retty 0.14.2

Retty — an asynchronous Rust networking framework that makes it easy to build protocols, application clients/servers.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
use std::error::Error;
use std::io::ErrorKind;
use std::marker::PhantomData;
use std::sync::Arc;
use std::time::Instant;

use crate::channel::{
    handler::Handler,
    handler_internal::{
        InboundHandlerContextInternal, InboundHandlerInternal, OutboundHandlerContextInternal,
        OutboundHandlerInternal,
    },
};
use crate::runtime::sync::Mutex;

struct PipelineInternal<R, W> {
    handler_names: Vec<String>,
    inbound_contexts: Vec<Arc<Mutex<dyn InboundHandlerContextInternal>>>,
    inbound_handlers: Vec<Arc<Mutex<dyn InboundHandlerInternal>>>,
    outbound_contexts: Vec<Arc<Mutex<dyn OutboundHandlerContextInternal>>>,
    outbound_handlers: Vec<Arc<Mutex<dyn OutboundHandlerInternal>>>,

    phantom_r: PhantomData<R>,
    phantom_w: PhantomData<W>,
}

impl<R: Send + Sync + 'static, W: Send + Sync + 'static> PipelineInternal<R, W> {
    fn new() -> Self {
        Self {
            handler_names: Vec::new(),
            inbound_contexts: Vec::new(),
            inbound_handlers: Vec::new(),
            outbound_contexts: Vec::new(),
            outbound_handlers: Vec::new(),

            phantom_r: PhantomData,
            phantom_w: PhantomData,
        }
    }

    fn add_back(&mut self, handler: impl Handler) {
        let (handler_name, inbound_context, inbound_handler, outbound_context, outbound_handler) =
            handler.generate();
        self.handler_names.push(handler_name);
        self.inbound_contexts.push(inbound_context);
        self.inbound_handlers.push(inbound_handler);
        self.outbound_contexts.push(outbound_context);
        self.outbound_handlers.push(outbound_handler);
    }

    fn add_front(&mut self, handler: impl Handler) {
        let (handler_name, inbound_context, inbound_handler, outbound_context, outbound_handler) =
            handler.generate();
        self.handler_names.insert(0, handler_name);
        self.inbound_contexts.insert(0, inbound_context);
        self.inbound_handlers.insert(0, inbound_handler);
        self.outbound_contexts.insert(0, outbound_context);
        self.outbound_handlers.insert(0, outbound_handler);
    }

    fn remove_back(&mut self) -> Result<(), std::io::Error> {
        let len = self.handler_names.len();
        if len == 0 {
            Err(std::io::Error::new(
                ErrorKind::NotFound,
                "No handlers in pipeline",
            ))
        } else {
            self.handler_names.remove(len - 1);
            self.inbound_contexts.remove(len - 1);
            self.inbound_handlers.remove(len - 1);
            self.outbound_contexts.remove(len - 1);
            self.outbound_handlers.remove(len - 1);

            Ok(())
        }
    }

    fn remove_front(&mut self) -> Result<(), std::io::Error> {
        if self.handler_names.is_empty() {
            Err(std::io::Error::new(
                ErrorKind::NotFound,
                "No handlers in pipeline",
            ))
        } else {
            self.handler_names.remove(0);
            self.inbound_contexts.remove(0);
            self.inbound_handlers.remove(0);
            self.outbound_contexts.remove(0);
            self.outbound_handlers.remove(0);

            Ok(())
        }
    }

    fn remove(&mut self, handler_name: &str) -> Result<(), std::io::Error> {
        let mut to_be_removed = vec![];
        for (index, name) in self.handler_names.iter().enumerate() {
            if name == handler_name {
                to_be_removed.push(index);
            }
        }

        if !to_be_removed.is_empty() {
            for index in to_be_removed.into_iter().rev() {
                self.handler_names.remove(index);
                self.inbound_contexts.remove(index);
                self.inbound_handlers.remove(index);
                self.outbound_contexts.remove(index);
                self.outbound_handlers.remove(index);
            }

            Ok(())
        } else {
            Err(std::io::Error::new(
                ErrorKind::NotFound,
                format!("No such handler \"{}\" in pipeline", handler_name),
            ))
        }
    }

    fn len(&self) -> usize {
        self.handler_names.len()
    }

    async fn finalize(&self) {
        let mut enumerate = self.inbound_contexts.iter().enumerate();
        let ctx_pipe_len = self.inbound_contexts.len();
        for _ in 0..ctx_pipe_len {
            let (j, ctx) = enumerate.next().unwrap();
            let mut curr = ctx.lock().await;

            {
                let (next_context, next_handler) = (
                    self.inbound_contexts.get(j + 1),
                    self.inbound_handlers.get(j + 1),
                );
                match (next_context, next_handler) {
                    (Some(next_ctx), Some(next_hdlr)) => {
                        curr.set_next_in_context(Some(next_ctx.clone()));
                        curr.set_next_in_handler(Some(next_hdlr.clone()));
                    }
                    _ => {
                        curr.set_next_in_context(None);
                        curr.set_next_in_handler(None);
                    }
                }
            }

            {
                let (prev_context, prev_handler) = if j > 0 {
                    (
                        self.outbound_contexts.get(j - 1),
                        self.outbound_handlers.get(j - 1),
                    )
                } else {
                    (None, None)
                };
                match (prev_context, prev_handler) {
                    (Some(prev_ctx), Some(prev_hdlr)) => {
                        curr.set_next_out_context(Some(prev_ctx.clone()));
                        curr.set_next_out_handler(Some(prev_hdlr.clone()));
                    }
                    _ => {
                        curr.set_next_out_context(None);
                        curr.set_next_out_handler(None);
                    }
                }
            }
        }

        let mut enumerate = self.outbound_contexts.iter().enumerate();
        let ctx_pipe_len = self.outbound_contexts.len();
        for _ in 0..ctx_pipe_len {
            let (j, ctx) = enumerate.next().unwrap();
            let mut curr = ctx.lock().await;

            {
                let (prev_context, prev_handler) = if j > 0 {
                    (
                        self.outbound_contexts.get(j - 1),
                        self.outbound_handlers.get(j - 1),
                    )
                } else {
                    (None, None)
                };
                match (prev_context, prev_handler) {
                    (Some(prev_ctx), Some(prev_hdlr)) => {
                        curr.set_next_out_context(Some(prev_ctx.clone()));
                        curr.set_next_out_handler(Some(prev_hdlr.clone()));
                    }
                    _ => {
                        curr.set_next_out_context(None);
                        curr.set_next_out_handler(None);
                    }
                }
            }
        }
    }

    async fn transport_active(&self) {
        let (mut handler, mut ctx) = (
            self.inbound_handlers.first().unwrap().lock().await,
            self.inbound_contexts.first().unwrap().lock().await,
        );
        handler.transport_active_internal(&mut *ctx).await;
    }

    async fn transport_inactive(&self) {
        let (mut handler, mut ctx) = (
            self.inbound_handlers.first().unwrap().lock().await,
            self.inbound_contexts.first().unwrap().lock().await,
        );
        handler.transport_inactive_internal(&mut *ctx).await;
    }

    async fn read(&self, msg: R) {
        let (mut handler, mut ctx) = (
            self.inbound_handlers.first().unwrap().lock().await,
            self.inbound_contexts.first().unwrap().lock().await,
        );
        handler.read_internal(&mut *ctx, Box::new(msg)).await;
    }

    async fn read_exception(&self, err: Box<dyn Error + Send + Sync>) {
        let (mut handler, mut ctx) = (
            self.inbound_handlers.first().unwrap().lock().await,
            self.inbound_contexts.first().unwrap().lock().await,
        );
        handler.read_exception_internal(&mut *ctx, err).await;
    }

    async fn read_eof(&self) {
        let (mut handler, mut ctx) = (
            self.inbound_handlers.first().unwrap().lock().await,
            self.inbound_contexts.first().unwrap().lock().await,
        );
        handler.read_eof_internal(&mut *ctx).await;
    }

    async fn read_timeout(&self, timeout: Instant) {
        let (mut handler, mut ctx) = (
            self.inbound_handlers.first().unwrap().lock().await,
            self.inbound_contexts.first().unwrap().lock().await,
        );
        handler.read_timeout_internal(&mut *ctx, timeout).await;
    }

    async fn poll_timeout(&self, timeout: &mut Instant) {
        let (mut handler, mut ctx) = (
            self.inbound_handlers.first().unwrap().lock().await,
            self.inbound_contexts.first().unwrap().lock().await,
        );
        handler.poll_timeout_internal(&mut *ctx, timeout).await;
    }

    async fn write(&self, msg: W) {
        let (mut handler, mut ctx) = (
            self.outbound_handlers.last().unwrap().lock().await,
            self.outbound_contexts.last().unwrap().lock().await,
        );
        handler.write_internal(&mut *ctx, Box::new(msg)).await;
    }

    async fn write_exception(&self, err: Box<dyn Error + Send + Sync>) {
        let (mut handler, mut ctx) = (
            self.outbound_handlers.last().unwrap().lock().await,
            self.outbound_contexts.last().unwrap().lock().await,
        );
        handler.write_exception_internal(&mut *ctx, err).await;
    }

    async fn close(&self) {
        let (mut handler, mut ctx) = (
            self.outbound_handlers.last().unwrap().lock().await,
            self.outbound_contexts.last().unwrap().lock().await,
        );
        handler.close_internal(&mut *ctx).await;
    }
}

/// Pipeline implements an advanced form of the Intercepting Filter pattern to give a user full control
/// over how an event is handled and how the Handlers in a pipeline interact with each other.
pub struct Pipeline<R, W> {
    internal: Mutex<PipelineInternal<R, W>>,
}

impl<R: Send + Sync + 'static, W: Send + Sync + 'static> Default for Pipeline<R, W> {
    fn default() -> Self {
        Self::new()
    }
}

impl<R: Send + Sync + 'static, W: Send + Sync + 'static> Pipeline<R, W> {
    /// Creates a new Pipeline
    pub fn new() -> Self {
        Self {
            internal: Mutex::new(PipelineInternal::new()),
        }
    }

    /// Appends a [Handler] at the last position of this pipeline.
    pub async fn add_back(&self, handler: impl Handler) -> &Self {
        {
            let mut internal = self.internal.lock().await;
            internal.add_back(handler);
        }
        self
    }

    /// Inserts a [Handler] at the first position of this pipeline.
    pub async fn add_front(&self, handler: impl Handler) -> &Self {
        {
            let mut internal = self.internal.lock().await;
            internal.add_front(handler);
        }
        self
    }

    /// Removes a [Handler] at the last position of this pipeline.
    pub async fn remove_back(&self) -> Result<&Self, std::io::Error> {
        let result = {
            let mut internal = self.internal.lock().await;
            internal.remove_back()
        };
        match result {
            Ok(()) => Ok(self),
            Err(err) => Err(err),
        }
    }

    /// Removes a [Handler] at the first position of this pipeline.
    pub async fn remove_front(&self) -> Result<&Self, std::io::Error> {
        let result = {
            let mut internal = self.internal.lock().await;
            internal.remove_front()
        };
        match result {
            Ok(()) => Ok(self),
            Err(err) => Err(err),
        }
    }

    /// Removes a [Handler] from this pipeline based on handler_name.
    pub async fn remove(&self, handler_name: &str) -> Result<&Self, std::io::Error> {
        let result = {
            let mut internal = self.internal.lock().await;
            internal.remove(handler_name)
        };
        match result {
            Ok(()) => Ok(self),
            Err(err) => Err(err),
        }
    }

    /// Returns the number of Handlers in this pipeline.
    pub async fn len(&self) -> usize {
        let internal = self.internal.lock().await;
        internal.len()
    }

    /// Finalizes the pipeline.
    pub async fn finalize(&self) -> &Self {
        {
            let internal = self.internal.lock().await;
            internal.finalize().await;
        }
        self
    }

    /// Transport is active now, which means it is connected.
    pub async fn transport_active(&self) {
        let internal = self.internal.lock().await;
        internal.transport_active().await;
    }

    /// Transport is inactive now, which means it is disconnected.
    pub async fn transport_inactive(&self) {
        let internal = self.internal.lock().await;
        internal.transport_inactive().await;
    }

    /// Reads a message.
    pub async fn read(&self, msg: R) {
        let internal = self.internal.lock().await;
        internal.read(msg).await;
    }

    /// Reads an Error exception in one of its inbound operations.
    pub async fn read_exception(&self, err: Box<dyn Error + Send + Sync>) {
        let internal = self.internal.lock().await;
        internal.read_exception(err).await;
    }

    /// Reads an EOF event.
    pub async fn read_eof(&self) {
        let internal = self.internal.lock().await;
        internal.read_eof().await;
    }

    /// Reads a timeout event.
    pub async fn read_timeout(&self, timeout: Instant) {
        let internal = self.internal.lock().await;
        internal.read_timeout(timeout).await;
    }

    /// Polls timout event in its inbound operations.
    /// If any inbound handler has timeout event to trigger in future,
    /// it should compare its own timeout event with the provided timout event and
    /// update the provided timeout event with the minimal of these two timeout events.
    pub async fn poll_timeout(&self, timeout: &mut Instant) {
        let internal = self.internal.lock().await;
        internal.poll_timeout(timeout).await;
    }

    /// Writes a message.
    pub async fn write(&self, msg: W) {
        let internal = self.internal.lock().await;
        internal.write(msg).await;
    }

    /// Writes an Error exception from one of its outbound operations.
    pub async fn write_exception(&self, err: Box<dyn Error + Send + Sync>) {
        let internal = self.internal.lock().await;
        internal.write_exception(err).await;
    }

    /// Writes a close event.
    pub async fn close(&self) {
        let internal = self.internal.lock().await;
        internal.close().await;
    }
}