rustlr 0.6.6

Bottom-Up Parser Generator with Advanced Options
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
// module for generating the LR finite state machine
#![allow(dead_code)]
#![allow(unused_variables)]
#![allow(non_snake_case)]
#![allow(non_camel_case_types)]
#![allow(unused_parens)]
#![allow(unused_mut)]
#![allow(unused_assignments)]
#![allow(unused_doc_comments)]
#![allow(unused_imports)]
use std::collections::{HashMap,HashSet,BTreeSet};
use std::cell::{RefCell,Ref,RefMut};
use std::hash::{Hash,Hasher};
use std::mem;
use crate::grammar_processor::*;
use crate::Stateaction::*;

/////////////// LR state machine

//actions are: shift, reduce, accept, gotonext

#[derive(Clone,PartialEq,Eq,Hash,Debug)]
pub struct LRitem
{
   ri: usize, // rule index
   pi: usize, // position of dot
   la: String, // lookahead
   //interior : bool,  // can't have this here if deriving Eq
}
pub fn printrulela(ri:usize, Gmr:&Grammar, la:&str)
{
     if ri>=Gmr.Rules.len() {println!("printing invalid rule number {}",ri); return;}
     let ref lhs_sym = Gmr.Rules[ri].lhs.sym;
     let ref rhs = Gmr.Rules[ri].rhs;
     print!("  (Rule {}) {} --> ",ri,lhs_sym);
     for gsym in rhs  { print!("{} ",gsym.sym); }
     println!(" , lookahead {}",la);
}
pub fn printitem(item:&LRitem, Gmr:&Grammar)
{
     let ref lhs_sym = Gmr.Rules[item.ri].lhs.sym;
     let ref rhs = Gmr.Rules[item.ri].rhs;
     print!("  ({}) {} --> ",item.ri,lhs_sym);
     let mut position = 0;
     for gsym in rhs 
     {
       if &position==&item.pi {print!(".");}
       print!("{} ",gsym.sym);
       position+=1;
     }
     if &position==&item.pi {print!(". ");}
     println!(", {}",&item.la);  
}// printitem

// representation of each LR1 state
pub type Itemset = HashSet<LRitem>;
// check if two states are the same

pub type LookupSet<T> = BTreeSet<T>;

pub fn stateeq(s1:&Itemset, s2:&Itemset) -> bool
{
   if s1.len()!=s2.len() { return false; }
   for s in s1 {
      if !s2.contains(s) {return false;}
   }
   return true;
}//stateeq

fn extract_core(items:&Itemset) -> HashSet<(usize,usize)> // for lalr
{
   let mut core0 = HashSet::with_capacity(256);
   for LRitem{ri:r, pi:p, la} in items  { core0.insert((*r,*p)); }
   core0
}

// checks if every item core in s1 is also in s2, for LALR
fn sub_core(s1:&Itemset, s2:&Itemset) -> bool // not used
{
   for LRitem{ri:r1,pi:p1,la:la1} in s1
   {
      let mut bx = false;
      for LRitem{ri:r2,pi:p2,la} in s2
      {
         if r1==r2 && p1==p2 {bx=true; break;}
      }
      if !bx {return false;}
   }
   return true;
}//sub_core

fn eq_core(s1:&Itemset, s2:&Itemset) -> bool 
{
   let (core1,core2) = (extract_core(s1),extract_core(s2));
   if core1.len()!=core2.len() {return false;}
   for item_core in &core1
   {
      if !core2.contains(item_core) {return false; }
   }
   return true;
}//eq_core

#[derive(Clone,Debug)]
pub struct LR1State
{
   index: usize, // index into vector
   items:Itemset,
   lhss: BTreeSet<String>,  // set of left-side non-terminals
   //expected : HashSet<String>, // expected lookaheads for error reporting
}
impl LR1State
{
  pub fn new() -> LR1State
  {
     LR1State {
        index : 0,   // need to change
        items : HashSet::with_capacity(256),
        lhss: BTreeSet::new(), // for quick lookup
        //expected : HashSet::with_capacity(32),
     }
  }
  pub fn insert(&mut self, item:LRitem, lhs:&str) -> bool
  {
     let inserted = self.items.insert(item);
     self.lhss.insert(String::from(lhs));
     inserted
  }
  pub fn hashval(&self) -> String  // note: NOT UNIQUE
  {
    let mut key=self.items.len().to_string(); // better for lr1
    for s in &self.lhss {key.push_str(s);}
    key    
  }  
  pub fn hashval_lalr(&self) -> String  // note: NOT UNIQUE
  {
    let mut key = extract_core(&self.items).len().to_string(); // lr1/lalr
    for s in &self.lhss {key.push_str(s);}
    key    
  }
  pub fn contains(&self, x:&LRitem) -> bool {self.items.contains(x)}

  fn core_eq(&self, state2:&LR1State) -> bool // for LALR
  { eq_core(&self.items,&state2.items) }
    //{ sub_core(&self.items,&state2.items) && sub_core(&state2.items,&self.items) }

  fn merge_states(&mut self, state2:&LR1State) // not used
  {
      for item in &state2.items {self.items.insert(item.clone());}
  }//merge_states

}// basics ofr LR1State

impl PartialEq for LR1State
{
   fn eq(&self, other:&LR1State) -> bool
   {stateeq(&self.items,&other.items)}
   fn ne(&self, other:&LR1State) ->bool
   {!stateeq(&self.items,&other.items)}
}
impl Eq for LR1State {}
// Hash for LR1 state no longer implemented

// independent function for tracing
pub fn printstate(state:&LR1State,Gmr:&Grammar) 
{
  println!("state {}:",state.index);
  let mut lamap:HashMap<(usize,usize),Vec<&String>> = HashMap::with_capacity(Gmr.Rules.len()*4);
  for item in &state.items
  {
     let laset:&mut Vec<&String> = match lamap.get_mut(&(item.ri,item.pi)) {
        Some(x) => x,
        None => {
           let mut newset = Vec::<&String>::with_capacity(16);
           lamap.insert((item.ri,item.pi),newset);
           lamap.get_mut(&(item.ri,item.pi)).unwrap()
        },
     };//match
     laset.push(&item.la);
  }
  for (ri,pi) in lamap.keys()
  {
    let ref lhs_sym = Gmr.Rules[*ri].lhs.sym;
     let ref rhs = Gmr.Rules[*ri].rhs;
     print!("  ({}) {} --> ",ri,lhs_sym);
     let mut position = 0;
     for gsym in rhs 
     {
       if &position==pi {print!(".");}
       print!("{} ",gsym.sym);
       position+=1;
     }
     if &position==pi {print!(". ");}
     print!(" {{ ");
     for la in lamap.get(&(*ri,*pi)).unwrap()
     {
       print!("{},",la);
     }
     println!(" }}");
  }//for key
}//printstate
pub fn printstate_raw(state:&LR1State,Gmr:&Grammar) 
{
  for item in &state.items
  { printitem(item,Gmr); }
}



pub fn stateclosure(mut state:LR1State, Gmr:&Grammar)
  -> LR1State // consumes and returns new state
{
  //algorithm is like that of a spanning tree
  let mut closed =LR1State::new();  // closed set,
  closed.index = state.index;
  while state.items.len()>0
  {  
     //if TRACE>2 {printstate(&state,Gmr);}
     let nextitem = state.items.iter().next().unwrap().clone();
     let item = state.items.take(&nextitem).unwrap();
     let (ri,pi,la) = (item.ri,item.pi,&item.la);
     let rulei = &Gmr.Rules[ri]; //.get(ri).unwrap();
     let lhs = &rulei.lhs.sym;
     closed.insert(nextitem,lhs); // place item in interior
     /*
     // insert terminals into expected set for error reporting
     if pi<rulei.rhs.len() && rulei.rhs[pi].terminal { // add to expected
       closed.expected.insert(rulei.rhs[pi].sym.clone());
     }
     else if pi==rulei.rhs.len() {closed.expected.insert(la.clone());}
     */
     if pi<rulei.rhs.len() && !rulei.rhs[pi].terminal {
       let nti = &rulei.rhs[pi]; // non-terminal after dot (Gsym)
       let lookaheads=&Gmr.Firstseq(&rulei.rhs[pi+1..],la);
       for rulent in Gmr.Rulesfor.get(&nti.sym).unwrap()
       {
          for lafollow in lookaheads 
          { 
            //if TRACE>2 {println!("adding new item for la {}",&lafollow);}
            let newitem = LRitem {
               ri: *rulent,
               pi: 0,
               la: lafollow.clone(),
            };
            if !closed.items.contains(&newitem)  {
              state.insert(newitem,&nti.sym); // add to "frontier"
//if TRACE>2 {println!("added new item of rule {}, la {}",&rulent,&lafollow);}
            }
          }//for each possible lookahead following non-terminal
       }// for each rule in this non-terminal
     } // add items to closure for this item
  }  // while not closed
  closed
}//stateclosure generation


////// Contruction of the FSM, which is a Vec<HashMap<String,stateaction>>

/// this enum is only exported because it's used by the generated parsers.
/// There is no reason to use it in other programs.
#[derive(Copy,Clone,PartialEq,Eq,Debug)]
pub enum Stateaction {
  Shift(usize),     // shift then go to state index
  Reduce(usize),    // reduce by rule index
  Gotonext(usize),  // folded into same table, only for non-terminals
  Accept,
  /// note: this has been changed after version 0.1.1 from String to
  /// &'static str for increased efficiency. Error action entries are
  /// not generated by rustlr: they can only be added with the parser's
  /// training capability.  Parsers already trained can be hand-modified
  /// by removing all instances of ".to_string()" from the load_extras function.
  Error(&'static str),
}

// abstract parser struct
pub struct Statemachine  // AT is abstract syntax (enum) type
{
   pub Gmr: Grammar,
   pub States: Vec<LR1State>, 
   pub Statelookup: HashMap<String,LookupSet<usize>>,
   pub FSM: Vec<HashMap<String,Stateaction>>,
   pub lalr: bool,
   pub Open: Vec<usize>, // for LALR only, vector of unclosed states
}

impl Statemachine
{
  pub fn new(gram:Grammar) -> Statemachine
  { 
       Statemachine {
          Gmr: gram,
          States: Vec::with_capacity(8*1024), // reserve 8K states
          Statelookup: HashMap::with_capacity(1024),
          FSM: Vec::with_capacity(8*1024),
          lalr: false,
          Open: Vec::new(), // not used for lr1, set externally if lalr
       }
  }//new

  // psi is previous state index, nextsym is next symbol (may do lalr)
  fn addstate(&mut self, mut state:LR1State, psi:usize, nextsym:String)
  {  
     let newstateindex = self.States.len(); // index of new state
     state.index = newstateindex;
     let lookupkey = if self.lalr {state.hashval_lalr()} else {state.hashval()};
     if let None=self.Statelookup.get(&lookupkey) {
        self.Statelookup.insert(lookupkey.clone(),LookupSet::new());
     }
     let indices = self.Statelookup.get_mut(&lookupkey).unwrap();
     let mut toadd = newstateindex; // defaut is add new state (will push)
     if self.lalr {
        for i in indices.iter()
        { 
           if state.core_eq(&self.States[*i]) {
             toadd=*i;
             let mut stateclone = LR1State {
                index : toadd,
                items : state.items.clone(),
                lhss: BTreeSet::new(),
                //expected : state.expected.clone(),
             };
             stateclone.merge_states(&self.States[toadd]);
             if stateclone.items.len() > self.States[toadd].items.len() {
                self.States[toadd] = stateclosure(stateclone,&self.Gmr);
                // now need to call makegotos again on this state - add
                // to end of open vector.
                self.Open.push(toadd);
                if TRACE>3 { print!("===> MERGED STATE: ");
                    printstate(&self.States[toadd],&self.Gmr);
                }
             } // existing state extended, re-closed, but ...
             break;
           } // core_eq with another state  
        } // for each index in Statelookup to look at
     }// if lalr
     else {   // lr1
       for i in indices.iter()
       {
         if &state==&self.States[*i] {toadd=*i; break; } // state i exists
       }
     }// lalr or lr1

     if TRACE>3 {println!("transition to state {} from state {}, symbol {}..",toadd,psi,&nextsym);}
     if toadd==newstateindex {  // add new state
       if TRACE>2 {printstate(&state,&self.Gmr);}
       indices.insert(newstateindex); // add to StateLookup index hashset
       self.States.push(state);
       self.FSM.push(HashMap::with_capacity(64)); // always add row to fsm at same time
       if self.lalr {self.Open.push(newstateindex)}
     }// add new state

     // add to- or change FSM TABLE ...  only Shift or Gotnext added here.
     let gsymbol = &self.Gmr.Symbols[*self.Gmr.Symhash.get(&nextsym).unwrap()];
     let mut newaction = Stateaction::Gotonext(toadd);
     if gsymbol.terminal {newaction=Stateaction::Shift(toadd);}
     let currentaction = self.FSM[psi].get(&nextsym);
     let mut changefsm = true;
     match currentaction {   // detect shift-reduce conflict
       Some(Accept) => { changefsm=false; },
       Some(Reduce(ri2)) =>  {
         let prec2 = self.Gmr.Rules[*ri2].precedence;
         let prec1 = gsymbol.precedence;
         if prec1==prec2 && prec1>0 {changefsm=false;} // assume left-associative
         else if prec2.abs()>prec1.abs() {changefsm=false;} // still reduce
         if TRACE>0 {println!("shift-reduce conflict resolved by operator precedence/associativity:"); printrulela(*ri2,&self.Gmr,&nextsym); /*printstate(&self.States[psi],&self.Gmr);*/}
       },
       _ => {},
     }// match for conflict detection
     if changefsm {self.FSM[psi].insert(nextsym,newaction);}
     // set fsm
  }  //addstate

/*
 // LALR only: si is from makegoto&addstate, fsi is state to merge into 
    fn merge_states(FSM: &mut Vec<HashMap<String,Stateaction>>, States:&mut Vec<LR1State>, Gmr:&Grammar, si:usize, state2:&LR1State)
    {
       for item in &state2.items
       {
          //print!("LALR-checking if state {} contains {:?}: ",si,item);
          if !States[si].items.contains(item) {
              //println!("NO");
              // determine if this is a reduce item
              if item.pi >= Gmr.Rules[item.ri].rhs.len() {
                 if TRACE>1 {print!("LALR MERGE: ");}
                 Statemachine::aditdreduce(FSM,Gmr,item,si);
              }
              States[si].items.insert(item.clone());
          }// new item needs to be inserted
          //else {println!("yes");}
       }
       //for item in &state2.items {self.items.insert(item.clone());}
    }//merge_states
*/    

  // called by addstate and makegotos, only for reduce/accept situation
  // it assumes that the . is at the right end of the rule
  fn addreduce(FSM: &mut Vec<HashMap<String,Stateaction>>, Gmr:&Grammar, item:&LRitem, si:usize)
  {
     let isaccept = (item.ri == Gmr.Rules.len()-1 && item.la=="EOF");
     let currentaction = FSM[si].get(&item.la);
     let mut changefsm = true;
     let ri1 = &item.ri;
     /// detect CONFLICT HERE
     match currentaction {
        Some(Accept) => {
          changefsm = false;
          if !isaccept {println!("Reduce({})-Accept conflict resolved in favor of Accept",ri1)}
        },
        Some(Reduce(ri2)) if ri2<ri1 && !isaccept => {
           changefsm=false;
           println!("Reduce-Reduce Conflict conflicted detected between rules {} and {}, resolved in favor of {}",ri2,ri1,ri2);
           printrulela(*ri1,Gmr,&item.la);  printrulela(*ri2,Gmr,&item.la);
           //printstate(&self.States[si],Gmr);
        },
        Some(Reduce(ri2)) if ri2>ri1 => {
           println!("Reduce-Reduce Conflict conflicted detected between rules {} and {}, resolved in favor of {}",ri2,ri1,ri1);
           printrulela(*ri1,Gmr,&item.la);  printrulela(*ri2,Gmr,&item.la); 
           //printstate(&self.States[si],Gmr);            
        },
        Some(Reduce(ri2)) if ri2==ri1 && !isaccept => {changefsm=false;},
        Some(Shift(_)) if !isaccept => {   // shift-reduce conflict
           let prec1 = Gmr.Rules[item.ri].precedence;
           let prec2 = Gmr.Symbols[*Gmr.Symhash.get(&item.la).unwrap()].precedence;

           if prec1==prec2 && prec1<0 {changefsm=false;} // assume right-associative
           else if prec2.abs()>prec1.abs() {changefsm=false;} // still shift 
           if TRACE>0 {println!("Shift-Reduce conflict resolved by operator precedence/associativity:"); printrulela(*ri1,Gmr,&item.la); }
        },
       _ => {},
     }//match to detect conflict
     // special case: current action should be Accept:
     if changefsm {   // only Reduce/Accept added here
        // accept or reduce
        if isaccept /*item.ri==Gmr.Rules.len()-1 && item.la=="EOF"*/  {
           if let None = &currentaction {}
           else {println!("Accept has precedence over {:?}",&currentaction);}
           FSM[si].insert(item.la.clone(),Stateaction::Accept);
        }
        else {
           if TRACE>1 {println!("++adding Reduce({}) at state {}, lookahead {}",item.ri,si,&item.la);}
        
           FSM[si].insert(item.la.clone(),Stateaction::Reduce(item.ri));
        }
     }// add reduce action
  }//addreduce

  // generate the GOTO sets of a state with index si, creates new states
  fn makegotos(&mut self, si:usize)
  {
     let ref /*mut*/ state = self.States[si];
     // key to following hashmap is the next symbol after pi (the dot)
     let mut newstates:HashMap<String,LR1State> = HashMap::with_capacity(64);
     let mut keyvec:Vec<String> = Vec::new(); //keys of newstates
     for item in &state.items
     {
       let rule = self.Gmr.Rules.get(item.ri).unwrap();
       if item.pi<rule.rhs.len() { // can goto (dot before end of rule)
          let ref nextsym = rule.rhs[item.pi].sym;

          if let None = newstates.get(nextsym) {
             newstates.insert(nextsym.to_owned(),LR1State::new());
             keyvec.push(nextsym.clone());
          }
          let symstate = newstates.get_mut(nextsym).unwrap();
          let newitem = LRitem {
             ri : item.ri,
             pi : item.pi+1,
             la : item.la.clone(),
          };
          let lhssym = &self.Gmr.Rules[item.ri].lhs.sym;
          symstate.insert(newitem,lhssym);
          // SHIFT/GOTONEXT actions added by addstate function
       }//can goto
       else // . at end of production, this is a reduce situation
       {
          Statemachine::addreduce(&mut self.FSM,&self.Gmr,item,si);
       } // set reduce action
     }// for each item 
     // form closures for all new states and add to self.States list
     for key in keyvec
     {
        let kernel = newstates.remove(&key).unwrap();
        let fullstate = stateclosure(kernel,&self.Gmr);
        self.addstate(fullstate,si,key);
     }
  }//makegotos

  pub fn generatefsm(&mut self)
  { 
    // create initial state, closure from initial item: 
    // START --> .topsym EOF
    let mut startstate=LR1State::new();
    startstate.insert( LRitem {
         ri : self.Gmr.Rules.len()-1, // last rule is start
         pi : 0,
         la : "EOF".to_owned(),   // must have this in grammar
       },"START");       
    startstate = stateclosure(startstate,&self.Gmr);
    //setRactions(startstate); //???????
    self.States.push(startstate); // add start state
    self.FSM.push(HashMap::with_capacity(64)); // row for state
    // now generate closure for state machine (not individual states)
    let mut closed:usize = 0;
    if !self.lalr {
      while closed<self.States.len()
      {
         //if TRACE>2 {println!("closed states: {}",closed);}
         self.makegotos(closed);
         closed += 1;
      }//while not closed
    } // lr1
    else { //lalr
      self.Open.push(0);
      while closed<self.Open.len()
      {
         let si = self.Open[closed]; // state index to close
         self.makegotos(si);
         closed += 1;
      }
    }// lalr
  }//generate

}//impl Statemachine

// encode a state transition: FSM[i].get(key)=action as u64 numbers
/// this function is only exported because it's used by the generated parsers.
pub fn decode_action(code:u64) -> Stateaction
{
    let actiontype =   code & 0x000000000000ffff;
    let actionvalue = (code & 0x00000000ffff0000) >> 16;
    //let symboli =     (code & 0x0000ffff00000000) >> 32;
    //let statei =      (code & 0xffff000000000000) >> 48;    
    match (actiontype,actionvalue) {
      (0,si) => Shift(si as usize),
      (1,si) => Gotonext(si as usize),
      (2,ri) => Reduce(ri as usize),
      (3,_)  => Accept,
      (4,x)  => Error("shouldn't be here"),
      _      => Error("unrecognized action in TABLE"),
    }
}//decode - must be independent function seen by parsers