Polynomial<i8>) -> Self
[src]
impl From<Polynomial<u16>> for Polynomial<u32>
[src]
fn from(item: Polynomial<u16>) -> Self
[src]
impl From<Polynomial<u16>> for Polynomial<u64>
[src]
fn from(item: Polynomial<u16>) -> Self
[src]
impl From<Polynomial<u16>> for Polynomial<u128>
[src]
fn from(item: Polynomial<u16>) -> Self
[src]
impl From<Polynomial<u16>> for Polynomial<i32>
[src]
fn from(item: Polynomial<u16>) -> Self
[src]
impl From<Polynomial<u16>> for Polynomial<i64>
[src]
fn from(item: Polynomial<u16>) -> Self
[src]
impl From<Polynomial<u16>> for Polynomial<i128>
[src]
fn from(item: Polynomial<u16>) -> Self
[src]
impl From<Polynomial<u16>> for Polynomial<f32>
[src]
fn from(item: Polynomial<u16>) -> Self
[src]
impl From<Polynomial<u16>> for Polynomial<f64>
[src]
fn from(item: Polynomial<u16>) -> Self
[src]
impl From<Polynomial<u32>> for Polynomial<u64>
[src]
fn from(item: Polynomial<u32>) -> Self
[src]
impl From<Polynomial<u32>> for Polynomial<u128>
[src]
fn from(item: Polynomial<u32>) -> Self
[src]
impl From<Polynomial<u32>> for Polynomial<i64>
[src]
fn from(item: Polynomial<u32>) -> Self
[src]
impl From<Polynomial<u32>> for Polynomial<i128>
[src]
fn from(item: Polynomial<u32>) -> Self
[src]
impl From<Polynomial<u32>> for Polynomial<f64>
[src]
fn from(item: Polynomial<u32>) -> Self
[src]
impl From<Polynomial<u64>> for Polynomial<u128>
[src]
fn from(item: Polynomial<u64>) -> Self
[src]
impl From<Polynomial<u64>> for Polynomial<i128>
[src]
fn from(item: Polynomial<u64>) -> Self
[src]
impl From<Polynomial<u8>> for Polynomial<u16>
[src]
fn from(item: Polynomial<u8>) -> Self
[src]
impl From<Polynomial<u8>> for Polynomial<u32>
[src]
fn from(item: Polynomial<u8>) -> Self
[src]
impl From<Polynomial<u8>> for Polynomial<u64>
[src]
fn from(item: Polynomial<u8>) -> Self
[src]
impl From<Polynomial<u8>> for Polynomial<u128>
[src]
fn from(item: Polynomial<u8>) -> Self
[src]
impl From<Polynomial<u8>> for Polynomial<i16>
[src]
fn from(item: Polynomial<u8>) -> Self
[src]
impl From<Polynomial<u8>> for Polynomial<i32>
[src]
fn from(item: Polynomial<u8>) -> Self
[src]
impl From<Polynomial<u8>> for Polynomial<i64>
[src]
fn from(item: Polynomial<u8>) -> Self
[src]
impl From<Polynomial<u8>> for Polynomial<i128>
[src]
fn from(item: Polynomial<u8>) -> Self
[src]
impl From<Polynomial<u8>> for Polynomial<f32>
[src]
fn from(item: Polynomial<u8>) -> Self
[src]
impl From<Polynomial<u8>> for Polynomial<f64>
[src]
fn from(item: Polynomial<u8>) -> Self
[src]
impl<N> FromStr for Polynomial<N> where
N: Zero + One + Copy + AddAssign + FromStr,
[src]
N: Zero + One + Copy + AddAssign + FromStr,
type Err = PolynomialFromStringError
The associated error which can be returned from parsing.
fn from_str(s: &str) -> Result<Self, Self::Err>
[src]
impl<N: Copy + Zero> GenericPolynomial<N> for Polynomial<N>
[src]
fn zero() -> Polynomial<N>
[src]
Returns a Polynomial
with no terms.
Example
use rustnomial::{GenericPolynomial, Polynomial}; let zero = Polynomial::<i32>::zero(); assert!(zero.is_zero()); assert!(zero.term_iter().next().is_none()); assert!(zero.terms.is_empty());
fn len(&self) -> usize
[src]
Returns the length of the Polynomial
. Not equal to the number of terms.
fn nth_term(&self, index: usize) -> Term<N>
[src]
fn term_iter(&self) -> TermIterator<N>
[src]
Returns an iterator for the Polynomial
, yielding the term constant and degree. Terms are
iterated over in descending degree order, excluding zero terms.
Example
use rustnomial::{Polynomial, GenericPolynomial}; let polynomial = Polynomial::new(vec![1, 0, 2, 3]); let mut iter = polynomial.term_iter(); assert_eq!(Some((1, 3)), iter.next()); assert_eq!(Some((2, 1)), iter.next()); assert_eq!(Some((3, 0)), iter.next()); assert_eq!(None, iter.next());
fn degree(&self) -> Degree
[src]
Returns the degree of the Polynomial
it is called on, corresponding to the
largest non-zero term.
Example
use rustnomial::{GenericPolynomial, Polynomial, Degree}; let polynomial = Polynomial::new(vec![1.0, 4.0, 4.0]); assert_eq!(Degree::Num(2), polynomial.degree());
fn is_zero(&self) -> bool
[src]
Returns true if all terms are zero, and false if a non-zero term exists.
Example
use rustnomial::{GenericPolynomial, Polynomial}; let zero = Polynomial::new(vec![0, 0]); assert!(zero.is_zero()); let non_zero = Polynomial::new(vec![0, 1]); assert!(!non_zero.is_zero());
impl<N> Integrable<N> for Polynomial<N> where
N: Zero + From<u8> + Copy + DivAssign,
[src]
N: Zero + From<u8> + Copy + DivAssign,
fn integral(&self) -> Integral<N>
[src]
Returns the integral of the Polynomial
.
Example
use rustnomial::{Polynomial, Integrable}; let polynomial = Polynomial::new(vec![1.0, 2.0, 5.0]); let integral = polynomial.integral(); assert_eq!(Polynomial::new(vec![1.0/3.0, 1.0, 5.0, 0.0]), integral.polynomial);
impl<N, '_> Mul<&'_ Polynomial<N>> for Polynomial<N> where
N: Mul<Output = N> + AddAssign + Copy + Zero,
[src]
N: Mul<Output = N> + AddAssign + Copy + Zero,
type Output = Polynomial<N>
The resulting type after applying the *
operator.
fn mul(self, _rhs: &Polynomial<N>) -> Polynomial<N>
[src]
impl<N, '_, '_> Mul<&'_ Polynomial<N>> for &'_ Polynomial<N> where
N: Mul<Output = N> + AddAssign + Copy + Zero,
[src]
N: Mul<Output = N> + AddAssign + Copy + Zero,
type Output = Polynomial<N>
The resulting type after applying the *
operator.
fn mul(self, _rhs: &Polynomial<N>) -> Polynomial<N>
[src]
impl<N: Zero + Copy + Mul<Output = N>> Mul<N> for Polynomial<N>
[src]
type Output = Polynomial<N>
The resulting type after applying the *
operator.
fn mul(self, _rhs: N) -> Polynomial<N>
[src]
impl<N> Mul<Polynomial<N>> for Polynomial<N> where
N: Mul<Output = N> + AddAssign + Copy + Zero,
[src]
N: Mul<Output = N> + AddAssign + Copy + Zero,
type Output = Polynomial<N>
The resulting type after applying the *
operator.
fn mul(self, _rhs: Polynomial<N>) -> Polynomial<N>
[src]
impl<N, '_> Mul<Polynomial<N>> for &'_ Polynomial<N> where
N: Mul<Output = N> + AddAssign + Copy + Zero,
[src]
N: Mul<Output = N> + AddAssign + Copy + Zero,
type Output = Polynomial<N>
The resulting type after applying the *
operator.
fn mul(self, _rhs: Polynomial<N>) -> Polynomial<N>
[src]
impl<N, '_> MulAssign<&'_ Polynomial<N>> for Polynomial<N> where
N: Mul<Output = N> + AddAssign + Copy + Zero,
[src]
N: Mul<Output = N> + AddAssign + Copy + Zero,
fn mul_assign(&mut self, _rhs: &Polynomial<N>)
[src]
impl<N: Copy + MulAssign> MulAssign<N> for Polynomial<N>
[src]
fn mul_assign(&mut self, _rhs: N)
[src]
impl<N> MulAssign<Polynomial<N>> for Polynomial<N> where
N: Mul<Output = N> + AddAssign + Copy + Zero,
[src]
N: Mul<Output = N> + AddAssign + Copy + Zero,
fn mul_assign(&mut self, _rhs: Polynomial<N>)
[src]
impl<N> MutablePolynomial<N> for Polynomial<N> where
N: Zero + Copy + AddAssign,
[src]
N: Zero + Copy + AddAssign,
fn try_add_term(&mut self, term: N, degree: usize) -> Result<(), TryAddError>
[src]
fn set_to_zero(&mut self)
[src]
impl<N> Neg for Polynomial<N> where
N: Zero + Copy + Neg<Output = N>,
[src]
N: Zero + Copy + Neg<Output = N>,
type Output = Polynomial<N>
The resulting type after applying the -
operator.
fn neg(self) -> Polynomial<N>
[src]
impl<N> PartialEq<Polynomial<N>> for Polynomial<N> where
N: PartialEq + Zero + Copy,
[src]
N: PartialEq + Zero + Copy,
fn eq(&self, other: &Self) -> bool
[src]
Returns true if self and other have the same terms.
Example
use rustnomial::Polynomial; let a = Polynomial::new(vec![1.0, 2.0]); let b = Polynomial::new(vec![2.0, 2.0]); let c = Polynomial::new(vec![1.0, 0.0]); assert_ne!(a, b); assert_ne!(a, c); assert_eq!(a, b - c);
#[must_use]fn ne(&self, other: &Rhs) -> bool
1.0.0[src]
impl<N> Rem<Polynomial<N>> for Polynomial<N> where
N: Copy + Zero + SubAssign + Mul<Output = N> + Div<Output = N>,
[src]
N: Copy + Zero + SubAssign + Mul<Output = N> + Div<Output = N>,
type Output = Polynomial<N>
The resulting type after applying the %
operator.
fn rem(self, _rhs: Polynomial<N>) -> Polynomial<N>
[src]
Returns the remainder of dividing self
by _rhs
.
impl<N> RemAssign<Polynomial<N>> for Polynomial<N> where
N: Copy + Zero + SubAssign + Mul<Output = N> + Div<Output = N>,
[src]
N: Copy + Zero + SubAssign + Mul<Output = N> + Div<Output = N>,
fn rem_assign(&mut self, _rhs: Polynomial<N>)
[src]
Assign the remainder of dividing self
by _rhs
to self
.
impl<N: Zero + Copy> Shl<i32> for Polynomial<N>
[src]
type Output = Polynomial<N>
The resulting type after applying the <<
operator.
fn shl(self, _rhs: i32) -> Polynomial<N>
[src]
impl<N: Zero + Copy> ShlAssign<i32> for Polynomial<N>
[src]
fn shl_assign(&mut self, _rhs: i32)
[src]
impl<N: Zero + Copy> Shr<i32> for Polynomial<N>
[src]
type Output = Polynomial<N>
The resulting type after applying the >>
operator.
fn shr(self, _rhs: i32) -> Polynomial<N>
[src]
impl<N: Zero + Copy> ShrAssign<i32> for Polynomial<N>
[src]
fn shr_assign(&mut self, _rhs: i32)
[src]
impl<N> Sub<Polynomial<N>> for Polynomial<N> where
N: Zero + Copy + Sub<Output = N> + SubAssign + Neg<Output = N>,
[src]
N: Zero + Copy + Sub<Output = N> + SubAssign + Neg<Output = N>,
type Output = Polynomial<N>
The resulting type after applying the -
operator.
fn sub(self, _rhs: Polynomial<N>) -> Polynomial<N>
[src]
impl<N> Sub<Polynomial<N>> for SparsePolynomial<N> where
N: Zero + Copy + Sub<Output = N> + SubAssign + Neg<Output = N>,
[src]
N: Zero + Copy + Sub<Output = N> + SubAssign + Neg<Output = N>,
type Output = SparsePolynomial<N>
The resulting type after applying the -
operator.
fn sub(self, _rhs: Polynomial<N>) -> SparsePolynomial<N>
[src]
impl<N> SubAssign<Polynomial<N>> for Polynomial<N> where
N: Neg<Output = N> + Sub<Output = N> + SubAssign + Copy + Zero,
[src]
N: Neg<Output = N> + Sub<Output = N> + SubAssign + Copy + Zero,
fn sub_assign(&mut self, _rhs: Polynomial<N>)
[src]
Auto Trait Implementations
impl<N> RefUnwindSafe for Polynomial<N> where
N: RefUnwindSafe,
N: RefUnwindSafe,
impl<N> Send for Polynomial<N> where
N: Send,
N: Send,
impl<N> Sync for Polynomial<N> where
N: Sync,
N: Sync,
impl<N> Unpin for Polynomial<N> where
N: Unpin,
N: Unpin,
impl<N> UnwindSafe for Polynomial<N> where
N: UnwindSafe,
N: UnwindSafe,
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T, Rhs> NumAssignOps<Rhs> for T where
T: AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs> + RemAssign<Rhs>,
[src]
T: AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs> + RemAssign<Rhs>,
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
fn to_owned(&self) -> T
[src]
fn clone_into(&self, target: &mut T)
[src]
impl<T> ToString for T where
T: Display + ?Sized,
[src]
T: Display + ?Sized,
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,