rustlr 0.6.6

Bottom-Up Parser Generator with Advanced Options
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
#![allow(dead_code)]
#![allow(unused_variables)]
#![allow(non_snake_case)]
#![allow(non_camel_case_types)]
#![allow(unused_parens)]
#![allow(unused_mut)]
#![allow(unused_assignments)]
#![allow(unused_doc_comments)]
#![allow(unused_imports)]
use std::collections::{HashMap,HashSet};
use std::io::{self,Read,Write,BufReader,BufRead};
use std::fs::File;
use std::io::prelude::*;
use std::path::Path;
use crate::{Grammar,is_alphanum,checkboxlabel};

// FSHARP AST Writer mirroring bumpast_writer.
// Should we have active patterns whenever there are LBoxes?

// metaast for asts
// grammar_processor needs to keep set of nti's to have types flattened.
// keep a hashmap from nt names to structs
// structasts:HashMap<usize,(simpletypebool,Vec<(labelString,typename)>)>
// generate all struct types first and store in table,
// then generate enums.   complements toextend.
// How can structs flatten into structs?  By changing the definition
// into structasts.  How to prevent circular flattening? make sure flatten
// target is not reachable from itself using the reachability_type relation
// Howabout need for lbox because of reachability? more lboxes
// ok, not less....

// first bool is simpletype, second bool is flatten-able, i32 is passthru
// String is type rep, fields are rhs index, label, alreadylbox, type
type METAASTTYPE = HashMap<usize,(bool,bool,i32,String,Vec<(usize,String,bool,String)>)>;

// auto-generate abstract syntax
// prepare Grammar - after parse_grammar first creates grammar
impl Grammar
{
   fn fs_prepare(&mut self) -> String
   {
     // reachability already called by grammar parser, call reachability_types:
     // at this point, self.Reachable can be cloned if needs to be preserved
     self.reachability_types();

     //let ltref = if self.lifetime.len()>0 {format!("&{} ",&self.lifetime)}
     //     else {String::new()};
     //let ltref = String::new(); // just in case
     
     // assign types to all non-terminal symbols
     // first pass: assign types to "" types, skip all others
     let mut ntcx = self.ntcxmax+1;
     for nt in self.Rulesfor.keys() { // for each nonterminal index
       if self.Symbols[*nt].rusttype.len()==0 { // type "" means generate type
         let reach = self.Reachable.get(nt).unwrap();
/////
//for r in reach.iter() {println!("{} reaches {}",&self.Symbols[*nt].sym,&self.Symbols[*r].sym);}
/////

         self.Symbols[*nt].rusttype = self.Symbols[*nt].sym.clone();
         self.enumhash.insert(self.Symbols[*nt].rusttype.clone(),ntcx);
         ntcx+=1;
       }//need type assignment during first pass
       else if &self.Symbols[*nt].rusttype=="()" { // for safety
         self.Symbols[*nt].rusttype="unit".to_owned();
       }
//println!("TYPE OF {} is {}",&self.Symbols[*nt].sym,&self.Symbols[*nt].rusttype);
     }// first pass

     // Set of nti that will extend other types
     let mut toextend = HashMap::new();  // usize->usize nti's
     let mut extendtargets = HashSet::new();
     
     //// second pass: change @EXPR to actual type, change :Expr to direct
     for nt in self.Rulesfor.keys() {
       // two possibilities : @expr, or <@expr> or :Expr
       // assume only one.
       let addtoextend = self.Symbols[*nt].rusttype.starts_with(':');
       let mut addtosymhash = false; // because already added above
       let mut limit = self.Symbols.len()+1;
       let mut indirect = true;
       while (indirect || self.Symbols[*nt].rusttype.contains('@')) && limit>0
       {
         indirect = false;
         addtosymhash = true;
         let stype = &self.Symbols[*nt].rusttype; //reborrow
         let mut symtocopy = ""; // symbol to copy type from
         let (mut start,mut end) = (0,stype.len());
         if stype.starts_with(':') || stype.starts_with('@') {
           symtocopy = stype[1..].trim();
         } else if let Some(pos1)=stype.find("<@") {
           if let Some(pos2)=stype[pos1+2..].find('>') {
              symtocopy = &stype[pos1+2..pos1+2+pos2];
              start = pos1+1; end = pos1+2+pos2;
           }
         } else if let Some(pos1)=stype.find("<:") {
           if let Some(pos2)=stype[pos1+2..].find('>') {
              symtocopy = stype[pos1+2..pos1+2+pos2].trim();
              start = pos1+1; end = pos1+2+pos2;
              indirect = true; // make sure              
           }
         }         
         if symtocopy.len()>0 {
           let symi = *self.Symhash.get(symtocopy).unwrap();
           let mut replacetype = self.Symbols[symi].rusttype.clone();
           if replacetype.starts_with(':') {indirect = true;}
           else if addtoextend {
              toextend.insert(*nt,symi);
//println!("{} will extend {}",&self.Symbols[*nt].sym,&self.Symbols[symi].sym);
              extendtargets.insert(symi);
           }

           // change type to actual type.
           
           let mut newtype = stype.clone();
           newtype.replace_range(start..end,&replacetype);
           self.Symbols[*nt].rusttype = newtype;
         } // if symtocopy.len>0
         limit -= 1;
       }//while still contains @ - keep doing it
       if addtosymhash && limit>0 {self.enumhash.insert(self.Symbols[*nt].rusttype.clone(),ntcx); ntcx+=1;}
       else if limit==0 {
          eprintln!("CIRCULARITY DETECTED IN PROCESSING TYPE DEPENDENCIES (type {} for nonterminal {}). THIS TYPE WILL BE RESET AND REGENERATED",&self.Symbols[*nt].rusttype,&self.Symbols[*nt].sym);
          self.Symbols[*nt].rusttype = String::new();
       }
     }//second pass
     
     // final pass sets enumhash
     self.ntcxmax = ntcx;
     // grammar_processor also needs to set enumhash if not -auto

     ////////////////////////////// struct generation stage
     // third pass: generate structtypes first so they can be flattened,
     // store generated types in metaast map:

     // two mutually recursive types cannot flatten into each other
     let mut flattentypes = self.flattentypes.clone();
     for a in self.flattentypes.iter() {
       let mut acanflatten = true;
       if !flattentypes.contains(a) {continue;}
       for b in self.flattentypes.iter() {
         if a!=b && flattentypes.contains(b) {
            let areach = self.Reachable.get(a).unwrap();
            let breach = self.Reachable.get(b).unwrap();
            if areach.contains(b) && breach.contains(a) {
               flattentypes.remove(a); flattentypes.remove(b);
               eprintln!("WARNING: MUTUALLY RECURSIVE TYPES {} AND {} CANNOT FLATTEN INTO EACHOTHER\n",&self.Symbols[*a].sym,&self.Symbols[*b].sym);
            }
         }
       }
     }// discover mutually recursive flatten types

     let mut structasts = METAASTTYPE::new(); 
     for (nt,NTrules) in self.Rulesfor.iter() {  //first loop
       if NTrules.len()!=1 || extendtargets.contains(nt) || toextend.contains_key(nt) { /*print warning*/ continue;}
       let sri = *NTrules.iter().next().unwrap();
       if self.Rules[sri].lhs.label.len()>0 {continue;}
       let NT = &self.Symbols[*nt].sym;
       let lhsymtype = self.Symbols[*nt].rusttype.clone();         
       if !lhsymtype.starts_with(NT) {continue;}
       let mut canflatten = true;
       let simplestruct = false;
       /*
       for rs in &self.Rules[sri].rhs {
         if rs.label.len()>0 && !rs.label.starts_with("_item") 
           { simplestruct = false; break; }
       } //determine if simple struct
       */ // do not use simple records: all must have names
       let ntsym = &self.Symbols[*nt];
       let mut vfields = Vec::new(); // metaast vector representing fields
       let mut rhsi = 0; // right-side index
       let mut passthru:i32 = -1; // index of path-thru NT value
       for rsym in self.Rules[sri].rhs.iter_mut() {
         let expectedlabel = format!("_item{}_",&rhsi);
         let alreadyislc = rsym.label.len()>1 && rsym.label.starts_with('[') && rsym.label.ends_with(']');
         let mut itemlabel = if rsym.label.len()>0 && &rsym.label!=&expectedlabel && !rsym.label.starts_with('@') {
            // presence of rhs label also cancels passthru
            passthru=-2; checkboxlabel(&rsym.label).to_owned()
            } else {expectedlabel};
         if rsym.terminal && rsym.precedence!=0 { passthru = -2; }
         let mut rsymtype = &self.Symbols[rsym.index].rusttype[..];
	 if rsymtype=="()" {rsymtype="unit";}
         // check if rsym is non-terminal and reaches lsym

         if alreadyislc {
               if rsymtype==&lhsymtype && passthru==-1 {passthru=rhsi as i32;}
               else {passthru = -2;}
               vfields.push((rhsi,itemlabel.clone(),alreadyislc,format!("LBox<{}>",rsymtype)));
         }// lbox

         else if rsymtype!="unit" || (rsym.label.len()>0 && !rsym.label.starts_with("_item")) {  //no Lbox, and not unit type without label
           vfields.push((rhsi,itemlabel.clone(),alreadyislc,rsymtype.to_owned()));
           if rsymtype==&lhsymtype && passthru==-1 {passthru=rhsi as i32;}
              else {passthru = -2;}
         } //no Lbox, and not unit type without label
         rhsi+=1;
       } //for each symbol on right in a iter_mut()
       structasts.insert(*nt,(simplestruct,canflatten,passthru,String::new(),vfields));
     }// structs generation loop 1

// got to allow mutual recursive refs with **and**

     // REAL struct generation loop: APPLY FLATTEN, create and set actions
     // -only 1 levels of indirection allowed?
     let mut newsa = HashMap::with_capacity(structasts.len());
     let mut firsttype = false;
     for (nt,(simplestruct,canflatten,passthru,_,vecfields)) in structasts.iter() {
       let sri = *self.Rulesfor.get(nt).unwrap().iter().next().unwrap();
       let NT = &self.Symbols[*nt].sym;
       let lhsymtype = self.Symbols[*nt].rusttype.clone();
       let ntsym = &self.Symbols[*nt];
       // actual string for struct type to be generated:
       let mut SAST;
       if firsttype {
         firsttype=false;
         SAST = format!("//non-simplestruct\ntype {} =\n  {{\n",&ntsym.rusttype);
       }
       else { // not first type - need to add "and"
         SAST = format!("\nand {} =\n  {{\n",&ntsym.rusttype);       
       }

       let mut fields = String::new();  // like "enumvar in previous version"
       let mut vfields = Vec::new(); // (rhsi,label,type)
       // actual semantic action code to be generated
       let mut SACTION = format!(" {{{}.",NT); // { structtype. .. for F#
       let mut viadjust:i32 = 0; //not used (not inc'ed)

       let mut totalitems = 0;
       for (rhsi,itemlabel,alreadylbx,rsymtype) in vecfields {
         let rhssymi = self.Rules[sri].rhs[*rhsi].index;
         if rhssymi==*nt {
            eprintln!("WARNING: TYPE {} CANNOT FLATTEN INTO ITSELF\n",&self.Rules[sri].rhs[*rhsi].sym);
         }

         let lhsreachable = match self.Reachable.get(&rhssymi) {
               None => false,
               Some(rset) => rset.contains(nt),
              };
         let needref = false; //lhsreachable && !nonlctype(&rsymtype) && !self.basictypes.contains(&rsymtype[..]) &&ltref.len()>0;
         let mut flattened = false;
         if rhssymi!=*nt && flattentypes.contains(&rhssymi) {
           match structasts.get(&rhssymi) {
             Some((simp,true,pthr,_,flatfields)) => {  //flatten in
               if *pthr<0 /* && flatfields.len()>0 */ && (!simplestruct||*simp) && !self.Rules[sri].rhs[*rhsi].label.starts_with('[') {
                 flattened=true;
                 let mut fi = 0;
                 for (frhsi,flab,albx,ftype) in flatfields {
                   let newlab = format!("{}_{}",itemlabel,flab);
                   let newactionlab = if *simp {format!("{}.{}",itemlabel,fi)}
                       else {format!("{}.{}",itemlabel,flab)};
                   let newindex = rhsi+(viadjust as usize)+fi;
                   let fltref = ""; //if nonlctype(ftype) || self.basictypes.contains(&ftype[..])  || ltref.len()==0 {""} else {&ltref};
                   fields.push_str(&format!("    mutable {}:{}{};\n",&newlab,fltref,ftype));  // non-simpletype
                   totalitems +=1;
                   let islctype = ftype.starts_with("LBox<") || ftype.starts_with("LC<");
                    SACTION.push_str(&format!("{}={}; ",&newlab,&newactionlab));
                   vfields.push((newindex,newlab,*albx,ftype.to_owned()));
                   fi+=1;
                 }//for each field in flatten source
                 //viadjust += (flatfields.len() as i32)-1;
               }//if can flatten
             },
             aaa => { // println!("def {:?}",aaa); 
             }, //no flattening
           }//match
         }//if in flattentypes list (flatten this rhs symbol)
         if !flattened {
           let islctype = rsymtype.starts_with("LBox<") || rsymtype.starts_with("LC<");
           let withref = ""; //if  needref  ||  islctype {&ltref} else {""}; 
           // not simpletype
           totalitems += 1;
           fields.push_str(&format!("    mutable {}:{};\n",itemlabel,rsymtype));
//           if !islctype || *alreadylbx {
             SACTION.push_str(&format!("{}={}; ",itemlabel,itemlabel));      
//           }
           vfields.push((rhsi+(viadjust as usize),itemlabel.to_owned(),*alreadylbx,rsymtype.to_owned()));
         }// !flatten
       }//for each original field
       // post actions
       fields.push_str("  }\n");   SACTION.push_str("}}");
       let mut actbase = augment_action(&self.Rules[sri].action);
       if !actbase.ends_with("}") && *passthru>=0 /* && nolhslabel*/  {
            self.Rules[sri].action = format!("{} _item{}_ ",&actbase,passthru)
//println!("passthru on rule {}, NT {}",nri,&self.Rules[nri].lhs.sym);
       } else if !actbase.ends_with("}") {
  	    self.Rules[sri].action = format!("{}{}",&actbase,&SACTION);
	    SAST.push_str(&fields);
       }
       else  {SAST.push_str(&fields);}
       // no empty records allowed in F#
       if totalitems==0 {
         if let Some(pos) = SAST.rfind("\n  {\n  }") {
           SAST.replace_range(pos..," unit  //empty record\n");
           SACTION=String::from(" ()");
           if !actbase.ends_with("}") {
             self.Rules[sri].action = format!("{}{}",&actbase,&SACTION);
           }
         }
       }//totalitems=0 (empty record to unit)
       newsa.insert(*nt,(*simplestruct,*canflatten,*passthru,SAST,vfields));
     }// REAL struct generation loop: apply flatten
     structasts = newsa;



/////////////////////////////////////// enums generation stage

     // setup hashmap from nt numbers to ASTS
     let mut enumasts:HashMap<usize,String> = HashMap::new();
     let mut ASTS = String::from("\n"); // all asts to be generated

     let ltopt = if self.lifetime.len()>0 {format!("<{}>",&self.lifetime)}
          else {String::new()};
     let mut groupvariants:HashMap<usize,HashSet<String>> = HashMap::new();
     //main loop: for each nt and its rules
     for (nt,NTrules) in self.Rulesfor.iter() // for each nt and its rules
     {
        if structasts.contains_key(nt) {continue;}
        let nti = *nt; 
        let mut ntsym = &self.Symbols[nti];
        let willextend = toextend.contains_key(nt);
        // default for new enum
	let mut AST = if willextend {String::new()}
          else if firsttype {
	    firsttype=false;
	    format!("//enum\ntype {} =\n",&ntsym.rusttype)
	  }
	  else {
	    format!("//enum\nand {} =\n",&ntsym.rusttype)	  
	  };
        let NT = &self.Symbols[nti].sym;
	let mut targetnt = nti;
 	if let Some(ntd) = toextend.get(nt) { targetnt = *ntd;}
        let groupenums = groupvariants.entry(targetnt).or_default();
        // group enums are only generated for tuple variants, the presence
        // of any left or right-side label will cancel its generation.
	for ri in NTrules  // for each rule with NT on lhs
	{
          let mut nolhslabel=false;
          let mut groupoper = ""; // variant-group operator, default none
          // groupoper cancelled if there is a lhs label
          if self.Rules[*ri].lhs.label.len()==0 { // make up lhs label
            nolhslabel = true;
            let mut lhslab = format!("{}_{}",NT,ri); //default

            // search for variant-group operator (only if no lhs label)
            if self.vargroupnames.len()>0 {
	     let enti = *toextend.get(&nti).unwrap_or(&nti);
             for rsym in self.Rules[*ri].rhs.iter() {
              if let Some(gnamei) = self.vargroups.get(&(enti,rsym.index)) {
                if groupoper.len()==0 { // not yet set 
                  lhslab = self.vargroupnames[*gnamei].clone();
                  groupoper = &self.Symbols[rsym.index].sym;
                }
              }// found  variant-group operator for this lhs nt
              else if let Some(gnamei) = self.vargroups.get(&(usize::MAX,rsym.index)) {
                if groupoper.len()==0 { // not yet set 
                  lhslab = self.vargroupnames[*gnamei].clone();
                  groupoper = self.Nameslex.get(&rsym.index)
		              .unwrap_or(&self.Symbols[rsym.index].sym);
                  //groupoper = &self.Symbols[rsym.index].sym;
                }
              }// found generic variant-group operator (first one taken)
              if rsym.label.len()>0 && !rsym.label.starts_with("_item") {
                groupoper = "";
                lhslab = format!("{}_{}",NT,ri); // default
                break;
              }// group variant canceled
             }// search for variant-group operator
            } // if there are variant groups

            if groupoper.len()==0 && self.Rules[*ri].rhs.len()>0 && self.Rules[*ri].rhs[0].terminal {
	      let symname = &self.Rules[*ri].rhs[0].sym;
	      if is_alphanum(symname) { //insert r# into enum variant name
	        lhslab = symname.clone();
	        if self.Rules[*ri].rhs.len()>1 { lhslab.push_str(&format!("_{}",ri)); }
	      }//is_alphanum
  	    }  // determine enum variant name based on 1st rhs symbol
	    self.Rules[*ri].lhs.label = lhslab;
          } //nolhslabel
	  firstcap(&mut self.Rules[*ri].lhs.label);
          let lhsi = self.Rules[*ri].lhs.index; //copy before mut borrow
	  let lhsymtype = self.Symbols[lhsi].rusttype.clone();
          let enumname = &self.Symbols[*toextend.get(nt).unwrap_or(nt)].sym;
	  let mut ACTION = format!("{}.{}",enumname,&self.Rules[*ri].lhs.label);
          // enumvariant
	  let mut enumvar = format!("  | {}",&self.Rules[*ri].lhs.label);

          // determine if tuple variant or struct/named variant
	  /*
          let mut tuplevariant = true; // stay true
          for rs in &self.Rules[*ri].rhs {
            if rs.label.len()>0 && !rs.label.starts_with("_item") 
              { tuplevariant = false; break; }
          } //determine if tuplevariant
	  */
          let mut nullenum = false; // enum variant already exists
          // form start of enumvariant and action...
	  if self.Rules[*ri].rhs.len()>0 { // rhs exists
	     enumvar.push_str(" of"); ACTION.push('(');
             if groupoper.len()>0 {
                if groupenums.contains(&self.Rules[*ri].lhs.label) {
                  nullenum = true;
                } else {
                  enumvar.push_str(" string *");
                  groupenums.insert(self.Rules[*ri].lhs.label.clone());
                }
                ACTION.push_str(&format!("\"{}\",",groupoper));
             } // group oper exists
	  }//rhsexists
	  let mut rhsi = 0; // right-side index
          let mut viadjust = 0;
	  let mut passthru:i32 = -1; // index of path-thru NT value
	  for rsym in self.Rules[*ri].rhs.iter_mut()
	  {
            let expectedlabel = format!("_item{}_",&rhsi);
            // check if item has a label of the form [x], which forces an
            // lbox
            let alreadyislc =
              rsym.label.len()>1 && rsym.label.starts_with('[') && rsym.label.ends_with(']');
            let nonnamedfield = rsym.label.starts_with("_item") || rsym.label.len()<1;
	    let mut itemlabel = if rsym.label.len()>0 && &rsym.label!=&expectedlabel && !rsym.label.starts_with('@') {
            // presence of rhs label also cancels passthru
              passthru=-2; checkboxlabel(&rsym.label).to_owned()
            } else {expectedlabel};
            
            if rsym.terminal && rsym.precedence!=0 { passthru = -2; }
            // Lbox or no Lbox:  ***************
            let mut rsymtype = &self.Symbols[rsym.index].rusttype[..];
	    if rsymtype=="()" {rsymtype="unit";}
            
            let mut flattened = false;
            if !rsym.terminal && flattentypes.contains(&rsym.index) {
              match structasts.get(&rsym.index) {
               Some((simp,true,pthr,_,flatfields)) => {  //flatten in
                if *pthr<0 /* && flatfields.len()>0 */ && !rsym.label.starts_with('['){
                 flattened=true;
                 let mut fi = 0;
                 for (frhsi,flab,albx,ftype) in flatfields {
                   let newlab = format!("{}_{}",itemlabel,flab);
                   let newactionlab = if *simp {format!("{}.{}",itemlabel,fi)}
                       else {format!("{}.{}",itemlabel,flab)};
                   let newindex = rhsi+viadjust+fi;

                   if nonnamedfield {
		     enumvar.push_str(&format!(" {} *",ftype));
                     ACTION.push_str(&newactionlab); ACTION.push(',');
                   } else {
                     enumvar.push_str(&format!(" {}:{} *",&newlab,ftype));
                     //ACTION.push_str(&format!("{}={},",&newlab,&newactionlab));
		     ACTION.push_str(&format!("{},",&newactionlab));

                   }// named/non-named field
                   
                   fi+=1;
                 }//for each field in flatten source
                 //viadjust += flatfields.len() -1;
                }//if can flatten
               },
               _ => {},
              }//match
              if flattened {rhsi+=1; continue;}
            }// possible to flatten
            // not possible to flatten:


            // check if rsym is non-terminal and reaches lsym
            let lhsreachable = match self.Reachable.get(&rsym.index) {
               None => false,
               Some(rset) => rset.contains(&lhsi),
              };
            let needref = false; //lhsreachable && !nonlctype(rsymtype);
            let localref = ""; //if needref {&ltref} else {""};
            if alreadyislc /* || (lhsreachable && !nonlctype(rsymtype))*/ {
              let semact;
              if nonnamedfield {
                enumvar.push_str(&format!(" LBox<{}> *",rsymtype));
                semact = format!("{},",&itemlabel);
              } else {
                enumvar.push_str(&format!(" {}:LBox<{}> *",itemlabel,rsymtype));
                //semact = format!("{}={},",&itemlabel,&itemlabel);
		semact = format!("{},",&itemlabel);
              } // non-tuple variant
              ACTION.push_str(&semact);
              
               if rsymtype==&lhsymtype && passthru==-1 {passthru=rhsi as i32;}
               else {passthru = -2;}
	    } // with LBox
	    else if rsymtype!="unit" || (rsym.label.len()>0 && !rsym.label.starts_with("_item")) {  //no Lbox
              if nonnamedfield {
                enumvar.push_str(&format!(" {} *",rsymtype));
                ACTION.push_str(&format!("{},",&itemlabel));
              } else {
                enumvar.push_str(&format!(" {}:{} *",&itemlabel,rsymtype));
                ACTION.push_str(&format!("{},",&itemlabel));          
              }// non-tuple variant
              
              if rsymtype==&lhsymtype && passthru==-1 {passthru=rhsi as i32;}
              else {passthru = -2;}
	    }// could still be nonterminal but not unit type - no lbox
	    /*
	    check special case: only one NT on rhs that has same type as lhs,
	    and all other symbols have type () AND are marked punctuations.
	    What is a punctuation?  go by precedence level.
            "paththru" indicates rule like E --> ( E ), where semantic
            action passes thru.  In this case pasthru will be 1.
            passthru = -1 means passthru candidate index not yet found,
            -2 means no passthru candidate exists.
	    */
	    rhsi += 1;
	  }// for each symbol on rhs of rule ri
          if enumvar.ends_with('*') {
	      enumvar.pop(); 
	      ACTION.pop();
	      ACTION.push(')');
	  } else if enumvar.ends_with('(') {
	    enumvar.pop();
	    ACTION.pop();
	  }
	  if enumvar.ends_with("of") {
	    enumvar.pop(); enumvar.pop();
	  }
	  if ACTION.ends_with('(')||ACTION.ends_with(',') {ACTION.pop();}
	  if ACTION.ends_with('\"') { // for Binaryop("/" ..
	    ACTION.push(')');
	  }
    	  //ACTION.push_str(" }");  // action already has last rbrack
	  // determine if action and ast enum should be generated:
//          if self.Rules[*ri].action.len()<=1 && passthru>=0 && nolhslabel { // special case
          let shouldpush = ntsym.rusttype.starts_with(NT) || toextend.contains_key(nt);
          let mut actbase = augment_action(&self.Rules[*ri].action);
          if !actbase.ends_with('}') && passthru>=0 && nolhslabel {
            self.Rules[*ri].action = format!("{} _item{}_ }}",&actbase,passthru);
//println!("passthru on rule {}, NT {}",ri,&self.Rules[*ri].lhs.sym);
          }
	  else
          if !actbase.ends_with('}') && shouldpush {
  	    self.Rules[*ri].action = format!("{} {}",&actbase,&ACTION);
	    if !nullenum {AST.push_str(&enumvar); AST.push_str("\n");}
	  }
          else if shouldpush {  // added for 0.2.94
	    if !nullenum {AST.push_str(&enumvar); AST.push_str("\n");}
          }
//println!("Action for rule {}, NT {}: {}",ri,&self.Rules[*ri].lhs.sym,&self.Rules[*ri].action);
	}// for each rule ri of non-terminal NT

        ////////////////// KEEP ENUM OPEN, INSERT INTO HASHMAP
        
        let mut storedAST;
        if willextend {
            let targetnti = toextend.get(&nti).unwrap();
            storedAST = enumasts.remove(targetnti).unwrap_or(String::new());
            storedAST.push_str(&AST);
            enumasts.insert(*targetnti,storedAST);            
        }
        else {  // check if something already exist, if so add before it
          storedAST = enumasts.remove(&nti).unwrap_or(String::new());
          storedAST = format!("{}{}",&AST,&storedAST);
          enumasts.insert(nti,storedAST);
        }

     }//for each non-terminal and set of rules (NT, NTRules)

     // Now close all unclosed enums
     for (nt,ntast) in enumasts.iter() {
       if !self.Symbols[*nt].rusttype.starts_with(&self.Symbols[*nt].sym) {continue;}
       if ntast.starts_with("//enum") { // enum
 	let defaultvar = format!("  | {}_Nothing",&self.Symbols[*nt].sym);
        let mut ast = format!("{}{}\n",ntast,&defaultvar);
        ASTS.push_str(&ast);
       } // !genstruct - is enum
       else { ASTS.push_str(ntast); }
     }// closing all enums and add to ASTS (for loop)

     // set Absyntype
     self.Absyntype = self.Symbols[self.topsym].rusttype.clone();
     self.enumhash.insert(self.Absyntype.clone(), 0);
//println!("\n AST generated:\n\n{}",&ASTS);

     // now add all the generated struct asts
     for (_,(_,_,_,Sast,_)) in structasts.iter() {
       ASTS.push_str(Sast);
     }

     self.sametype = false;
     self.ntcxmax = ntcx;
     ASTS
   }//prepare_gram


   pub fn write_fsast(&mut self, filename:&str) ->Result<(),std::io::Error>
   {
     let ASTS = self.fs_prepare();
     let mut firstchar = self.name.chars().next().unwrap();
     firstchar.make_ascii_uppercase();
     let mut fd = File::create(filename)?;
     write!(fd,"//FSharp AST types generated by rustlr for grammar {}",&self.name)?;
     write!(fd,"\nmodule {}{}.AST\n",firstchar,&self.name[1..])?;
     write!(fd,"  
open System;
open Fussless;
open Fussless.RuntimeParser;\n")?;
     if self.ASTExtras.len()>0 {write!(fd,"\n{}\n",&self.ASTExtras)?;}
     write!(fd,"\ntype LC<'T> = LBox<'T> // dummy\n")?;
     write!(fd,"{}",&ASTS)?;
     println!("F# AST types created in {}",filename);
     // add the grammar .extras - these will only be placed in parser file
     self.Extras.push_str(&format!("open {}{}.AST\n",firstchar,&self.name[1..]));
     Ok(())
   }//write_fsast

// NOTE including all of Extras (one big string) might cause repeated
// definitions - best to not include as pubs.

}//impl Grammar


// function to see if given semantic action should be replaced or augmented
// returns String base of action, not closed with } if need auto generation.
// strategy for F#: replace '}' with "(* end *)"
fn augment_action(act0:&str) -> String
{
   let act = act0.trim();
   if act.len()<=1 {return String::new();} // completely regenerate
   if let Some(ebp) = act.rfind("...") {
      let mut act2 = String::from(&act[..ebp]) + "; ";
      return act2;
   }
   return String::from(act); // + " (*end*)"; // means no auto generation
}

  // non-LC types
pub fn nonlctype(ty:&str) -> bool
  {
     ty=="string" || ty.starts_with("Vec<") || ty.starts_with("LBox") || ty.starts_with("option<LBox") || ty.starts_with("LC<") || ty.starts_with("option<LC<")
  //  true
  }//nonlbxtype

fn firstcap(s:&mut String) {
  let mut fc = s.chars().next().unwrap();
  fc.make_ascii_uppercase();
  s.replace_range(0..1,&fc.to_string());
}