1use crate::error::{MLError, Result};
9use crate::optimization::OptimizationMethod;
10use crate::qnn::{QNNLayerType, QuantumNeuralNetwork};
11use crate::quantum_transformer::{
12 create_causal_mask, PositionEncodingType, QuantumAttentionType, QuantumTransformer,
13 QuantumTransformerConfig,
14};
15use quantrs2_circuit::builder::{Circuit, Simulator};
16use quantrs2_core::gate::{multi::*, single::*, GateOp};
17use quantrs2_sim::statevector::StateVectorSimulator;
18use scirs2_core::ndarray::{s, Array1, Array2, Array3, Array4, Axis};
19use std::collections::HashMap;
20use std::f64::consts::PI;
21
22#[derive(Debug, Clone)]
24pub struct QuantumLLMConfig {
25 pub transformer_config: QuantumTransformerConfig,
27
28 pub vocab_size: usize,
30
31 pub max_context_length: usize,
33
34 pub quantum_memory_layers: usize,
36
37 pub reasoning_config: QuantumReasoningConfig,
39
40 pub memory_config: QuantumMemoryConfig,
42
43 pub model_scale: ModelScale,
45
46 pub training_config: QLLMTrainingConfig,
48}
49
50#[derive(Debug, Clone)]
52pub enum ModelScale {
53 Small {
55 layers: usize,
56 model_dim: usize,
57 heads: usize,
58 },
59 Medium {
61 layers: usize,
62 model_dim: usize,
63 heads: usize,
64 },
65 Large {
67 layers: usize,
68 model_dim: usize,
69 heads: usize,
70 },
71 ExtraLarge {
73 layers: usize,
74 model_dim: usize,
75 heads: usize,
76 },
77}
78
79#[derive(Debug, Clone)]
81pub struct QuantumReasoningConfig {
82 pub logical_reasoning: bool,
84
85 pub causal_reasoning: bool,
87
88 pub analogical_reasoning: bool,
90
91 pub reasoning_steps: usize,
93
94 pub circuit_depth: usize,
96
97 pub entanglement_strength: f64,
99}
100
101#[derive(Debug, Clone)]
103pub struct QuantumMemoryConfig {
104 pub memory_size: usize,
106
107 pub associative_memory: bool,
109
110 pub episodic_memory: bool,
112
113 pub retrieval_mechanism: MemoryRetrievalType,
115
116 pub quantum_compression: bool,
118
119 pub coherence_time: f64,
121}
122
123#[derive(Debug, Clone)]
125pub enum MemoryRetrievalType {
126 QuantumAssociative,
128
129 ContentAddressable,
131
132 Holographic,
134
135 QuantumHopfield,
137
138 Hierarchical,
140}
141
142#[derive(Debug, Clone)]
144pub struct QLLMTrainingConfig {
145 pub hybrid_training: bool,
147
148 pub parameter_update: QuantumParameterUpdate,
150
151 pub gradient_accumulation: usize,
153
154 pub quantum_noise: bool,
156
157 pub quantum_advantage_opt: bool,
159}
160
161#[derive(Debug, Clone)]
163pub enum QuantumParameterUpdate {
164 ClassicalOnQuantum,
166
167 QuantumNatural,
169
170 QuantumBFGS,
172
173 ParameterShift,
175
176 QuantumAdam,
178}
179
180#[derive(Debug, Clone)]
182pub struct QuantumLLM {
183 config: QuantumLLMConfig,
185
186 token_embedding: QuantumNeuralNetwork,
188
189 transformer: QuantumTransformer,
191
192 quantum_memory: QuantumMemorySystem,
194
195 quantum_reasoning: QuantumReasoningModule,
197
198 lm_head: QuantumNeuralNetwork,
200
201 vocab: Vocabulary,
203
204 generation_stats: GenerationStatistics,
206}
207
208#[derive(Debug, Clone)]
210pub struct QuantumMemorySystem {
211 config: QuantumMemoryConfig,
213
214 associative_banks: Vec<QuantumAssociativeMemory>,
216
217 episodic_memory: Vec<QuantumEpisode>,
219
220 retrieval_circuit_params: Vec<Vec<f64>>,
222
223 compression_codebooks: HashMap<String, Array2<f64>>,
225}
226
227#[derive(Debug, Clone)]
229pub struct QuantumAssociativeMemory {
230 patterns: Array2<f64>,
232
233 hopfield_weights: Array2<f64>,
235
236 memory_circuit_params: Vec<f64>,
238
239 amplitudes: Array1<f64>,
241
242 threshold: f64,
244}
245
246#[derive(Debug, Clone)]
248pub struct QuantumEpisode {
249 context: Array1<f64>,
251
252 content: Array2<f64>,
254
255 quantum_state: Array1<f64>,
257
258 timestamp: f64,
260
261 coherence: f64,
263
264 importance: f64,
266}
267
268#[derive(Debug, Clone)]
270pub struct QuantumReasoningModule {
271 config: QuantumReasoningConfig,
273
274 logical_circuits: Vec<Circuit<16>>,
276
277 causal_networks: Vec<QuantumNeuralNetwork>,
279
280 analogical_system: QuantumAnalogyEngine,
282
283 reasoning_memory: Array2<f64>,
285
286 cot_states: Vec<Array1<f64>>,
288}
289
290#[derive(Debug, Clone)]
292pub struct QuantumAnalogyEngine {
293 mapping_circuit_params: Vec<Vec<f64>>,
295
296 similarity_measures: Array2<f64>,
298
299 transformations: Vec<Array2<f64>>,
301
302 interference_patterns: Array3<f64>,
304}
305
306#[derive(Debug, Clone)]
308pub struct Vocabulary {
309 token_to_id: HashMap<String, usize>,
311
312 id_to_token: HashMap<usize, String>,
314
315 special_tokens: HashMap<String, usize>,
317
318 tokenizer: SubwordTokenizer,
320
321 quantum_embeddings: Array2<f64>,
323}
324
325#[derive(Debug, Clone)]
327pub struct SubwordTokenizer {
328 merges: Vec<(String, String)>,
330
331 frequencies: HashMap<String, usize>,
333
334 quantum_encodings: HashMap<String, Array1<f64>>,
336}
337
338#[derive(Debug, Clone)]
340pub struct GenerationStatistics {
341 pub total_tokens: usize,
343
344 pub avg_speed: f64,
346
347 pub quantum_coherence: f64,
349
350 pub reasoning_steps: usize,
352
353 pub memory_retrievals: usize,
355
356 pub quality_metrics: QualityMetrics,
358}
359
360#[derive(Debug, Clone)]
362pub struct QualityMetrics {
363 pub perplexity: f64,
365
366 pub coherence: f64,
368
369 pub factual_accuracy: f64,
371
372 pub logical_consistency: f64,
374
375 pub quantum_advantage: f64,
377}
378
379#[derive(Debug, Clone)]
381pub struct GenerationConfig {
382 pub max_length: usize,
384
385 pub temperature: f64,
387
388 pub top_k: Option<usize>,
390
391 pub top_p: Option<f64>,
393
394 pub repetition_penalty: f64,
396
397 pub use_quantum_reasoning: bool,
399
400 pub use_memory: bool,
402
403 pub chain_of_thought: bool,
405}
406
407impl QuantumLLMConfig {
408 pub fn small(vocab_size: usize) -> Self {
410 Self {
411 transformer_config: QuantumTransformerConfig {
412 model_dim: 768,
413 num_heads: 12,
414 ff_dim: 3072,
415 num_layers: 12,
416 max_seq_len: 2048,
417 num_qubits: 10,
418 dropout_rate: 0.1,
419 attention_type: QuantumAttentionType::HybridQuantumClassical,
420 position_encoding: PositionEncodingType::Rotary,
421 },
422 vocab_size,
423 max_context_length: 2048,
424 quantum_memory_layers: 4,
425 reasoning_config: QuantumReasoningConfig::default(),
426 memory_config: QuantumMemoryConfig::default(),
427 model_scale: ModelScale::Small {
428 layers: 12,
429 model_dim: 768,
430 heads: 12,
431 },
432 training_config: QLLMTrainingConfig::default(),
433 }
434 }
435
436 pub fn medium(vocab_size: usize) -> Self {
438 Self {
439 transformer_config: QuantumTransformerConfig {
440 model_dim: 1024,
441 num_heads: 16,
442 ff_dim: 4096,
443 num_layers: 24,
444 max_seq_len: 4096,
445 num_qubits: 16,
446 dropout_rate: 0.1,
447 attention_type: QuantumAttentionType::QuantumEnhancedMultiHead,
448 position_encoding: PositionEncodingType::LearnableQuantum,
449 },
450 vocab_size,
451 max_context_length: 4096,
452 quantum_memory_layers: 8,
453 reasoning_config: QuantumReasoningConfig::enhanced(),
454 memory_config: QuantumMemoryConfig::enhanced(),
455 model_scale: ModelScale::Medium {
456 layers: 24,
457 model_dim: 1024,
458 heads: 16,
459 },
460 training_config: QLLMTrainingConfig::default(),
461 }
462 }
463
464 pub fn large(vocab_size: usize) -> Self {
466 Self {
467 transformer_config: QuantumTransformerConfig {
468 model_dim: 1536,
469 num_heads: 24,
470 ff_dim: 6144,
471 num_layers: 48,
472 max_seq_len: 8192,
473 num_qubits: 12,
474 dropout_rate: 0.1,
475 attention_type: QuantumAttentionType::FullQuantum,
476 position_encoding: PositionEncodingType::QuantumPhase,
477 },
478 vocab_size,
479 max_context_length: 8192,
480 quantum_memory_layers: 16,
481 reasoning_config: QuantumReasoningConfig::advanced(),
482 memory_config: QuantumMemoryConfig::advanced(),
483 model_scale: ModelScale::Large {
484 layers: 48,
485 model_dim: 1536,
486 heads: 24,
487 },
488 training_config: QLLMTrainingConfig::advanced(),
489 }
490 }
491}
492
493impl QuantumReasoningConfig {
494 pub fn default() -> Self {
496 Self {
497 logical_reasoning: true,
498 causal_reasoning: false,
499 analogical_reasoning: false,
500 reasoning_steps: 3,
501 circuit_depth: 5,
502 entanglement_strength: 0.5,
503 }
504 }
505
506 pub fn enhanced() -> Self {
508 Self {
509 logical_reasoning: true,
510 causal_reasoning: true,
511 analogical_reasoning: false,
512 reasoning_steps: 5,
513 circuit_depth: 8,
514 entanglement_strength: 0.7,
515 }
516 }
517
518 pub fn advanced() -> Self {
520 Self {
521 logical_reasoning: true,
522 causal_reasoning: true,
523 analogical_reasoning: true,
524 reasoning_steps: 8,
525 circuit_depth: 12,
526 entanglement_strength: 0.9,
527 }
528 }
529}
530
531impl QuantumMemoryConfig {
532 pub fn default() -> Self {
534 Self {
535 memory_size: 1000,
536 associative_memory: true,
537 episodic_memory: false,
538 retrieval_mechanism: MemoryRetrievalType::QuantumAssociative,
539 quantum_compression: false,
540 coherence_time: 100.0,
541 }
542 }
543
544 pub fn enhanced() -> Self {
546 Self {
547 memory_size: 5000,
548 associative_memory: true,
549 episodic_memory: true,
550 retrieval_mechanism: MemoryRetrievalType::ContentAddressable,
551 quantum_compression: true,
552 coherence_time: 200.0,
553 }
554 }
555
556 pub fn advanced() -> Self {
558 Self {
559 memory_size: 20000,
560 associative_memory: true,
561 episodic_memory: true,
562 retrieval_mechanism: MemoryRetrievalType::Holographic,
563 quantum_compression: true,
564 coherence_time: 500.0,
565 }
566 }
567}
568
569impl QLLMTrainingConfig {
570 pub fn default() -> Self {
572 Self {
573 hybrid_training: true,
574 parameter_update: QuantumParameterUpdate::ClassicalOnQuantum,
575 gradient_accumulation: 1,
576 quantum_noise: false,
577 quantum_advantage_opt: false,
578 }
579 }
580
581 pub fn advanced() -> Self {
583 Self {
584 hybrid_training: true,
585 parameter_update: QuantumParameterUpdate::QuantumAdam,
586 gradient_accumulation: 8,
587 quantum_noise: true,
588 quantum_advantage_opt: true,
589 }
590 }
591}
592
593impl QuantumLLM {
594 pub fn new(config: QuantumLLMConfig) -> Result<Self> {
596 let embed_layers = vec![
598 QNNLayerType::EncodingLayer {
599 num_features: config.vocab_size,
600 },
601 QNNLayerType::VariationalLayer {
602 num_params: config.transformer_config.model_dim,
603 },
604 QNNLayerType::MeasurementLayer {
605 measurement_basis: "computational".to_string(),
606 },
607 ];
608 let token_embedding = QuantumNeuralNetwork::new(
609 embed_layers,
610 config.transformer_config.num_qubits,
611 config.vocab_size,
612 config.transformer_config.model_dim,
613 )?;
614
615 let transformer = QuantumTransformer::new(config.transformer_config.clone())?;
617
618 let quantum_memory = QuantumMemorySystem::new(config.memory_config.clone())?;
620
621 let quantum_reasoning = QuantumReasoningModule::new(config.reasoning_config.clone())?;
623
624 let lm_layers = vec![
626 QNNLayerType::EncodingLayer {
627 num_features: config.transformer_config.model_dim,
628 },
629 QNNLayerType::VariationalLayer {
630 num_params: config.vocab_size,
631 },
632 QNNLayerType::MeasurementLayer {
633 measurement_basis: "computational".to_string(),
634 },
635 ];
636 let lm_head = QuantumNeuralNetwork::new(
637 lm_layers,
638 config.transformer_config.num_qubits,
639 config.transformer_config.model_dim,
640 config.vocab_size,
641 )?;
642
643 let vocab = Vocabulary::new(config.vocab_size)?;
645
646 let generation_stats = GenerationStatistics::new();
648
649 Ok(Self {
650 config,
651 token_embedding,
652 transformer,
653 quantum_memory,
654 quantum_reasoning,
655 lm_head,
656 vocab,
657 generation_stats,
658 })
659 }
660
661 pub fn forward(
663 &mut self,
664 input_ids: &Array2<usize>, attention_mask: Option<&Array3<bool>>,
666 use_memory: bool,
667 use_reasoning: bool,
668 ) -> Result<Array3<f64>> {
669 let (batch_size, seq_len) = input_ids.dim();
671
672 if seq_len > self.config.max_context_length {
673 return Err(MLError::ConfigurationError(format!(
674 "Sequence length {} exceeds maximum context length {}",
675 seq_len, self.config.max_context_length
676 )));
677 }
678
679 let mut embeddings = Array3::zeros((
681 batch_size,
682 seq_len,
683 self.config.transformer_config.model_dim,
684 ));
685 for batch_idx in 0..batch_size {
686 for seq_idx in 0..seq_len {
687 let token_id = input_ids[[batch_idx, seq_idx]];
688 let token_embedding = self.vocab.get_embedding(token_id)?;
689 let embedded = self.token_embedding.forward(&token_embedding)?;
690 embeddings
691 .slice_mut(s![batch_idx, seq_idx, ..])
692 .assign(&embedded);
693 }
694 }
695
696 if use_memory {
698 embeddings = self.quantum_memory.enhance_embeddings(&embeddings)?;
699 }
700
701 let transformer_output = self.transformer.forward(&embeddings, attention_mask)?;
703
704 let reasoned_output = if use_reasoning {
706 self.quantum_reasoning
707 .apply_reasoning(&transformer_output)?
708 } else {
709 transformer_output
710 };
711
712 let mut logits = Array3::zeros((batch_size, seq_len, self.config.vocab_size));
714 for batch_idx in 0..batch_size {
715 for seq_idx in 0..seq_len {
716 let hidden_state = reasoned_output.slice(s![batch_idx, seq_idx, ..]).to_owned();
717 let token_logits = self.lm_head.forward(&hidden_state)?;
718 logits
719 .slice_mut(s![batch_idx, seq_idx, ..])
720 .assign(&token_logits);
721 }
722 }
723
724 if use_memory {
726 self.quantum_memory
727 .update_memory(&reasoned_output, input_ids)?;
728 }
729
730 Ok(logits)
731 }
732
733 pub fn generate(&mut self, prompt: &str, config: GenerationConfig) -> Result<String> {
735 let input_ids = self.vocab.tokenize(prompt)?;
737 let mut current_ids = Array1::from_vec(input_ids);
738 let mut generated_text = prompt.to_string();
739
740 for step in 0..config.max_length {
742 let batch_input = current_ids.clone().insert_axis(Axis(0)); let input_2d =
745 Array2::from_shape_vec((1, current_ids.len()), current_ids.to_vec()).unwrap();
746
747 let seq_len = current_ids.len();
749 let causal_mask = create_causal_mask(1, seq_len);
750
751 let logits = self.forward(
753 &input_2d,
754 Some(&causal_mask),
755 config.use_memory,
756 config.use_quantum_reasoning,
757 )?;
758
759 let next_token_logits = logits.slice(s![0, seq_len - 1, ..]).to_owned();
761
762 let final_logits = if config.use_quantum_reasoning && config.chain_of_thought {
764 self.quantum_reasoning
765 .enhance_token_selection(&next_token_logits)?
766 } else {
767 next_token_logits
768 };
769
770 let next_token = self.sample_token(&final_logits, &config)?;
772
773 if self.vocab.is_eos_token(next_token) {
775 break;
776 }
777
778 let new_current = Array1::from_iter(
780 current_ids
781 .iter()
782 .cloned()
783 .chain(std::iter::once(next_token)),
784 );
785 current_ids = new_current;
786
787 let token_text = self.vocab.decode_token(next_token)?;
789 generated_text.push_str(&token_text);
790
791 self.generation_stats.total_tokens += 1;
793
794 if step % 10 == 0 {
796 let coherence = self.quantum_reasoning.measure_coherence()?;
797 self.generation_stats.quantum_coherence = coherence;
798 }
799 }
800
801 Ok(generated_text)
802 }
803
804 fn sample_token(&self, logits: &Array1<f64>, config: &GenerationConfig) -> Result<usize> {
806 let mut scores = logits.clone();
807
808 if config.temperature != 1.0 {
810 scores = scores / config.temperature;
811 }
812
813 if config.repetition_penalty != 1.0 {
815 scores = scores * config.repetition_penalty;
816 }
817
818 let max_score = scores.iter().cloned().fold(f64::NEG_INFINITY, f64::max);
820 let exp_scores = scores.mapv(|x| (x - max_score).exp());
821 let sum_exp = exp_scores.sum();
822 let mut probs = exp_scores / sum_exp;
823
824 if let Some(k) = config.top_k {
826 let mut indexed_probs: Vec<(usize, f64)> =
827 probs.iter().enumerate().map(|(i, &p)| (i, p)).collect();
828 indexed_probs.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
829
830 for (i, &(idx, _)) in indexed_probs.iter().enumerate() {
831 if i >= k {
832 probs[idx] = 0.0;
833 }
834 }
835
836 let sum_probs = probs.sum();
838 if sum_probs > 0.0 {
839 probs = probs / sum_probs;
840 }
841 }
842
843 if let Some(p) = config.top_p {
845 let mut indexed_probs: Vec<(usize, f64)> = probs
846 .iter()
847 .enumerate()
848 .map(|(i, &prob)| (i, prob))
849 .collect();
850 indexed_probs.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
851
852 let mut cumulative = 0.0;
853 for (idx, prob) in &indexed_probs {
854 cumulative += prob;
855 if cumulative > p {
856 for (i, &(remaining_idx, _)) in indexed_probs.iter().enumerate() {
858 if cumulative - prob > p {
859 probs[remaining_idx] = 0.0;
860 }
861 }
862 break;
863 }
864 }
865
866 let sum_probs = probs.sum();
868 if sum_probs > 0.0 {
869 probs = probs / sum_probs;
870 }
871 }
872
873 let mut cumulative = 0.0;
875 let random_val = fastrand::f64();
876
877 for (i, &prob) in probs.iter().enumerate() {
878 cumulative += prob;
879 if random_val <= cumulative {
880 return Ok(i);
881 }
882 }
883
884 Ok(probs
886 .iter()
887 .enumerate()
888 .max_by(|a, b| a.1.partial_cmp(b.1).unwrap())
889 .map(|(i, _)| i)
890 .unwrap_or(0))
891 }
892
893 pub fn config(&self) -> &QuantumLLMConfig {
895 &self.config
896 }
897
898 pub fn generation_stats(&self) -> &GenerationStatistics {
900 &self.generation_stats
901 }
902
903 pub fn num_parameters(&self) -> usize {
905 let mut total = 0;
906
907 total += self.token_embedding.parameters.len();
908 total += self.transformer.num_parameters();
909 total += self.lm_head.parameters.len();
910 total += self.quantum_memory.num_parameters();
911 total += self.quantum_reasoning.num_parameters();
912 total += self.vocab.quantum_embeddings.len();
913
914 total
915 }
916
917 pub fn evaluate_perplexity(&mut self, texts: &[String]) -> Result<f64> {
919 let mut total_log_likelihood = 0.0;
920 let mut total_tokens = 0;
921
922 for text in texts {
923 let tokens = self.vocab.tokenize(text)?;
924 if tokens.len() < 2 {
925 continue;
926 }
927
928 let tokens_len = tokens.len();
929 let input_ids = Array2::from_shape_vec((1, tokens_len), tokens.clone())?;
930 let logits = self.forward(&input_ids, None, false, false)?;
931
932 for i in 0..tokens_len - 1 {
934 let target_token = tokens[i + 1];
935 let token_logits = logits.slice(s![0, i, ..]);
936
937 let max_logit = token_logits
939 .iter()
940 .cloned()
941 .fold(f64::NEG_INFINITY, f64::max);
942 let exp_logits = token_logits.mapv(|x| (x - max_logit).exp());
943 let sum_exp = exp_logits.sum();
944 let prob = exp_logits[target_token] / sum_exp;
945
946 if prob > 1e-10 {
947 total_log_likelihood += prob.ln();
948 total_tokens += 1;
949 }
950 }
951 }
952
953 if total_tokens == 0 {
954 return Ok(f64::INFINITY);
955 }
956
957 let avg_log_likelihood = total_log_likelihood / total_tokens as f64;
958 let perplexity = (-avg_log_likelihood).exp();
959
960 Ok(perplexity)
961 }
962}
963
964impl QuantumMemorySystem {
965 pub fn new(config: QuantumMemoryConfig) -> Result<Self> {
967 let mut associative_banks = Vec::new();
968 let mut retrieval_circuit_params = Vec::new();
969
970 if config.associative_memory {
972 for _ in 0..5 {
973 let memory_bank = QuantumAssociativeMemory::new(100, 128)?;
975 associative_banks.push(memory_bank);
976 }
977 }
978
979 for _ in 0..config.memory_size / 100 {
981 let mut params = Vec::new();
982 for _ in 0..8 {
983 params.push(1.0); params.push(0.0); }
986 for _ in 0..7 {
987 params.push(2.0); }
989 retrieval_circuit_params.push(params);
990 }
991
992 Ok(Self {
993 config,
994 associative_banks,
995 episodic_memory: Vec::new(),
996 retrieval_circuit_params,
997 compression_codebooks: HashMap::new(),
998 })
999 }
1000
1001 pub fn enhance_embeddings(&self, embeddings: &Array3<f64>) -> Result<Array3<f64>> {
1003 let mut enhanced = embeddings.clone();
1004
1005 if self.config.associative_memory && !self.associative_banks.is_empty() {
1006 for batch_idx in 0..embeddings.dim().0 {
1008 for seq_idx in 0..embeddings.dim().1 {
1009 let query = embeddings.slice(s![batch_idx, seq_idx, ..]).to_owned();
1010 let retrieved_memory = self.retrieve_associative_memory(&query)?;
1011
1012 let combination_weight = 0.1;
1014 enhanced.slice_mut(s![batch_idx, seq_idx, ..]).zip_mut_with(
1015 &retrieved_memory,
1016 |orig, mem| {
1017 *orig = *orig * (1.0 - combination_weight) + mem * combination_weight;
1018 },
1019 );
1020 }
1021 }
1022 }
1023
1024 Ok(enhanced)
1025 }
1026
1027 fn retrieve_associative_memory(&self, query: &Array1<f64>) -> Result<Array1<f64>> {
1029 if self.associative_banks.is_empty() {
1030 return Ok(query.clone());
1031 }
1032
1033 self.associative_banks[0].retrieve(query)
1035 }
1036
1037 pub fn update_memory(
1039 &mut self,
1040 hidden_states: &Array3<f64>,
1041 input_ids: &Array2<usize>,
1042 ) -> Result<()> {
1043 let (batch_size, seq_len, hidden_dim) = hidden_states.dim();
1044
1045 if self.config.episodic_memory {
1047 for batch_idx in 0..batch_size {
1048 let context = hidden_states.slice(s![batch_idx, 0, ..]).to_owned();
1049 let content = hidden_states.slice(s![batch_idx, .., ..]).to_owned();
1050
1051 let episode = QuantumEpisode {
1052 context,
1053 content,
1054 quantum_state: Array1::zeros(hidden_dim), timestamp: self.episodic_memory.len() as f64,
1056 coherence: 0.8,
1057 importance: 1.0,
1058 };
1059
1060 self.episodic_memory.push(episode);
1061
1062 if self.episodic_memory.len() > self.config.memory_size {
1064 self.episodic_memory.remove(0);
1065 }
1066 }
1067 }
1068
1069 for bank in &mut self.associative_banks {
1071 let sample_hidden = hidden_states.slice(s![0, 0, ..]).to_owned();
1072 bank.store_pattern(&sample_hidden)?;
1073 }
1074
1075 Ok(())
1076 }
1077
1078 pub fn num_parameters(&self) -> usize {
1080 let mut total = 0;
1081
1082 for bank in &self.associative_banks {
1083 total += bank.hopfield_weights.len();
1084 total += bank.patterns.len();
1085 }
1086
1087 for codebook in self.compression_codebooks.values() {
1088 total += codebook.len();
1089 }
1090
1091 total
1092 }
1093}
1094
1095impl QuantumAssociativeMemory {
1096 pub fn new(capacity: usize, pattern_size: usize) -> Result<Self> {
1098 let patterns = Array2::zeros((capacity, pattern_size));
1099 let hopfield_weights = Array2::zeros((pattern_size, pattern_size));
1100
1101 let num_qubits = 8;
1102 let mut memory_circuit_params = Vec::new();
1103
1104 for _ in 0..num_qubits {
1106 memory_circuit_params.push(1.0); }
1108
1109 for i in 0..num_qubits {
1110 for j in i + 1..num_qubits {
1111 memory_circuit_params.push(2.0); }
1113 }
1114
1115 Ok(Self {
1116 patterns,
1117 hopfield_weights,
1118 memory_circuit_params,
1119 amplitudes: Array1::zeros(capacity),
1120 threshold: 0.5,
1121 })
1122 }
1123
1124 pub fn store_pattern(&mut self, pattern: &Array1<f64>) -> Result<()> {
1126 let store_idx = self
1128 .amplitudes
1129 .iter()
1130 .enumerate()
1131 .min_by(|a, b| a.1.partial_cmp(b.1).unwrap())
1132 .map(|(i, _)| i)
1133 .unwrap_or(0);
1134
1135 self.patterns
1137 .slice_mut(s![store_idx, ..pattern.len()])
1138 .assign(pattern);
1139
1140 for i in 0..pattern.len() {
1142 for j in 0..pattern.len() {
1143 if i != j {
1144 self.hopfield_weights[[i, j]] += pattern[i] * pattern[j] * 0.1;
1145 }
1146 }
1147 }
1148
1149 self.amplitudes[store_idx] = 1.0;
1150
1151 Ok(())
1152 }
1153
1154 pub fn retrieve(&self, query: &Array1<f64>) -> Result<Array1<f64>> {
1156 let mut best_match = query.clone();
1157 let mut best_similarity = 0.0;
1158
1159 for i in 0..self.patterns.nrows() {
1161 if self.amplitudes[i] > 0.1 {
1162 let pattern = self.patterns.row(i).to_owned();
1163 let similarity = self.compute_similarity(query, &pattern)?;
1164
1165 if similarity > best_similarity {
1166 best_similarity = similarity;
1167 best_match = pattern;
1168 }
1169 }
1170 }
1171
1172 if best_similarity > self.threshold {
1174 let retrieved = self.apply_hopfield_dynamics(&best_match)?;
1175 Ok(retrieved)
1176 } else {
1177 Ok(query.clone())
1178 }
1179 }
1180
1181 fn compute_similarity(&self, pattern1: &Array1<f64>, pattern2: &Array1<f64>) -> Result<f64> {
1183 let norm1 = pattern1.mapv(|x| x * x).sum().sqrt();
1184 let norm2 = pattern2.mapv(|x| x * x).sum().sqrt();
1185
1186 if norm1 < 1e-10 || norm2 < 1e-10 {
1187 return Ok(0.0);
1188 }
1189
1190 let dot_product = pattern1.dot(pattern2);
1191 Ok(dot_product / (norm1 * norm2))
1192 }
1193
1194 fn apply_hopfield_dynamics(&self, initial: &Array1<f64>) -> Result<Array1<f64>> {
1196 let mut state = initial.clone();
1197
1198 for _ in 0..5 {
1200 let new_state = self.hopfield_weights.dot(&state);
1201 state = new_state.mapv(|x| x.tanh()); }
1203
1204 Ok(state)
1205 }
1206}
1207
1208impl QuantumReasoningModule {
1209 pub fn new(config: QuantumReasoningConfig) -> Result<Self> {
1211 let mut logical_circuits = Vec::new();
1212 let mut causal_networks = Vec::new();
1213
1214 if config.logical_reasoning {
1216 for _ in 0..config.reasoning_steps {
1217 let mut circuit = Circuit::<16>::new();
1218
1219 for i in 0..8 {
1221 circuit.h(i);
1222 circuit.ry(i, 0.0); }
1224
1225 for i in 0..7 {
1227 circuit.cnot(i, i + 1);
1228 }
1229
1230 logical_circuits.push(circuit);
1231 }
1232 }
1233
1234 if config.causal_reasoning {
1236 for _ in 0..config.reasoning_steps {
1237 let layers = vec![
1238 QNNLayerType::EncodingLayer { num_features: 256 },
1239 QNNLayerType::VariationalLayer { num_params: 128 },
1240 QNNLayerType::EntanglementLayer {
1241 connectivity: "circular".to_string(),
1242 },
1243 QNNLayerType::VariationalLayer { num_params: 256 },
1244 QNNLayerType::MeasurementLayer {
1245 measurement_basis: "computational".to_string(),
1246 },
1247 ];
1248
1249 let network = QuantumNeuralNetwork::new(layers, 12, 256, 256)?;
1250 causal_networks.push(network);
1251 }
1252 }
1253
1254 let analogical_system = QuantumAnalogyEngine::new()?;
1256
1257 Ok(Self {
1258 config,
1259 logical_circuits,
1260 causal_networks,
1261 analogical_system,
1262 reasoning_memory: Array2::zeros((100, 256)),
1263 cot_states: Vec::new(),
1264 })
1265 }
1266
1267 pub fn apply_reasoning(&mut self, hidden_states: &Array3<f64>) -> Result<Array3<f64>> {
1269 let mut reasoned_output = hidden_states.clone();
1270
1271 if self.config.logical_reasoning {
1273 reasoned_output = self.apply_logical_reasoning(&reasoned_output)?;
1274 }
1275
1276 if self.config.causal_reasoning {
1278 reasoned_output = self.apply_causal_reasoning(&reasoned_output)?;
1279 }
1280
1281 if self.config.analogical_reasoning {
1283 reasoned_output = self.apply_analogical_reasoning(&reasoned_output)?;
1284 }
1285
1286 Ok(reasoned_output)
1287 }
1288
1289 fn apply_logical_reasoning(&mut self, hidden_states: &Array3<f64>) -> Result<Array3<f64>> {
1291 let mut output = hidden_states.clone();
1292 let (batch_size, seq_len, hidden_dim) = hidden_states.dim();
1293
1294 for step in 0..self.config.reasoning_steps.min(self.logical_circuits.len()) {
1295 let simulator = StateVectorSimulator::new();
1297 let register = simulator.run(&self.logical_circuits[step])?;
1298 let quantum_state = register.probabilities();
1299
1300 let reasoning_features = self.extract_logical_features(&quantum_state)?;
1302
1303 for batch_idx in 0..batch_size {
1305 for seq_idx in 0..seq_len {
1306 let mut hidden = output.slice_mut(s![batch_idx, seq_idx, ..]);
1307
1308 let reasoning_weight = 0.1;
1310 for (i, &feature) in reasoning_features.iter().enumerate() {
1311 if i < hidden.len() {
1312 hidden[i] =
1313 hidden[i] * (1.0 - reasoning_weight) + feature * reasoning_weight;
1314 }
1315 }
1316 }
1317 }
1318
1319 let reasoning_state = Array1::from_vec(reasoning_features);
1321 self.cot_states.push(reasoning_state);
1322 }
1323
1324 Ok(output)
1325 }
1326
1327 fn apply_causal_reasoning(&self, hidden_states: &Array3<f64>) -> Result<Array3<f64>> {
1329 if self.causal_networks.is_empty() {
1330 return Ok(hidden_states.clone());
1331 }
1332
1333 let mut output = hidden_states.clone();
1334 let (batch_size, seq_len, hidden_dim) = hidden_states.dim();
1335
1336 for batch_idx in 0..batch_size {
1338 for seq_idx in 1..seq_len {
1339 let current_hidden = hidden_states.slice(s![batch_idx, seq_idx, ..]).to_owned();
1341 let prev_hidden = hidden_states
1342 .slice(s![batch_idx, seq_idx - 1, ..])
1343 .to_owned();
1344
1345 let causal_input = Array1::from_iter(
1347 current_hidden
1348 .iter()
1349 .chain(prev_hidden.iter())
1350 .take(256)
1351 .cloned(),
1352 );
1353
1354 let causal_output = self.causal_networks[0].forward(&causal_input)?;
1356
1357 let causal_weight = 0.2;
1359 output.slice_mut(s![batch_idx, seq_idx, ..]).zip_mut_with(
1360 &causal_output,
1361 |orig, causal| {
1362 *orig = *orig * (1.0 - causal_weight) + causal * causal_weight;
1363 },
1364 );
1365 }
1366 }
1367
1368 Ok(output)
1369 }
1370
1371 fn apply_analogical_reasoning(&self, hidden_states: &Array3<f64>) -> Result<Array3<f64>> {
1373 self.analogical_system
1375 .apply_analogical_reasoning(hidden_states)
1376 }
1377
1378 pub fn enhance_token_selection(&self, logits: &Array1<f64>) -> Result<Array1<f64>> {
1380 let mut enhanced_logits = logits.clone();
1381
1382 if !self.cot_states.is_empty() {
1384 let latest_reasoning = &self.cot_states[self.cot_states.len() - 1];
1385
1386 let reasoning_weight = 0.1;
1388 for (i, &reasoning_val) in latest_reasoning.iter().enumerate() {
1389 if i < enhanced_logits.len() {
1390 enhanced_logits[i] += reasoning_val * reasoning_weight;
1391 }
1392 }
1393 }
1394
1395 Ok(enhanced_logits)
1396 }
1397
1398 pub fn measure_coherence(&self) -> Result<f64> {
1400 if self.cot_states.is_empty() {
1401 return Ok(0.0);
1402 }
1403
1404 let latest_state = &self.cot_states[self.cot_states.len() - 1];
1406 let coherence = 1.0
1407 - latest_state
1408 .mapv(|x| (x * PI).sin().abs())
1409 .mean()
1410 .unwrap_or(0.0);
1411
1412 Ok(coherence)
1413 }
1414
1415 fn extract_logical_features(&self, quantum_state: &[f64]) -> Result<Vec<f64>> {
1417 let mut features = Vec::new();
1419
1420 for (i, &litude) in quantum_state.iter().enumerate() {
1422 let logical_feature = amplitude * amplitude; features.push(logical_feature);
1424
1425 if features.len() >= 256 {
1426 break;
1428 }
1429 }
1430
1431 while features.len() < 256 {
1433 features.push(0.0);
1434 }
1435
1436 Ok(features)
1437 }
1438
1439 pub fn num_parameters(&self) -> usize {
1441 let mut total = 0;
1442
1443 for network in &self.causal_networks {
1444 total += network.parameters.len();
1445 }
1446
1447 total += self.analogical_system.num_parameters();
1448 total += self.reasoning_memory.len();
1449
1450 total
1451 }
1452}
1453
1454impl QuantumAnalogyEngine {
1455 pub fn new() -> Result<Self> {
1457 let mut mapping_circuit_params = Vec::new();
1458
1459 for _ in 0..5 {
1461 let mut params = Vec::new();
1462
1463 for _ in 0..10 {
1464 params.push(1.0); params.push(0.0); }
1467
1468 for _ in 0..5 {
1470 params.push(2.0); }
1472
1473 mapping_circuit_params.push(params);
1474 }
1475
1476 Ok(Self {
1477 mapping_circuit_params,
1478 similarity_measures: Array2::zeros((100, 100)),
1479 transformations: Vec::new(),
1480 interference_patterns: Array3::zeros((10, 10, 10)),
1481 })
1482 }
1483
1484 pub fn apply_analogical_reasoning(&self, hidden_states: &Array3<f64>) -> Result<Array3<f64>> {
1486 let mut output = hidden_states.clone();
1488
1489 let (batch_size, seq_len, hidden_dim) = hidden_states.dim();
1491
1492 for batch_idx in 0..batch_size {
1493 for seq_idx in 0..seq_len {
1494 let hidden = hidden_states.slice(s![batch_idx, seq_idx, ..]);
1495
1496 let analogy_weight = 0.05;
1498 let analogy_factor = (seq_idx as f64 * 0.1).sin() * analogy_weight;
1499
1500 output
1501 .slice_mut(s![batch_idx, seq_idx, ..])
1502 .zip_mut_with(&hidden, |orig, h| {
1503 *orig = *orig + h * analogy_factor;
1504 });
1505 }
1506 }
1507
1508 Ok(output)
1509 }
1510
1511 pub fn num_parameters(&self) -> usize {
1513 self.similarity_measures.len()
1514 + self.transformations.iter().map(|t| t.len()).sum::<usize>()
1515 + self.interference_patterns.len()
1516 }
1517}
1518
1519impl Vocabulary {
1520 pub fn new(vocab_size: usize) -> Result<Self> {
1522 let mut token_to_id = HashMap::new();
1523 let mut id_to_token = HashMap::new();
1524 let mut special_tokens = HashMap::new();
1525
1526 special_tokens.insert("<pad>".to_string(), 0);
1528 special_tokens.insert("<unk>".to_string(), 1);
1529 special_tokens.insert("<sos>".to_string(), 2);
1530 special_tokens.insert("<eos>".to_string(), 3);
1531
1532 token_to_id.insert("<pad>".to_string(), 0);
1533 token_to_id.insert("<unk>".to_string(), 1);
1534 token_to_id.insert("<sos>".to_string(), 2);
1535 token_to_id.insert("<eos>".to_string(), 3);
1536
1537 id_to_token.insert(0, "<pad>".to_string());
1538 id_to_token.insert(1, "<unk>".to_string());
1539 id_to_token.insert(2, "<sos>".to_string());
1540 id_to_token.insert(3, "<eos>".to_string());
1541
1542 let quantum_embeddings = Array2::from_shape_fn((vocab_size, 768), |(i, j)| {
1544 0.02 * (i as f64 * 0.1 + j as f64 * 0.01).sin()
1545 });
1546
1547 let tokenizer = SubwordTokenizer::new();
1548
1549 Ok(Self {
1550 token_to_id,
1551 id_to_token,
1552 special_tokens,
1553 tokenizer,
1554 quantum_embeddings,
1555 })
1556 }
1557
1558 pub fn tokenize(&self, text: &str) -> Result<Vec<usize>> {
1560 let tokens: Vec<usize> = text
1562 .split_whitespace()
1563 .map(|word| {
1564 self.token_to_id.get(word).copied().unwrap_or(1) })
1566 .collect();
1567
1568 Ok(tokens)
1569 }
1570
1571 pub fn get_embedding(&self, token_id: usize) -> Result<Array1<f64>> {
1573 if token_id < self.quantum_embeddings.nrows() {
1574 Ok(self.quantum_embeddings.row(token_id).to_owned())
1575 } else {
1576 Ok(self.quantum_embeddings.row(1).to_owned()) }
1578 }
1579
1580 pub fn decode_token(&self, token_id: usize) -> Result<String> {
1582 Ok(self
1583 .id_to_token
1584 .get(&token_id)
1585 .cloned()
1586 .unwrap_or_else(|| "<unk>".to_string()))
1587 }
1588
1589 pub fn is_eos_token(&self, token_id: usize) -> bool {
1591 token_id == 3 }
1593}
1594
1595impl SubwordTokenizer {
1596 pub fn new() -> Self {
1598 Self {
1599 merges: Vec::new(),
1600 frequencies: HashMap::new(),
1601 quantum_encodings: HashMap::new(),
1602 }
1603 }
1604}
1605
1606impl GenerationStatistics {
1607 pub fn new() -> Self {
1609 Self {
1610 total_tokens: 0,
1611 avg_speed: 0.0,
1612 quantum_coherence: 0.0,
1613 reasoning_steps: 0,
1614 memory_retrievals: 0,
1615 quality_metrics: QualityMetrics {
1616 perplexity: 0.0,
1617 coherence: 0.0,
1618 factual_accuracy: 0.0,
1619 logical_consistency: 0.0,
1620 quantum_advantage: 0.0,
1621 },
1622 }
1623 }
1624}
1625
1626impl GenerationConfig {
1627 pub fn default() -> Self {
1629 Self {
1630 max_length: 100,
1631 temperature: 1.0,
1632 top_k: Some(50),
1633 top_p: Some(0.9),
1634 repetition_penalty: 1.1,
1635 use_quantum_reasoning: true,
1636 use_memory: true,
1637 chain_of_thought: false,
1638 }
1639 }
1640
1641 pub fn creative() -> Self {
1643 Self {
1644 max_length: 200,
1645 temperature: 1.2,
1646 top_k: Some(100),
1647 top_p: Some(0.95),
1648 repetition_penalty: 1.05,
1649 use_quantum_reasoning: true,
1650 use_memory: true,
1651 chain_of_thought: true,
1652 }
1653 }
1654
1655 pub fn precise() -> Self {
1657 Self {
1658 max_length: 50,
1659 temperature: 0.7,
1660 top_k: Some(20),
1661 top_p: Some(0.8),
1662 repetition_penalty: 1.2,
1663 use_quantum_reasoning: true,
1664 use_memory: true,
1665 chain_of_thought: true,
1666 }
1667 }
1668}
1669
1670#[cfg(test)]
1671mod tests {
1672 use super::*;
1673
1674 #[test]
1675 fn test_qllm_config_creation() {
1676 let config = QuantumLLMConfig::small(10000);
1677 assert_eq!(config.vocab_size, 10000);
1678 assert_eq!(config.transformer_config.model_dim, 768);
1679
1680 let large_config = QuantumLLMConfig::large(50000);
1681 assert_eq!(large_config.vocab_size, 50000);
1682 assert_eq!(large_config.transformer_config.model_dim, 1536);
1683 }
1684
1685 #[test]
1686 fn test_vocabulary_creation() {
1687 let vocab = Vocabulary::new(1000).unwrap();
1688 assert_eq!(vocab.quantum_embeddings.nrows(), 1000);
1689 assert!(vocab.special_tokens.contains_key("<eos>"));
1690 }
1691
1692 #[test]
1693 fn test_generation_config() {
1694 let config = GenerationConfig::default();
1695 assert_eq!(config.max_length, 100);
1696 assert_eq!(config.temperature, 1.0);
1697
1698 let creative_config = GenerationConfig::creative();
1699 assert!(creative_config.temperature > 1.0);
1700 assert!(creative_config.chain_of_thought);
1701 }
1702
1703 #[test]
1704 fn test_quantum_memory_system() {
1705 let config = QuantumMemoryConfig::default();
1706 let memory_system = QuantumMemorySystem::new(config);
1707 assert!(memory_system.is_ok());
1708
1709 let memory = memory_system.unwrap();
1710 assert!(!memory.associative_banks.is_empty());
1711 }
1712
1713 #[test]
1714 fn test_quantum_reasoning_module() {
1715 let config = QuantumReasoningConfig::default();
1716 let reasoning_module = QuantumReasoningModule::new(config);
1717 assert!(reasoning_module.is_ok());
1718
1719 let reasoning = reasoning_module.unwrap();
1720 assert!(!reasoning.logical_circuits.is_empty());
1721 }
1722}