1use crate::error::{MLError, Result};
9use crate::optimization::OptimizationMethod;
10use crate::qnn::{QNNLayerType, QuantumNeuralNetwork};
11use crate::quantum_transformer::{
12 create_causal_mask, PositionEncodingType, QuantumAttentionType, QuantumTransformer,
13 QuantumTransformerConfig,
14};
15use quantrs2_circuit::builder::{Circuit, Simulator};
16use quantrs2_core::gate::{multi::*, single::*, GateOp};
17use quantrs2_sim::statevector::StateVectorSimulator;
18use scirs2_core::ndarray::{s, Array1, Array2, Array3, Array4, Axis};
19use std::collections::HashMap;
20use std::f64::consts::PI;
21
22#[derive(Debug, Clone)]
24pub struct QuantumLLMConfig {
25 pub transformer_config: QuantumTransformerConfig,
27
28 pub vocab_size: usize,
30
31 pub max_context_length: usize,
33
34 pub quantum_memory_layers: usize,
36
37 pub reasoning_config: QuantumReasoningConfig,
39
40 pub memory_config: QuantumMemoryConfig,
42
43 pub model_scale: ModelScale,
45
46 pub training_config: QLLMTrainingConfig,
48}
49
50#[derive(Debug, Clone)]
52pub enum ModelScale {
53 Small {
55 layers: usize,
56 model_dim: usize,
57 heads: usize,
58 },
59 Medium {
61 layers: usize,
62 model_dim: usize,
63 heads: usize,
64 },
65 Large {
67 layers: usize,
68 model_dim: usize,
69 heads: usize,
70 },
71 ExtraLarge {
73 layers: usize,
74 model_dim: usize,
75 heads: usize,
76 },
77}
78
79#[derive(Debug, Clone)]
81pub struct QuantumReasoningConfig {
82 pub logical_reasoning: bool,
84
85 pub causal_reasoning: bool,
87
88 pub analogical_reasoning: bool,
90
91 pub reasoning_steps: usize,
93
94 pub circuit_depth: usize,
96
97 pub entanglement_strength: f64,
99}
100
101#[derive(Debug, Clone)]
103pub struct QuantumMemoryConfig {
104 pub memory_size: usize,
106
107 pub associative_memory: bool,
109
110 pub episodic_memory: bool,
112
113 pub retrieval_mechanism: MemoryRetrievalType,
115
116 pub quantum_compression: bool,
118
119 pub coherence_time: f64,
121}
122
123#[derive(Debug, Clone)]
125pub enum MemoryRetrievalType {
126 QuantumAssociative,
128
129 ContentAddressable,
131
132 Holographic,
134
135 QuantumHopfield,
137
138 Hierarchical,
140}
141
142#[derive(Debug, Clone)]
144pub struct QLLMTrainingConfig {
145 pub hybrid_training: bool,
147
148 pub parameter_update: QuantumParameterUpdate,
150
151 pub gradient_accumulation: usize,
153
154 pub quantum_noise: bool,
156
157 pub quantum_advantage_opt: bool,
159}
160
161#[derive(Debug, Clone)]
163pub enum QuantumParameterUpdate {
164 ClassicalOnQuantum,
166
167 QuantumNatural,
169
170 QuantumBFGS,
172
173 ParameterShift,
175
176 QuantumAdam,
178}
179
180#[derive(Debug, Clone)]
182pub struct QuantumLLM {
183 config: QuantumLLMConfig,
185
186 token_embedding: QuantumNeuralNetwork,
188
189 transformer: QuantumTransformer,
191
192 quantum_memory: QuantumMemorySystem,
194
195 quantum_reasoning: QuantumReasoningModule,
197
198 lm_head: QuantumNeuralNetwork,
200
201 vocab: Vocabulary,
203
204 generation_stats: GenerationStatistics,
206}
207
208#[derive(Debug, Clone)]
210pub struct QuantumMemorySystem {
211 config: QuantumMemoryConfig,
213
214 associative_banks: Vec<QuantumAssociativeMemory>,
216
217 episodic_memory: Vec<QuantumEpisode>,
219
220 retrieval_circuit_params: Vec<Vec<f64>>,
222
223 compression_codebooks: HashMap<String, Array2<f64>>,
225}
226
227#[derive(Debug, Clone)]
229pub struct QuantumAssociativeMemory {
230 patterns: Array2<f64>,
232
233 hopfield_weights: Array2<f64>,
235
236 memory_circuit_params: Vec<f64>,
238
239 amplitudes: Array1<f64>,
241
242 threshold: f64,
244}
245
246#[derive(Debug, Clone)]
248pub struct QuantumEpisode {
249 context: Array1<f64>,
251
252 content: Array2<f64>,
254
255 quantum_state: Array1<f64>,
257
258 timestamp: f64,
260
261 coherence: f64,
263
264 importance: f64,
266}
267
268#[derive(Debug, Clone)]
270pub struct QuantumReasoningModule {
271 config: QuantumReasoningConfig,
273
274 logical_circuits: Vec<Circuit<16>>,
276
277 causal_networks: Vec<QuantumNeuralNetwork>,
279
280 analogical_system: QuantumAnalogyEngine,
282
283 reasoning_memory: Array2<f64>,
285
286 cot_states: Vec<Array1<f64>>,
288}
289
290#[derive(Debug, Clone)]
292pub struct QuantumAnalogyEngine {
293 mapping_circuit_params: Vec<Vec<f64>>,
295
296 similarity_measures: Array2<f64>,
298
299 transformations: Vec<Array2<f64>>,
301
302 interference_patterns: Array3<f64>,
304}
305
306#[derive(Debug, Clone)]
308pub struct Vocabulary {
309 token_to_id: HashMap<String, usize>,
311
312 id_to_token: HashMap<usize, String>,
314
315 special_tokens: HashMap<String, usize>,
317
318 tokenizer: SubwordTokenizer,
320
321 quantum_embeddings: Array2<f64>,
323}
324
325#[derive(Debug, Clone)]
327pub struct SubwordTokenizer {
328 merges: Vec<(String, String)>,
330
331 frequencies: HashMap<String, usize>,
333
334 quantum_encodings: HashMap<String, Array1<f64>>,
336}
337
338#[derive(Debug, Clone)]
340pub struct GenerationStatistics {
341 pub total_tokens: usize,
343
344 pub avg_speed: f64,
346
347 pub quantum_coherence: f64,
349
350 pub reasoning_steps: usize,
352
353 pub memory_retrievals: usize,
355
356 pub quality_metrics: QualityMetrics,
358}
359
360#[derive(Debug, Clone)]
362pub struct QualityMetrics {
363 pub perplexity: f64,
365
366 pub coherence: f64,
368
369 pub factual_accuracy: f64,
371
372 pub logical_consistency: f64,
374
375 pub quantum_advantage: f64,
377}
378
379#[derive(Debug, Clone)]
381pub struct GenerationConfig {
382 pub max_length: usize,
384
385 pub temperature: f64,
387
388 pub top_k: Option<usize>,
390
391 pub top_p: Option<f64>,
393
394 pub repetition_penalty: f64,
396
397 pub use_quantum_reasoning: bool,
399
400 pub use_memory: bool,
402
403 pub chain_of_thought: bool,
405}
406
407impl QuantumLLMConfig {
408 pub fn small(vocab_size: usize) -> Self {
410 Self {
411 transformer_config: QuantumTransformerConfig {
412 model_dim: 768,
413 num_heads: 12,
414 ff_dim: 3072,
415 num_layers: 12,
416 max_seq_len: 2048,
417 num_qubits: 10,
418 dropout_rate: 0.1,
419 attention_type: QuantumAttentionType::HybridQuantumClassical,
420 position_encoding: PositionEncodingType::Rotary,
421 },
422 vocab_size,
423 max_context_length: 2048,
424 quantum_memory_layers: 4,
425 reasoning_config: QuantumReasoningConfig::default(),
426 memory_config: QuantumMemoryConfig::default(),
427 model_scale: ModelScale::Small {
428 layers: 12,
429 model_dim: 768,
430 heads: 12,
431 },
432 training_config: QLLMTrainingConfig::default(),
433 }
434 }
435
436 pub fn medium(vocab_size: usize) -> Self {
438 Self {
439 transformer_config: QuantumTransformerConfig {
440 model_dim: 1024,
441 num_heads: 16,
442 ff_dim: 4096,
443 num_layers: 24,
444 max_seq_len: 4096,
445 num_qubits: 16,
446 dropout_rate: 0.1,
447 attention_type: QuantumAttentionType::QuantumEnhancedMultiHead,
448 position_encoding: PositionEncodingType::LearnableQuantum,
449 },
450 vocab_size,
451 max_context_length: 4096,
452 quantum_memory_layers: 8,
453 reasoning_config: QuantumReasoningConfig::enhanced(),
454 memory_config: QuantumMemoryConfig::enhanced(),
455 model_scale: ModelScale::Medium {
456 layers: 24,
457 model_dim: 1024,
458 heads: 16,
459 },
460 training_config: QLLMTrainingConfig::default(),
461 }
462 }
463
464 pub fn large(vocab_size: usize) -> Self {
466 Self {
467 transformer_config: QuantumTransformerConfig {
468 model_dim: 1536,
469 num_heads: 24,
470 ff_dim: 6144,
471 num_layers: 48,
472 max_seq_len: 8192,
473 num_qubits: 12,
474 dropout_rate: 0.1,
475 attention_type: QuantumAttentionType::FullQuantum,
476 position_encoding: PositionEncodingType::QuantumPhase,
477 },
478 vocab_size,
479 max_context_length: 8192,
480 quantum_memory_layers: 16,
481 reasoning_config: QuantumReasoningConfig::advanced(),
482 memory_config: QuantumMemoryConfig::advanced(),
483 model_scale: ModelScale::Large {
484 layers: 48,
485 model_dim: 1536,
486 heads: 24,
487 },
488 training_config: QLLMTrainingConfig::advanced(),
489 }
490 }
491}
492
493impl QuantumReasoningConfig {
494 pub fn default() -> Self {
496 Self {
497 logical_reasoning: true,
498 causal_reasoning: false,
499 analogical_reasoning: false,
500 reasoning_steps: 3,
501 circuit_depth: 5,
502 entanglement_strength: 0.5,
503 }
504 }
505
506 pub fn enhanced() -> Self {
508 Self {
509 logical_reasoning: true,
510 causal_reasoning: true,
511 analogical_reasoning: false,
512 reasoning_steps: 5,
513 circuit_depth: 8,
514 entanglement_strength: 0.7,
515 }
516 }
517
518 pub fn advanced() -> Self {
520 Self {
521 logical_reasoning: true,
522 causal_reasoning: true,
523 analogical_reasoning: true,
524 reasoning_steps: 8,
525 circuit_depth: 12,
526 entanglement_strength: 0.9,
527 }
528 }
529}
530
531impl QuantumMemoryConfig {
532 pub fn default() -> Self {
534 Self {
535 memory_size: 1000,
536 associative_memory: true,
537 episodic_memory: false,
538 retrieval_mechanism: MemoryRetrievalType::QuantumAssociative,
539 quantum_compression: false,
540 coherence_time: 100.0,
541 }
542 }
543
544 pub fn enhanced() -> Self {
546 Self {
547 memory_size: 5000,
548 associative_memory: true,
549 episodic_memory: true,
550 retrieval_mechanism: MemoryRetrievalType::ContentAddressable,
551 quantum_compression: true,
552 coherence_time: 200.0,
553 }
554 }
555
556 pub fn advanced() -> Self {
558 Self {
559 memory_size: 20000,
560 associative_memory: true,
561 episodic_memory: true,
562 retrieval_mechanism: MemoryRetrievalType::Holographic,
563 quantum_compression: true,
564 coherence_time: 500.0,
565 }
566 }
567}
568
569impl QLLMTrainingConfig {
570 pub fn default() -> Self {
572 Self {
573 hybrid_training: true,
574 parameter_update: QuantumParameterUpdate::ClassicalOnQuantum,
575 gradient_accumulation: 1,
576 quantum_noise: false,
577 quantum_advantage_opt: false,
578 }
579 }
580
581 pub fn advanced() -> Self {
583 Self {
584 hybrid_training: true,
585 parameter_update: QuantumParameterUpdate::QuantumAdam,
586 gradient_accumulation: 8,
587 quantum_noise: true,
588 quantum_advantage_opt: true,
589 }
590 }
591}
592
593impl QuantumLLM {
594 pub fn new(config: QuantumLLMConfig) -> Result<Self> {
596 let embed_layers = vec![
598 QNNLayerType::EncodingLayer {
599 num_features: config.vocab_size,
600 },
601 QNNLayerType::VariationalLayer {
602 num_params: config.transformer_config.model_dim,
603 },
604 QNNLayerType::MeasurementLayer {
605 measurement_basis: "computational".to_string(),
606 },
607 ];
608 let token_embedding = QuantumNeuralNetwork::new(
609 embed_layers,
610 config.transformer_config.num_qubits,
611 config.vocab_size,
612 config.transformer_config.model_dim,
613 )?;
614
615 let transformer = QuantumTransformer::new(config.transformer_config.clone())?;
617
618 let quantum_memory = QuantumMemorySystem::new(config.memory_config.clone())?;
620
621 let quantum_reasoning = QuantumReasoningModule::new(config.reasoning_config.clone())?;
623
624 let lm_layers = vec![
626 QNNLayerType::EncodingLayer {
627 num_features: config.transformer_config.model_dim,
628 },
629 QNNLayerType::VariationalLayer {
630 num_params: config.vocab_size,
631 },
632 QNNLayerType::MeasurementLayer {
633 measurement_basis: "computational".to_string(),
634 },
635 ];
636 let lm_head = QuantumNeuralNetwork::new(
637 lm_layers,
638 config.transformer_config.num_qubits,
639 config.transformer_config.model_dim,
640 config.vocab_size,
641 )?;
642
643 let vocab = Vocabulary::new(config.vocab_size)?;
645
646 let generation_stats = GenerationStatistics::new();
648
649 Ok(Self {
650 config,
651 token_embedding,
652 transformer,
653 quantum_memory,
654 quantum_reasoning,
655 lm_head,
656 vocab,
657 generation_stats,
658 })
659 }
660
661 pub fn forward(
663 &mut self,
664 input_ids: &Array2<usize>, attention_mask: Option<&Array3<bool>>,
666 use_memory: bool,
667 use_reasoning: bool,
668 ) -> Result<Array3<f64>> {
669 let (batch_size, seq_len) = input_ids.dim();
671
672 if seq_len > self.config.max_context_length {
673 return Err(MLError::ConfigurationError(format!(
674 "Sequence length {} exceeds maximum context length {}",
675 seq_len, self.config.max_context_length
676 )));
677 }
678
679 let mut embeddings = Array3::zeros((
681 batch_size,
682 seq_len,
683 self.config.transformer_config.model_dim,
684 ));
685 for batch_idx in 0..batch_size {
686 for seq_idx in 0..seq_len {
687 let token_id = input_ids[[batch_idx, seq_idx]];
688 let token_embedding = self.vocab.get_embedding(token_id)?;
689 let embedded = self.token_embedding.forward(&token_embedding)?;
690 embeddings
691 .slice_mut(s![batch_idx, seq_idx, ..])
692 .assign(&embedded);
693 }
694 }
695
696 if use_memory {
698 embeddings = self.quantum_memory.enhance_embeddings(&embeddings)?;
699 }
700
701 let transformer_output = self.transformer.forward(&embeddings, attention_mask)?;
703
704 let reasoned_output = if use_reasoning {
706 self.quantum_reasoning
707 .apply_reasoning(&transformer_output)?
708 } else {
709 transformer_output
710 };
711
712 let mut logits = Array3::zeros((batch_size, seq_len, self.config.vocab_size));
714 for batch_idx in 0..batch_size {
715 for seq_idx in 0..seq_len {
716 let hidden_state = reasoned_output.slice(s![batch_idx, seq_idx, ..]).to_owned();
717 let token_logits = self.lm_head.forward(&hidden_state)?;
718 logits
719 .slice_mut(s![batch_idx, seq_idx, ..])
720 .assign(&token_logits);
721 }
722 }
723
724 if use_memory {
726 self.quantum_memory
727 .update_memory(&reasoned_output, input_ids)?;
728 }
729
730 Ok(logits)
731 }
732
733 pub fn generate(&mut self, prompt: &str, config: GenerationConfig) -> Result<String> {
735 let input_ids = self.vocab.tokenize(prompt)?;
737 let mut current_ids = Array1::from_vec(input_ids);
738 let mut generated_text = prompt.to_string();
739
740 for step in 0..config.max_length {
742 let batch_input = current_ids.clone().insert_axis(Axis(0)); let input_2d = Array2::from_shape_vec((1, current_ids.len()), current_ids.to_vec())
745 .map_err(|e| {
746 MLError::MLOperationError(format!("Failed to create input array: {}", e))
747 })?;
748
749 let seq_len = current_ids.len();
751 let causal_mask = create_causal_mask(1, seq_len);
752
753 let logits = self.forward(
755 &input_2d,
756 Some(&causal_mask),
757 config.use_memory,
758 config.use_quantum_reasoning,
759 )?;
760
761 let next_token_logits = logits.slice(s![0, seq_len - 1, ..]).to_owned();
763
764 let final_logits = if config.use_quantum_reasoning && config.chain_of_thought {
766 self.quantum_reasoning
767 .enhance_token_selection(&next_token_logits)?
768 } else {
769 next_token_logits
770 };
771
772 let next_token = self.sample_token(&final_logits, &config)?;
774
775 if self.vocab.is_eos_token(next_token) {
777 break;
778 }
779
780 let new_current = Array1::from_iter(
782 current_ids
783 .iter()
784 .cloned()
785 .chain(std::iter::once(next_token)),
786 );
787 current_ids = new_current;
788
789 let token_text = self.vocab.decode_token(next_token)?;
791 generated_text.push_str(&token_text);
792
793 self.generation_stats.total_tokens += 1;
795
796 if step % 10 == 0 {
798 let coherence = self.quantum_reasoning.measure_coherence()?;
799 self.generation_stats.quantum_coherence = coherence;
800 }
801 }
802
803 Ok(generated_text)
804 }
805
806 fn sample_token(&self, logits: &Array1<f64>, config: &GenerationConfig) -> Result<usize> {
808 let mut scores = logits.clone();
809
810 if config.temperature != 1.0 {
812 scores = scores / config.temperature;
813 }
814
815 if config.repetition_penalty != 1.0 {
817 scores = scores * config.repetition_penalty;
818 }
819
820 let max_score = scores.iter().cloned().fold(f64::NEG_INFINITY, f64::max);
822 let exp_scores = scores.mapv(|x| (x - max_score).exp());
823 let sum_exp = exp_scores.sum();
824 let mut probs = exp_scores / sum_exp;
825
826 if let Some(k) = config.top_k {
828 let mut indexed_probs: Vec<(usize, f64)> =
829 probs.iter().enumerate().map(|(i, &p)| (i, p)).collect();
830 indexed_probs
831 .sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
832
833 for (i, &(idx, _)) in indexed_probs.iter().enumerate() {
834 if i >= k {
835 probs[idx] = 0.0;
836 }
837 }
838
839 let sum_probs = probs.sum();
841 if sum_probs > 0.0 {
842 probs = probs / sum_probs;
843 }
844 }
845
846 if let Some(p) = config.top_p {
848 let mut indexed_probs: Vec<(usize, f64)> = probs
849 .iter()
850 .enumerate()
851 .map(|(i, &prob)| (i, prob))
852 .collect();
853 indexed_probs
854 .sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
855
856 let mut cumulative = 0.0;
857 for (idx, prob) in &indexed_probs {
858 cumulative += prob;
859 if cumulative > p {
860 for (i, &(remaining_idx, _)) in indexed_probs.iter().enumerate() {
862 if cumulative - prob > p {
863 probs[remaining_idx] = 0.0;
864 }
865 }
866 break;
867 }
868 }
869
870 let sum_probs = probs.sum();
872 if sum_probs > 0.0 {
873 probs = probs / sum_probs;
874 }
875 }
876
877 let mut cumulative = 0.0;
879 let random_val = fastrand::f64();
880
881 for (i, &prob) in probs.iter().enumerate() {
882 cumulative += prob;
883 if random_val <= cumulative {
884 return Ok(i);
885 }
886 }
887
888 Ok(probs
890 .iter()
891 .enumerate()
892 .max_by(|a, b| a.1.partial_cmp(b.1).unwrap_or(std::cmp::Ordering::Equal))
893 .map(|(i, _)| i)
894 .unwrap_or(0))
895 }
896
897 pub fn config(&self) -> &QuantumLLMConfig {
899 &self.config
900 }
901
902 pub fn generation_stats(&self) -> &GenerationStatistics {
904 &self.generation_stats
905 }
906
907 pub fn num_parameters(&self) -> usize {
909 let mut total = 0;
910
911 total += self.token_embedding.parameters.len();
912 total += self.transformer.num_parameters();
913 total += self.lm_head.parameters.len();
914 total += self.quantum_memory.num_parameters();
915 total += self.quantum_reasoning.num_parameters();
916 total += self.vocab.quantum_embeddings.len();
917
918 total
919 }
920
921 pub fn evaluate_perplexity(&mut self, texts: &[String]) -> Result<f64> {
923 let mut total_log_likelihood = 0.0;
924 let mut total_tokens = 0;
925
926 for text in texts {
927 let tokens = self.vocab.tokenize(text)?;
928 if tokens.len() < 2 {
929 continue;
930 }
931
932 let tokens_len = tokens.len();
933 let input_ids = Array2::from_shape_vec((1, tokens_len), tokens.clone())?;
934 let logits = self.forward(&input_ids, None, false, false)?;
935
936 for i in 0..tokens_len - 1 {
938 let target_token = tokens[i + 1];
939 let token_logits = logits.slice(s![0, i, ..]);
940
941 let max_logit = token_logits
943 .iter()
944 .cloned()
945 .fold(f64::NEG_INFINITY, f64::max);
946 let exp_logits = token_logits.mapv(|x| (x - max_logit).exp());
947 let sum_exp = exp_logits.sum();
948 let prob = exp_logits[target_token] / sum_exp;
949
950 if prob > 1e-10 {
951 total_log_likelihood += prob.ln();
952 total_tokens += 1;
953 }
954 }
955 }
956
957 if total_tokens == 0 {
958 return Ok(f64::INFINITY);
959 }
960
961 let avg_log_likelihood = total_log_likelihood / total_tokens as f64;
962 let perplexity = (-avg_log_likelihood).exp();
963
964 Ok(perplexity)
965 }
966}
967
968impl QuantumMemorySystem {
969 pub fn new(config: QuantumMemoryConfig) -> Result<Self> {
971 let mut associative_banks = Vec::new();
972 let mut retrieval_circuit_params = Vec::new();
973
974 if config.associative_memory {
976 for _ in 0..5 {
977 let memory_bank = QuantumAssociativeMemory::new(100, 128)?;
979 associative_banks.push(memory_bank);
980 }
981 }
982
983 for _ in 0..config.memory_size / 100 {
985 let mut params = Vec::new();
986 for _ in 0..8 {
987 params.push(1.0); params.push(0.0); }
990 for _ in 0..7 {
991 params.push(2.0); }
993 retrieval_circuit_params.push(params);
994 }
995
996 Ok(Self {
997 config,
998 associative_banks,
999 episodic_memory: Vec::new(),
1000 retrieval_circuit_params,
1001 compression_codebooks: HashMap::new(),
1002 })
1003 }
1004
1005 pub fn enhance_embeddings(&self, embeddings: &Array3<f64>) -> Result<Array3<f64>> {
1007 let mut enhanced = embeddings.clone();
1008
1009 if self.config.associative_memory && !self.associative_banks.is_empty() {
1010 for batch_idx in 0..embeddings.dim().0 {
1012 for seq_idx in 0..embeddings.dim().1 {
1013 let query = embeddings.slice(s![batch_idx, seq_idx, ..]).to_owned();
1014 let retrieved_memory = self.retrieve_associative_memory(&query)?;
1015
1016 let combination_weight = 0.1;
1018 enhanced.slice_mut(s![batch_idx, seq_idx, ..]).zip_mut_with(
1019 &retrieved_memory,
1020 |orig, mem| {
1021 *orig = *orig * (1.0 - combination_weight) + mem * combination_weight;
1022 },
1023 );
1024 }
1025 }
1026 }
1027
1028 Ok(enhanced)
1029 }
1030
1031 fn retrieve_associative_memory(&self, query: &Array1<f64>) -> Result<Array1<f64>> {
1033 if self.associative_banks.is_empty() {
1034 return Ok(query.clone());
1035 }
1036
1037 self.associative_banks[0].retrieve(query)
1039 }
1040
1041 pub fn update_memory(
1043 &mut self,
1044 hidden_states: &Array3<f64>,
1045 input_ids: &Array2<usize>,
1046 ) -> Result<()> {
1047 let (batch_size, seq_len, hidden_dim) = hidden_states.dim();
1048
1049 if self.config.episodic_memory {
1051 for batch_idx in 0..batch_size {
1052 let context = hidden_states.slice(s![batch_idx, 0, ..]).to_owned();
1053 let content = hidden_states.slice(s![batch_idx, .., ..]).to_owned();
1054
1055 let episode = QuantumEpisode {
1056 context,
1057 content,
1058 quantum_state: Array1::zeros(hidden_dim), timestamp: self.episodic_memory.len() as f64,
1060 coherence: 0.8,
1061 importance: 1.0,
1062 };
1063
1064 self.episodic_memory.push(episode);
1065
1066 if self.episodic_memory.len() > self.config.memory_size {
1068 self.episodic_memory.remove(0);
1069 }
1070 }
1071 }
1072
1073 for bank in &mut self.associative_banks {
1075 let sample_hidden = hidden_states.slice(s![0, 0, ..]).to_owned();
1076 bank.store_pattern(&sample_hidden)?;
1077 }
1078
1079 Ok(())
1080 }
1081
1082 pub fn num_parameters(&self) -> usize {
1084 let mut total = 0;
1085
1086 for bank in &self.associative_banks {
1087 total += bank.hopfield_weights.len();
1088 total += bank.patterns.len();
1089 }
1090
1091 for codebook in self.compression_codebooks.values() {
1092 total += codebook.len();
1093 }
1094
1095 total
1096 }
1097}
1098
1099impl QuantumAssociativeMemory {
1100 pub fn new(capacity: usize, pattern_size: usize) -> Result<Self> {
1102 let patterns = Array2::zeros((capacity, pattern_size));
1103 let hopfield_weights = Array2::zeros((pattern_size, pattern_size));
1104
1105 let num_qubits = 8;
1106 let mut memory_circuit_params = Vec::new();
1107
1108 for _ in 0..num_qubits {
1110 memory_circuit_params.push(1.0); }
1112
1113 for i in 0..num_qubits {
1114 for j in i + 1..num_qubits {
1115 memory_circuit_params.push(2.0); }
1117 }
1118
1119 Ok(Self {
1120 patterns,
1121 hopfield_weights,
1122 memory_circuit_params,
1123 amplitudes: Array1::zeros(capacity),
1124 threshold: 0.5,
1125 })
1126 }
1127
1128 pub fn store_pattern(&mut self, pattern: &Array1<f64>) -> Result<()> {
1130 let store_idx = self
1132 .amplitudes
1133 .iter()
1134 .enumerate()
1135 .min_by(|a, b| a.1.partial_cmp(b.1).unwrap_or(std::cmp::Ordering::Equal))
1136 .map(|(i, _)| i)
1137 .unwrap_or(0);
1138
1139 self.patterns
1141 .slice_mut(s![store_idx, ..pattern.len()])
1142 .assign(pattern);
1143
1144 for i in 0..pattern.len() {
1146 for j in 0..pattern.len() {
1147 if i != j {
1148 self.hopfield_weights[[i, j]] += pattern[i] * pattern[j] * 0.1;
1149 }
1150 }
1151 }
1152
1153 self.amplitudes[store_idx] = 1.0;
1154
1155 Ok(())
1156 }
1157
1158 pub fn retrieve(&self, query: &Array1<f64>) -> Result<Array1<f64>> {
1160 let mut best_match = query.clone();
1161 let mut best_similarity = 0.0;
1162
1163 for i in 0..self.patterns.nrows() {
1165 if self.amplitudes[i] > 0.1 {
1166 let pattern = self.patterns.row(i).to_owned();
1167 let similarity = self.compute_similarity(query, &pattern)?;
1168
1169 if similarity > best_similarity {
1170 best_similarity = similarity;
1171 best_match = pattern;
1172 }
1173 }
1174 }
1175
1176 if best_similarity > self.threshold {
1178 let retrieved = self.apply_hopfield_dynamics(&best_match)?;
1179 Ok(retrieved)
1180 } else {
1181 Ok(query.clone())
1182 }
1183 }
1184
1185 fn compute_similarity(&self, pattern1: &Array1<f64>, pattern2: &Array1<f64>) -> Result<f64> {
1187 let norm1 = pattern1.mapv(|x| x * x).sum().sqrt();
1188 let norm2 = pattern2.mapv(|x| x * x).sum().sqrt();
1189
1190 if norm1 < 1e-10 || norm2 < 1e-10 {
1191 return Ok(0.0);
1192 }
1193
1194 let dot_product = pattern1.dot(pattern2);
1195 Ok(dot_product / (norm1 * norm2))
1196 }
1197
1198 fn apply_hopfield_dynamics(&self, initial: &Array1<f64>) -> Result<Array1<f64>> {
1200 let mut state = initial.clone();
1201
1202 for _ in 0..5 {
1204 let new_state = self.hopfield_weights.dot(&state);
1205 state = new_state.mapv(|x| x.tanh()); }
1207
1208 Ok(state)
1209 }
1210}
1211
1212impl QuantumReasoningModule {
1213 pub fn new(config: QuantumReasoningConfig) -> Result<Self> {
1215 let mut logical_circuits = Vec::new();
1216 let mut causal_networks = Vec::new();
1217
1218 if config.logical_reasoning {
1220 for _ in 0..config.reasoning_steps {
1221 let mut circuit = Circuit::<16>::new();
1222
1223 for i in 0..8 {
1225 circuit.h(i);
1226 circuit.ry(i, 0.0); }
1228
1229 for i in 0..7 {
1231 circuit.cnot(i, i + 1);
1232 }
1233
1234 logical_circuits.push(circuit);
1235 }
1236 }
1237
1238 if config.causal_reasoning {
1240 for _ in 0..config.reasoning_steps {
1241 let layers = vec![
1242 QNNLayerType::EncodingLayer { num_features: 256 },
1243 QNNLayerType::VariationalLayer { num_params: 128 },
1244 QNNLayerType::EntanglementLayer {
1245 connectivity: "circular".to_string(),
1246 },
1247 QNNLayerType::VariationalLayer { num_params: 256 },
1248 QNNLayerType::MeasurementLayer {
1249 measurement_basis: "computational".to_string(),
1250 },
1251 ];
1252
1253 let network = QuantumNeuralNetwork::new(layers, 12, 256, 256)?;
1254 causal_networks.push(network);
1255 }
1256 }
1257
1258 let analogical_system = QuantumAnalogyEngine::new()?;
1260
1261 Ok(Self {
1262 config,
1263 logical_circuits,
1264 causal_networks,
1265 analogical_system,
1266 reasoning_memory: Array2::zeros((100, 256)),
1267 cot_states: Vec::new(),
1268 })
1269 }
1270
1271 pub fn apply_reasoning(&mut self, hidden_states: &Array3<f64>) -> Result<Array3<f64>> {
1273 let mut reasoned_output = hidden_states.clone();
1274
1275 if self.config.logical_reasoning {
1277 reasoned_output = self.apply_logical_reasoning(&reasoned_output)?;
1278 }
1279
1280 if self.config.causal_reasoning {
1282 reasoned_output = self.apply_causal_reasoning(&reasoned_output)?;
1283 }
1284
1285 if self.config.analogical_reasoning {
1287 reasoned_output = self.apply_analogical_reasoning(&reasoned_output)?;
1288 }
1289
1290 Ok(reasoned_output)
1291 }
1292
1293 fn apply_logical_reasoning(&mut self, hidden_states: &Array3<f64>) -> Result<Array3<f64>> {
1295 let mut output = hidden_states.clone();
1296 let (batch_size, seq_len, hidden_dim) = hidden_states.dim();
1297
1298 for step in 0..self.config.reasoning_steps.min(self.logical_circuits.len()) {
1299 let simulator = StateVectorSimulator::new();
1301 let register = simulator.run(&self.logical_circuits[step])?;
1302 let quantum_state = register.probabilities();
1303
1304 let reasoning_features = self.extract_logical_features(&quantum_state)?;
1306
1307 for batch_idx in 0..batch_size {
1309 for seq_idx in 0..seq_len {
1310 let mut hidden = output.slice_mut(s![batch_idx, seq_idx, ..]);
1311
1312 let reasoning_weight = 0.1;
1314 for (i, &feature) in reasoning_features.iter().enumerate() {
1315 if i < hidden.len() {
1316 hidden[i] =
1317 hidden[i] * (1.0 - reasoning_weight) + feature * reasoning_weight;
1318 }
1319 }
1320 }
1321 }
1322
1323 let reasoning_state = Array1::from_vec(reasoning_features);
1325 self.cot_states.push(reasoning_state);
1326 }
1327
1328 Ok(output)
1329 }
1330
1331 fn apply_causal_reasoning(&self, hidden_states: &Array3<f64>) -> Result<Array3<f64>> {
1333 if self.causal_networks.is_empty() {
1334 return Ok(hidden_states.clone());
1335 }
1336
1337 let mut output = hidden_states.clone();
1338 let (batch_size, seq_len, hidden_dim) = hidden_states.dim();
1339
1340 for batch_idx in 0..batch_size {
1342 for seq_idx in 1..seq_len {
1343 let current_hidden = hidden_states.slice(s![batch_idx, seq_idx, ..]).to_owned();
1345 let prev_hidden = hidden_states
1346 .slice(s![batch_idx, seq_idx - 1, ..])
1347 .to_owned();
1348
1349 let causal_input = Array1::from_iter(
1351 current_hidden
1352 .iter()
1353 .chain(prev_hidden.iter())
1354 .take(256)
1355 .cloned(),
1356 );
1357
1358 let causal_output = self.causal_networks[0].forward(&causal_input)?;
1360
1361 let causal_weight = 0.2;
1363 output.slice_mut(s![batch_idx, seq_idx, ..]).zip_mut_with(
1364 &causal_output,
1365 |orig, causal| {
1366 *orig = *orig * (1.0 - causal_weight) + causal * causal_weight;
1367 },
1368 );
1369 }
1370 }
1371
1372 Ok(output)
1373 }
1374
1375 fn apply_analogical_reasoning(&self, hidden_states: &Array3<f64>) -> Result<Array3<f64>> {
1377 self.analogical_system
1379 .apply_analogical_reasoning(hidden_states)
1380 }
1381
1382 pub fn enhance_token_selection(&self, logits: &Array1<f64>) -> Result<Array1<f64>> {
1384 let mut enhanced_logits = logits.clone();
1385
1386 if !self.cot_states.is_empty() {
1388 let latest_reasoning = &self.cot_states[self.cot_states.len() - 1];
1389
1390 let reasoning_weight = 0.1;
1392 for (i, &reasoning_val) in latest_reasoning.iter().enumerate() {
1393 if i < enhanced_logits.len() {
1394 enhanced_logits[i] += reasoning_val * reasoning_weight;
1395 }
1396 }
1397 }
1398
1399 Ok(enhanced_logits)
1400 }
1401
1402 pub fn measure_coherence(&self) -> Result<f64> {
1404 if self.cot_states.is_empty() {
1405 return Ok(0.0);
1406 }
1407
1408 let latest_state = &self.cot_states[self.cot_states.len() - 1];
1410 let coherence = 1.0
1411 - latest_state
1412 .mapv(|x| (x * PI).sin().abs())
1413 .mean()
1414 .unwrap_or(0.0);
1415
1416 Ok(coherence)
1417 }
1418
1419 fn extract_logical_features(&self, quantum_state: &[f64]) -> Result<Vec<f64>> {
1421 let mut features = Vec::new();
1423
1424 for (i, &litude) in quantum_state.iter().enumerate() {
1426 let logical_feature = amplitude * amplitude; features.push(logical_feature);
1428
1429 if features.len() >= 256 {
1430 break;
1432 }
1433 }
1434
1435 while features.len() < 256 {
1437 features.push(0.0);
1438 }
1439
1440 Ok(features)
1441 }
1442
1443 pub fn num_parameters(&self) -> usize {
1445 let mut total = 0;
1446
1447 for network in &self.causal_networks {
1448 total += network.parameters.len();
1449 }
1450
1451 total += self.analogical_system.num_parameters();
1452 total += self.reasoning_memory.len();
1453
1454 total
1455 }
1456}
1457
1458impl QuantumAnalogyEngine {
1459 pub fn new() -> Result<Self> {
1461 let mut mapping_circuit_params = Vec::new();
1462
1463 for _ in 0..5 {
1465 let mut params = Vec::new();
1466
1467 for _ in 0..10 {
1468 params.push(1.0); params.push(0.0); }
1471
1472 for _ in 0..5 {
1474 params.push(2.0); }
1476
1477 mapping_circuit_params.push(params);
1478 }
1479
1480 Ok(Self {
1481 mapping_circuit_params,
1482 similarity_measures: Array2::zeros((100, 100)),
1483 transformations: Vec::new(),
1484 interference_patterns: Array3::zeros((10, 10, 10)),
1485 })
1486 }
1487
1488 pub fn apply_analogical_reasoning(&self, hidden_states: &Array3<f64>) -> Result<Array3<f64>> {
1490 let mut output = hidden_states.clone();
1492
1493 let (batch_size, seq_len, hidden_dim) = hidden_states.dim();
1495
1496 for batch_idx in 0..batch_size {
1497 for seq_idx in 0..seq_len {
1498 let hidden = hidden_states.slice(s![batch_idx, seq_idx, ..]);
1499
1500 let analogy_weight = 0.05;
1502 let analogy_factor = (seq_idx as f64 * 0.1).sin() * analogy_weight;
1503
1504 output
1505 .slice_mut(s![batch_idx, seq_idx, ..])
1506 .zip_mut_with(&hidden, |orig, h| {
1507 *orig = *orig + h * analogy_factor;
1508 });
1509 }
1510 }
1511
1512 Ok(output)
1513 }
1514
1515 pub fn num_parameters(&self) -> usize {
1517 self.similarity_measures.len()
1518 + self.transformations.iter().map(|t| t.len()).sum::<usize>()
1519 + self.interference_patterns.len()
1520 }
1521}
1522
1523impl Vocabulary {
1524 pub fn new(vocab_size: usize) -> Result<Self> {
1526 let mut token_to_id = HashMap::new();
1527 let mut id_to_token = HashMap::new();
1528 let mut special_tokens = HashMap::new();
1529
1530 special_tokens.insert("<pad>".to_string(), 0);
1532 special_tokens.insert("<unk>".to_string(), 1);
1533 special_tokens.insert("<sos>".to_string(), 2);
1534 special_tokens.insert("<eos>".to_string(), 3);
1535
1536 token_to_id.insert("<pad>".to_string(), 0);
1537 token_to_id.insert("<unk>".to_string(), 1);
1538 token_to_id.insert("<sos>".to_string(), 2);
1539 token_to_id.insert("<eos>".to_string(), 3);
1540
1541 id_to_token.insert(0, "<pad>".to_string());
1542 id_to_token.insert(1, "<unk>".to_string());
1543 id_to_token.insert(2, "<sos>".to_string());
1544 id_to_token.insert(3, "<eos>".to_string());
1545
1546 let quantum_embeddings = Array2::from_shape_fn((vocab_size, 768), |(i, j)| {
1548 0.02 * (i as f64 * 0.1 + j as f64 * 0.01).sin()
1549 });
1550
1551 let tokenizer = SubwordTokenizer::new();
1552
1553 Ok(Self {
1554 token_to_id,
1555 id_to_token,
1556 special_tokens,
1557 tokenizer,
1558 quantum_embeddings,
1559 })
1560 }
1561
1562 pub fn tokenize(&self, text: &str) -> Result<Vec<usize>> {
1564 let tokens: Vec<usize> = text
1566 .split_whitespace()
1567 .map(|word| {
1568 self.token_to_id.get(word).copied().unwrap_or(1) })
1570 .collect();
1571
1572 Ok(tokens)
1573 }
1574
1575 pub fn get_embedding(&self, token_id: usize) -> Result<Array1<f64>> {
1577 if token_id < self.quantum_embeddings.nrows() {
1578 Ok(self.quantum_embeddings.row(token_id).to_owned())
1579 } else {
1580 Ok(self.quantum_embeddings.row(1).to_owned()) }
1582 }
1583
1584 pub fn decode_token(&self, token_id: usize) -> Result<String> {
1586 Ok(self
1587 .id_to_token
1588 .get(&token_id)
1589 .cloned()
1590 .unwrap_or_else(|| "<unk>".to_string()))
1591 }
1592
1593 pub fn is_eos_token(&self, token_id: usize) -> bool {
1595 token_id == 3 }
1597}
1598
1599impl SubwordTokenizer {
1600 pub fn new() -> Self {
1602 Self {
1603 merges: Vec::new(),
1604 frequencies: HashMap::new(),
1605 quantum_encodings: HashMap::new(),
1606 }
1607 }
1608}
1609
1610impl GenerationStatistics {
1611 pub fn new() -> Self {
1613 Self {
1614 total_tokens: 0,
1615 avg_speed: 0.0,
1616 quantum_coherence: 0.0,
1617 reasoning_steps: 0,
1618 memory_retrievals: 0,
1619 quality_metrics: QualityMetrics {
1620 perplexity: 0.0,
1621 coherence: 0.0,
1622 factual_accuracy: 0.0,
1623 logical_consistency: 0.0,
1624 quantum_advantage: 0.0,
1625 },
1626 }
1627 }
1628}
1629
1630impl GenerationConfig {
1631 pub fn default() -> Self {
1633 Self {
1634 max_length: 100,
1635 temperature: 1.0,
1636 top_k: Some(50),
1637 top_p: Some(0.9),
1638 repetition_penalty: 1.1,
1639 use_quantum_reasoning: true,
1640 use_memory: true,
1641 chain_of_thought: false,
1642 }
1643 }
1644
1645 pub fn creative() -> Self {
1647 Self {
1648 max_length: 200,
1649 temperature: 1.2,
1650 top_k: Some(100),
1651 top_p: Some(0.95),
1652 repetition_penalty: 1.05,
1653 use_quantum_reasoning: true,
1654 use_memory: true,
1655 chain_of_thought: true,
1656 }
1657 }
1658
1659 pub fn precise() -> Self {
1661 Self {
1662 max_length: 50,
1663 temperature: 0.7,
1664 top_k: Some(20),
1665 top_p: Some(0.8),
1666 repetition_penalty: 1.2,
1667 use_quantum_reasoning: true,
1668 use_memory: true,
1669 chain_of_thought: true,
1670 }
1671 }
1672}
1673
1674#[cfg(test)]
1675mod tests {
1676 use super::*;
1677
1678 #[test]
1679 fn test_qllm_config_creation() {
1680 let config = QuantumLLMConfig::small(10000);
1681 assert_eq!(config.vocab_size, 10000);
1682 assert_eq!(config.transformer_config.model_dim, 768);
1683
1684 let large_config = QuantumLLMConfig::large(50000);
1685 assert_eq!(large_config.vocab_size, 50000);
1686 assert_eq!(large_config.transformer_config.model_dim, 1536);
1687 }
1688
1689 #[test]
1690 fn test_vocabulary_creation() {
1691 let vocab = Vocabulary::new(1000).expect("Failed to create vocabulary");
1692 assert_eq!(vocab.quantum_embeddings.nrows(), 1000);
1693 assert!(vocab.special_tokens.contains_key("<eos>"));
1694 }
1695
1696 #[test]
1697 fn test_generation_config() {
1698 let config = GenerationConfig::default();
1699 assert_eq!(config.max_length, 100);
1700 assert_eq!(config.temperature, 1.0);
1701
1702 let creative_config = GenerationConfig::creative();
1703 assert!(creative_config.temperature > 1.0);
1704 assert!(creative_config.chain_of_thought);
1705 }
1706
1707 #[test]
1708 fn test_quantum_memory_system() {
1709 let config = QuantumMemoryConfig::default();
1710 let memory_system = QuantumMemorySystem::new(config);
1711 assert!(memory_system.is_ok());
1712
1713 let memory = memory_system.expect("QuantumMemorySystem::new should succeed");
1714 assert!(!memory.associative_banks.is_empty());
1715 }
1716
1717 #[test]
1718 fn test_quantum_reasoning_module() {
1719 let config = QuantumReasoningConfig::default();
1720 let reasoning_module = QuantumReasoningModule::new(config);
1721 assert!(reasoning_module.is_ok());
1722
1723 let reasoning = reasoning_module.expect("QuantumReasoningModule::new should succeed");
1724 assert!(!reasoning.logical_circuits.is_empty());
1725 }
1726}