quantrs2_ml/
quantum_llm.rs

1//! Quantum Large Language Models (QLLMs)
2//!
3//! This module implements quantum-enhanced large language models that leverage
4//! quantum computing principles for improved language understanding, generation,
5//! and reasoning capabilities. It builds on quantum transformers with advanced
6//! features like quantum memory, quantum reasoning, and quantum-classical hybrid processing.
7
8use crate::error::{MLError, Result};
9use crate::optimization::OptimizationMethod;
10use crate::qnn::{QNNLayerType, QuantumNeuralNetwork};
11use crate::quantum_transformer::{
12    create_causal_mask, PositionEncodingType, QuantumAttentionType, QuantumTransformer,
13    QuantumTransformerConfig,
14};
15use quantrs2_circuit::builder::{Circuit, Simulator};
16use quantrs2_core::gate::{multi::*, single::*, GateOp};
17use quantrs2_sim::statevector::StateVectorSimulator;
18use scirs2_core::ndarray::{s, Array1, Array2, Array3, Array4, Axis};
19use std::collections::HashMap;
20use std::f64::consts::PI;
21
22/// Quantum Large Language Model configuration
23#[derive(Debug, Clone)]
24pub struct QuantumLLMConfig {
25    /// Base transformer configuration
26    pub transformer_config: QuantumTransformerConfig,
27
28    /// Vocabulary size
29    pub vocab_size: usize,
30
31    /// Maximum context length
32    pub max_context_length: usize,
33
34    /// Number of quantum memory layers
35    pub quantum_memory_layers: usize,
36
37    /// Quantum reasoning module configuration
38    pub reasoning_config: QuantumReasoningConfig,
39
40    /// Quantum memory configuration
41    pub memory_config: QuantumMemoryConfig,
42
43    /// Model scale
44    pub model_scale: ModelScale,
45
46    /// Training configuration
47    pub training_config: QLLMTrainingConfig,
48}
49
50/// Model scale variants
51#[derive(Debug, Clone)]
52pub enum ModelScale {
53    /// Small model (< 1B parameters)
54    Small {
55        layers: usize,
56        model_dim: usize,
57        heads: usize,
58    },
59    /// Medium model (1B - 10B parameters)
60    Medium {
61        layers: usize,
62        model_dim: usize,
63        heads: usize,
64    },
65    /// Large model (10B - 100B parameters)
66    Large {
67        layers: usize,
68        model_dim: usize,
69        heads: usize,
70    },
71    /// XL model (> 100B parameters)
72    ExtraLarge {
73        layers: usize,
74        model_dim: usize,
75        heads: usize,
76    },
77}
78
79/// Quantum reasoning configuration
80#[derive(Debug, Clone)]
81pub struct QuantumReasoningConfig {
82    /// Enable quantum logical reasoning
83    pub logical_reasoning: bool,
84
85    /// Enable quantum causal reasoning
86    pub causal_reasoning: bool,
87
88    /// Enable quantum analogical reasoning
89    pub analogical_reasoning: bool,
90
91    /// Number of reasoning steps
92    pub reasoning_steps: usize,
93
94    /// Reasoning circuit depth
95    pub circuit_depth: usize,
96
97    /// Quantum entanglement strength for reasoning
98    pub entanglement_strength: f64,
99}
100
101/// Quantum memory configuration
102#[derive(Debug, Clone)]
103pub struct QuantumMemoryConfig {
104    /// Memory bank size
105    pub memory_size: usize,
106
107    /// Quantum associative memory
108    pub associative_memory: bool,
109
110    /// Episodic memory with quantum states
111    pub episodic_memory: bool,
112
113    /// Memory retrieval mechanism
114    pub retrieval_mechanism: MemoryRetrievalType,
115
116    /// Memory compression using quantum algorithms
117    pub quantum_compression: bool,
118
119    /// Memory coherence time
120    pub coherence_time: f64,
121}
122
123/// Memory retrieval mechanisms
124#[derive(Debug, Clone)]
125pub enum MemoryRetrievalType {
126    /// Quantum associative retrieval
127    QuantumAssociative,
128
129    /// Content-addressable memory
130    ContentAddressable,
131
132    /// Holographic memory retrieval
133    Holographic,
134
135    /// Quantum Hopfield networks
136    QuantumHopfield,
137
138    /// Hierarchical memory access
139    Hierarchical,
140}
141
142/// Training configuration for QLLMs
143#[derive(Debug, Clone)]
144pub struct QLLMTrainingConfig {
145    /// Quantum-classical hybrid training
146    pub hybrid_training: bool,
147
148    /// Quantum parameter update strategy
149    pub parameter_update: QuantumParameterUpdate,
150
151    /// Gradient accumulation steps
152    pub gradient_accumulation: usize,
153
154    /// Quantum noise injection for regularization
155    pub quantum_noise: bool,
156
157    /// Quantum advantage optimization
158    pub quantum_advantage_opt: bool,
159}
160
161/// Quantum parameter update strategies
162#[derive(Debug, Clone)]
163pub enum QuantumParameterUpdate {
164    /// Classical gradient descent on quantum parameters
165    ClassicalOnQuantum,
166
167    /// Quantum natural gradients
168    QuantumNatural,
169
170    /// Quantum BFGS optimization
171    QuantumBFGS,
172
173    /// Parameter shift rule
174    ParameterShift,
175
176    /// Quantum Adam optimizer
177    QuantumAdam,
178}
179
180/// Main Quantum Large Language Model
181#[derive(Debug, Clone)]
182pub struct QuantumLLM {
183    /// Model configuration
184    config: QuantumLLMConfig,
185
186    /// Token embedding layer
187    token_embedding: QuantumNeuralNetwork,
188
189    /// Core transformer
190    transformer: QuantumTransformer,
191
192    /// Quantum memory system
193    quantum_memory: QuantumMemorySystem,
194
195    /// Quantum reasoning module
196    quantum_reasoning: QuantumReasoningModule,
197
198    /// Language modeling head
199    lm_head: QuantumNeuralNetwork,
200
201    /// Vocabulary mappings
202    vocab: Vocabulary,
203
204    /// Model statistics
205    generation_stats: GenerationStatistics,
206}
207
208/// Quantum memory system
209#[derive(Debug, Clone)]
210pub struct QuantumMemorySystem {
211    /// Memory configuration
212    config: QuantumMemoryConfig,
213
214    /// Associative memory banks
215    associative_banks: Vec<QuantumAssociativeMemory>,
216
217    /// Episodic memory store
218    episodic_memory: Vec<QuantumEpisode>,
219
220    /// Memory retrieval circuit parameters
221    retrieval_circuit_params: Vec<Vec<f64>>,
222
223    /// Memory compression codebooks
224    compression_codebooks: HashMap<String, Array2<f64>>,
225}
226
227/// Quantum associative memory
228#[derive(Debug, Clone)]
229pub struct QuantumAssociativeMemory {
230    /// Memory patterns
231    patterns: Array2<f64>,
232
233    /// Quantum Hopfield weights
234    hopfield_weights: Array2<f64>,
235
236    /// Memory circuit parameters
237    memory_circuit_params: Vec<f64>,
238
239    /// Pattern amplitudes
240    amplitudes: Array1<f64>,
241
242    /// Retrieval threshold
243    threshold: f64,
244}
245
246/// Quantum episodic memory
247#[derive(Debug, Clone)]
248pub struct QuantumEpisode {
249    /// Episode context
250    context: Array1<f64>,
251
252    /// Episode content
253    content: Array2<f64>,
254
255    /// Quantum state representation
256    quantum_state: Array1<f64>,
257
258    /// Episode timestamp
259    timestamp: f64,
260
261    /// Coherence measure
262    coherence: f64,
263
264    /// Episode importance
265    importance: f64,
266}
267
268/// Quantum reasoning module
269#[derive(Debug, Clone)]
270pub struct QuantumReasoningModule {
271    /// Reasoning configuration
272    config: QuantumReasoningConfig,
273
274    /// Logical reasoning circuits
275    logical_circuits: Vec<Circuit<16>>,
276
277    /// Causal reasoning networks
278    causal_networks: Vec<QuantumNeuralNetwork>,
279
280    /// Analogical reasoning system
281    analogical_system: QuantumAnalogyEngine,
282
283    /// Reasoning state memory
284    reasoning_memory: Array2<f64>,
285
286    /// Chain-of-thought quantum states
287    cot_states: Vec<Array1<f64>>,
288}
289
290/// Quantum analogy engine
291#[derive(Debug, Clone)]
292pub struct QuantumAnalogyEngine {
293    /// Analogy mapping circuit parameters
294    mapping_circuit_params: Vec<Vec<f64>>,
295
296    /// Structural similarity measures
297    similarity_measures: Array2<f64>,
298
299    /// Analogy transformation matrices
300    transformations: Vec<Array2<f64>>,
301
302    /// Quantum interference patterns for analogies
303    interference_patterns: Array3<f64>,
304}
305
306/// Vocabulary management
307#[derive(Debug, Clone)]
308pub struct Vocabulary {
309    /// Token to ID mapping
310    token_to_id: HashMap<String, usize>,
311
312    /// ID to token mapping
313    id_to_token: HashMap<usize, String>,
314
315    /// Special tokens
316    special_tokens: HashMap<String, usize>,
317
318    /// Subword tokenizer
319    tokenizer: SubwordTokenizer,
320
321    /// Quantum token embeddings
322    quantum_embeddings: Array2<f64>,
323}
324
325/// Subword tokenizer
326#[derive(Debug, Clone)]
327pub struct SubwordTokenizer {
328    /// BPE merges
329    merges: Vec<(String, String)>,
330
331    /// Token frequencies
332    frequencies: HashMap<String, usize>,
333
334    /// Quantum encoding of subwords
335    quantum_encodings: HashMap<String, Array1<f64>>,
336}
337
338/// Generation statistics
339#[derive(Debug, Clone)]
340pub struct GenerationStatistics {
341    /// Total tokens generated
342    pub total_tokens: usize,
343
344    /// Average generation speed (tokens/sec)
345    pub avg_speed: f64,
346
347    /// Quantum coherence during generation
348    pub quantum_coherence: f64,
349
350    /// Reasoning steps taken
351    pub reasoning_steps: usize,
352
353    /// Memory retrievals
354    pub memory_retrievals: usize,
355
356    /// Generation quality metrics
357    pub quality_metrics: QualityMetrics,
358}
359
360/// Quality metrics for generated text
361#[derive(Debug, Clone)]
362pub struct QualityMetrics {
363    /// Perplexity score
364    pub perplexity: f64,
365
366    /// Coherence score
367    pub coherence: f64,
368
369    /// Factual accuracy
370    pub factual_accuracy: f64,
371
372    /// Logical consistency
373    pub logical_consistency: f64,
374
375    /// Quantum advantage measure
376    pub quantum_advantage: f64,
377}
378
379/// Text generation parameters
380#[derive(Debug, Clone)]
381pub struct GenerationConfig {
382    /// Maximum generation length
383    pub max_length: usize,
384
385    /// Temperature for sampling
386    pub temperature: f64,
387
388    /// Top-k sampling
389    pub top_k: Option<usize>,
390
391    /// Top-p (nucleus) sampling
392    pub top_p: Option<f64>,
393
394    /// Repetition penalty
395    pub repetition_penalty: f64,
396
397    /// Enable quantum reasoning during generation
398    pub use_quantum_reasoning: bool,
399
400    /// Memory-guided generation
401    pub use_memory: bool,
402
403    /// Chain-of-thought generation
404    pub chain_of_thought: bool,
405}
406
407impl QuantumLLMConfig {
408    /// Create small model configuration
409    pub fn small(vocab_size: usize) -> Self {
410        Self {
411            transformer_config: QuantumTransformerConfig {
412                model_dim: 768,
413                num_heads: 12,
414                ff_dim: 3072,
415                num_layers: 12,
416                max_seq_len: 2048,
417                num_qubits: 10,
418                dropout_rate: 0.1,
419                attention_type: QuantumAttentionType::HybridQuantumClassical,
420                position_encoding: PositionEncodingType::Rotary,
421            },
422            vocab_size,
423            max_context_length: 2048,
424            quantum_memory_layers: 4,
425            reasoning_config: QuantumReasoningConfig::default(),
426            memory_config: QuantumMemoryConfig::default(),
427            model_scale: ModelScale::Small {
428                layers: 12,
429                model_dim: 768,
430                heads: 12,
431            },
432            training_config: QLLMTrainingConfig::default(),
433        }
434    }
435
436    /// Create medium model configuration
437    pub fn medium(vocab_size: usize) -> Self {
438        Self {
439            transformer_config: QuantumTransformerConfig {
440                model_dim: 1024,
441                num_heads: 16,
442                ff_dim: 4096,
443                num_layers: 24,
444                max_seq_len: 4096,
445                num_qubits: 16,
446                dropout_rate: 0.1,
447                attention_type: QuantumAttentionType::QuantumEnhancedMultiHead,
448                position_encoding: PositionEncodingType::LearnableQuantum,
449            },
450            vocab_size,
451            max_context_length: 4096,
452            quantum_memory_layers: 8,
453            reasoning_config: QuantumReasoningConfig::enhanced(),
454            memory_config: QuantumMemoryConfig::enhanced(),
455            model_scale: ModelScale::Medium {
456                layers: 24,
457                model_dim: 1024,
458                heads: 16,
459            },
460            training_config: QLLMTrainingConfig::default(),
461        }
462    }
463
464    /// Create large model configuration
465    pub fn large(vocab_size: usize) -> Self {
466        Self {
467            transformer_config: QuantumTransformerConfig {
468                model_dim: 1536,
469                num_heads: 24,
470                ff_dim: 6144,
471                num_layers: 48,
472                max_seq_len: 8192,
473                num_qubits: 12,
474                dropout_rate: 0.1,
475                attention_type: QuantumAttentionType::FullQuantum,
476                position_encoding: PositionEncodingType::QuantumPhase,
477            },
478            vocab_size,
479            max_context_length: 8192,
480            quantum_memory_layers: 16,
481            reasoning_config: QuantumReasoningConfig::advanced(),
482            memory_config: QuantumMemoryConfig::advanced(),
483            model_scale: ModelScale::Large {
484                layers: 48,
485                model_dim: 1536,
486                heads: 24,
487            },
488            training_config: QLLMTrainingConfig::advanced(),
489        }
490    }
491}
492
493impl QuantumReasoningConfig {
494    /// Default reasoning configuration
495    pub fn default() -> Self {
496        Self {
497            logical_reasoning: true,
498            causal_reasoning: false,
499            analogical_reasoning: false,
500            reasoning_steps: 3,
501            circuit_depth: 5,
502            entanglement_strength: 0.5,
503        }
504    }
505
506    /// Enhanced reasoning configuration
507    pub fn enhanced() -> Self {
508        Self {
509            logical_reasoning: true,
510            causal_reasoning: true,
511            analogical_reasoning: false,
512            reasoning_steps: 5,
513            circuit_depth: 8,
514            entanglement_strength: 0.7,
515        }
516    }
517
518    /// Advanced reasoning configuration
519    pub fn advanced() -> Self {
520        Self {
521            logical_reasoning: true,
522            causal_reasoning: true,
523            analogical_reasoning: true,
524            reasoning_steps: 8,
525            circuit_depth: 12,
526            entanglement_strength: 0.9,
527        }
528    }
529}
530
531impl QuantumMemoryConfig {
532    /// Default memory configuration
533    pub fn default() -> Self {
534        Self {
535            memory_size: 1000,
536            associative_memory: true,
537            episodic_memory: false,
538            retrieval_mechanism: MemoryRetrievalType::QuantumAssociative,
539            quantum_compression: false,
540            coherence_time: 100.0,
541        }
542    }
543
544    /// Enhanced memory configuration
545    pub fn enhanced() -> Self {
546        Self {
547            memory_size: 5000,
548            associative_memory: true,
549            episodic_memory: true,
550            retrieval_mechanism: MemoryRetrievalType::ContentAddressable,
551            quantum_compression: true,
552            coherence_time: 200.0,
553        }
554    }
555
556    /// Advanced memory configuration
557    pub fn advanced() -> Self {
558        Self {
559            memory_size: 20000,
560            associative_memory: true,
561            episodic_memory: true,
562            retrieval_mechanism: MemoryRetrievalType::Holographic,
563            quantum_compression: true,
564            coherence_time: 500.0,
565        }
566    }
567}
568
569impl QLLMTrainingConfig {
570    /// Default training configuration
571    pub fn default() -> Self {
572        Self {
573            hybrid_training: true,
574            parameter_update: QuantumParameterUpdate::ClassicalOnQuantum,
575            gradient_accumulation: 1,
576            quantum_noise: false,
577            quantum_advantage_opt: false,
578        }
579    }
580
581    /// Advanced training configuration
582    pub fn advanced() -> Self {
583        Self {
584            hybrid_training: true,
585            parameter_update: QuantumParameterUpdate::QuantumAdam,
586            gradient_accumulation: 8,
587            quantum_noise: true,
588            quantum_advantage_opt: true,
589        }
590    }
591}
592
593impl QuantumLLM {
594    /// Create new quantum large language model
595    pub fn new(config: QuantumLLMConfig) -> Result<Self> {
596        // Create token embedding layer
597        let embed_layers = vec![
598            QNNLayerType::EncodingLayer {
599                num_features: config.vocab_size,
600            },
601            QNNLayerType::VariationalLayer {
602                num_params: config.transformer_config.model_dim,
603            },
604            QNNLayerType::MeasurementLayer {
605                measurement_basis: "computational".to_string(),
606            },
607        ];
608        let token_embedding = QuantumNeuralNetwork::new(
609            embed_layers,
610            config.transformer_config.num_qubits,
611            config.vocab_size,
612            config.transformer_config.model_dim,
613        )?;
614
615        // Create core transformer
616        let transformer = QuantumTransformer::new(config.transformer_config.clone())?;
617
618        // Create quantum memory system
619        let quantum_memory = QuantumMemorySystem::new(config.memory_config.clone())?;
620
621        // Create quantum reasoning module
622        let quantum_reasoning = QuantumReasoningModule::new(config.reasoning_config.clone())?;
623
624        // Create language modeling head
625        let lm_layers = vec![
626            QNNLayerType::EncodingLayer {
627                num_features: config.transformer_config.model_dim,
628            },
629            QNNLayerType::VariationalLayer {
630                num_params: config.vocab_size,
631            },
632            QNNLayerType::MeasurementLayer {
633                measurement_basis: "computational".to_string(),
634            },
635        ];
636        let lm_head = QuantumNeuralNetwork::new(
637            lm_layers,
638            config.transformer_config.num_qubits,
639            config.transformer_config.model_dim,
640            config.vocab_size,
641        )?;
642
643        // Create vocabulary
644        let vocab = Vocabulary::new(config.vocab_size)?;
645
646        // Initialize generation statistics
647        let generation_stats = GenerationStatistics::new();
648
649        Ok(Self {
650            config,
651            token_embedding,
652            transformer,
653            quantum_memory,
654            quantum_reasoning,
655            lm_head,
656            vocab,
657            generation_stats,
658        })
659    }
660
661    /// Forward pass through the model
662    pub fn forward(
663        &mut self,
664        input_ids: &Array2<usize>, // [batch_size, seq_len]
665        attention_mask: Option<&Array3<bool>>,
666        use_memory: bool,
667        use_reasoning: bool,
668    ) -> Result<Array3<f64>> {
669        // [batch_size, seq_len, vocab_size]
670        let (batch_size, seq_len) = input_ids.dim();
671
672        if seq_len > self.config.max_context_length {
673            return Err(MLError::ConfigurationError(format!(
674                "Sequence length {} exceeds maximum context length {}",
675                seq_len, self.config.max_context_length
676            )));
677        }
678
679        // Token embedding
680        let mut embeddings = Array3::zeros((
681            batch_size,
682            seq_len,
683            self.config.transformer_config.model_dim,
684        ));
685        for batch_idx in 0..batch_size {
686            for seq_idx in 0..seq_len {
687                let token_id = input_ids[[batch_idx, seq_idx]];
688                let token_embedding = self.vocab.get_embedding(token_id)?;
689                let embedded = self.token_embedding.forward(&token_embedding)?;
690                embeddings
691                    .slice_mut(s![batch_idx, seq_idx, ..])
692                    .assign(&embedded);
693            }
694        }
695
696        // Apply quantum memory retrieval if enabled
697        if use_memory {
698            embeddings = self.quantum_memory.enhance_embeddings(&embeddings)?;
699        }
700
701        // Core transformer processing
702        let transformer_output = self.transformer.forward(&embeddings, attention_mask)?;
703
704        // Apply quantum reasoning if enabled
705        let reasoned_output = if use_reasoning {
706            self.quantum_reasoning
707                .apply_reasoning(&transformer_output)?
708        } else {
709            transformer_output
710        };
711
712        // Language modeling head
713        let mut logits = Array3::zeros((batch_size, seq_len, self.config.vocab_size));
714        for batch_idx in 0..batch_size {
715            for seq_idx in 0..seq_len {
716                let hidden_state = reasoned_output.slice(s![batch_idx, seq_idx, ..]).to_owned();
717                let token_logits = self.lm_head.forward(&hidden_state)?;
718                logits
719                    .slice_mut(s![batch_idx, seq_idx, ..])
720                    .assign(&token_logits);
721            }
722        }
723
724        // Update memory if enabled
725        if use_memory {
726            self.quantum_memory
727                .update_memory(&reasoned_output, input_ids)?;
728        }
729
730        Ok(logits)
731    }
732
733    /// Generate text with quantum enhancement
734    pub fn generate(&mut self, prompt: &str, config: GenerationConfig) -> Result<String> {
735        // Tokenize prompt
736        let input_ids = self.vocab.tokenize(prompt)?;
737        let mut current_ids = Array1::from_vec(input_ids);
738        let mut generated_text = prompt.to_string();
739
740        // Generation loop
741        for step in 0..config.max_length {
742            // Prepare input for forward pass
743            let batch_input = current_ids.clone().insert_axis(Axis(0)); // Add batch dimension
744            let input_2d = Array2::from_shape_vec((1, current_ids.len()), current_ids.to_vec())
745                .map_err(|e| {
746                    MLError::MLOperationError(format!("Failed to create input array: {}", e))
747                })?;
748
749            // Create causal mask
750            let seq_len = current_ids.len();
751            let causal_mask = create_causal_mask(1, seq_len);
752
753            // Forward pass
754            let logits = self.forward(
755                &input_2d,
756                Some(&causal_mask),
757                config.use_memory,
758                config.use_quantum_reasoning,
759            )?;
760
761            // Get next token logits
762            let next_token_logits = logits.slice(s![0, seq_len - 1, ..]).to_owned();
763
764            // Apply quantum reasoning for token selection if enabled
765            let final_logits = if config.use_quantum_reasoning && config.chain_of_thought {
766                self.quantum_reasoning
767                    .enhance_token_selection(&next_token_logits)?
768            } else {
769                next_token_logits
770            };
771
772            // Sample next token
773            let next_token = self.sample_token(&final_logits, &config)?;
774
775            // Check for end of sequence
776            if self.vocab.is_eos_token(next_token) {
777                break;
778            }
779
780            // Add to sequence
781            let new_current = Array1::from_iter(
782                current_ids
783                    .iter()
784                    .cloned()
785                    .chain(std::iter::once(next_token)),
786            );
787            current_ids = new_current;
788
789            // Decode and add to generated text
790            let token_text = self.vocab.decode_token(next_token)?;
791            generated_text.push_str(&token_text);
792
793            // Update generation statistics
794            self.generation_stats.total_tokens += 1;
795
796            // Quantum coherence monitoring
797            if step % 10 == 0 {
798                let coherence = self.quantum_reasoning.measure_coherence()?;
799                self.generation_stats.quantum_coherence = coherence;
800            }
801        }
802
803        Ok(generated_text)
804    }
805
806    /// Sample next token from logits
807    fn sample_token(&self, logits: &Array1<f64>, config: &GenerationConfig) -> Result<usize> {
808        let mut scores = logits.clone();
809
810        // Apply temperature
811        if config.temperature != 1.0 {
812            scores = scores / config.temperature;
813        }
814
815        // Apply repetition penalty (simplified)
816        if config.repetition_penalty != 1.0 {
817            scores = scores * config.repetition_penalty;
818        }
819
820        // Convert to probabilities
821        let max_score = scores.iter().cloned().fold(f64::NEG_INFINITY, f64::max);
822        let exp_scores = scores.mapv(|x| (x - max_score).exp());
823        let sum_exp = exp_scores.sum();
824        let mut probs = exp_scores / sum_exp;
825
826        // Apply top-k filtering
827        if let Some(k) = config.top_k {
828            let mut indexed_probs: Vec<(usize, f64)> =
829                probs.iter().enumerate().map(|(i, &p)| (i, p)).collect();
830            indexed_probs
831                .sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
832
833            for (i, &(idx, _)) in indexed_probs.iter().enumerate() {
834                if i >= k {
835                    probs[idx] = 0.0;
836                }
837            }
838
839            // Renormalize
840            let sum_probs = probs.sum();
841            if sum_probs > 0.0 {
842                probs = probs / sum_probs;
843            }
844        }
845
846        // Apply top-p (nucleus) sampling
847        if let Some(p) = config.top_p {
848            let mut indexed_probs: Vec<(usize, f64)> = probs
849                .iter()
850                .enumerate()
851                .map(|(i, &prob)| (i, prob))
852                .collect();
853            indexed_probs
854                .sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
855
856            let mut cumulative = 0.0;
857            for (idx, prob) in &indexed_probs {
858                cumulative += prob;
859                if cumulative > p {
860                    // Zero out remaining probabilities
861                    for (i, &(remaining_idx, _)) in indexed_probs.iter().enumerate() {
862                        if cumulative - prob > p {
863                            probs[remaining_idx] = 0.0;
864                        }
865                    }
866                    break;
867                }
868            }
869
870            // Renormalize
871            let sum_probs = probs.sum();
872            if sum_probs > 0.0 {
873                probs = probs / sum_probs;
874            }
875        }
876
877        // Sample from probability distribution
878        let mut cumulative = 0.0;
879        let random_val = fastrand::f64();
880
881        for (i, &prob) in probs.iter().enumerate() {
882            cumulative += prob;
883            if random_val <= cumulative {
884                return Ok(i);
885            }
886        }
887
888        // Fallback: return most likely token
889        Ok(probs
890            .iter()
891            .enumerate()
892            .max_by(|a, b| a.1.partial_cmp(b.1).unwrap_or(std::cmp::Ordering::Equal))
893            .map(|(i, _)| i)
894            .unwrap_or(0))
895    }
896
897    /// Get model configuration
898    pub fn config(&self) -> &QuantumLLMConfig {
899        &self.config
900    }
901
902    /// Get generation statistics
903    pub fn generation_stats(&self) -> &GenerationStatistics {
904        &self.generation_stats
905    }
906
907    /// Calculate total model parameters
908    pub fn num_parameters(&self) -> usize {
909        let mut total = 0;
910
911        total += self.token_embedding.parameters.len();
912        total += self.transformer.num_parameters();
913        total += self.lm_head.parameters.len();
914        total += self.quantum_memory.num_parameters();
915        total += self.quantum_reasoning.num_parameters();
916        total += self.vocab.quantum_embeddings.len();
917
918        total
919    }
920
921    /// Evaluate model perplexity on a dataset
922    pub fn evaluate_perplexity(&mut self, texts: &[String]) -> Result<f64> {
923        let mut total_log_likelihood = 0.0;
924        let mut total_tokens = 0;
925
926        for text in texts {
927            let tokens = self.vocab.tokenize(text)?;
928            if tokens.len() < 2 {
929                continue;
930            }
931
932            let tokens_len = tokens.len();
933            let input_ids = Array2::from_shape_vec((1, tokens_len), tokens.clone())?;
934            let logits = self.forward(&input_ids, None, false, false)?;
935
936            // Calculate log likelihood
937            for i in 0..tokens_len - 1 {
938                let target_token = tokens[i + 1];
939                let token_logits = logits.slice(s![0, i, ..]);
940
941                // Convert to probabilities
942                let max_logit = token_logits
943                    .iter()
944                    .cloned()
945                    .fold(f64::NEG_INFINITY, f64::max);
946                let exp_logits = token_logits.mapv(|x| (x - max_logit).exp());
947                let sum_exp = exp_logits.sum();
948                let prob = exp_logits[target_token] / sum_exp;
949
950                if prob > 1e-10 {
951                    total_log_likelihood += prob.ln();
952                    total_tokens += 1;
953                }
954            }
955        }
956
957        if total_tokens == 0 {
958            return Ok(f64::INFINITY);
959        }
960
961        let avg_log_likelihood = total_log_likelihood / total_tokens as f64;
962        let perplexity = (-avg_log_likelihood).exp();
963
964        Ok(perplexity)
965    }
966}
967
968impl QuantumMemorySystem {
969    /// Create new quantum memory system
970    pub fn new(config: QuantumMemoryConfig) -> Result<Self> {
971        let mut associative_banks = Vec::new();
972        let mut retrieval_circuit_params = Vec::new();
973
974        // Create associative memory banks
975        if config.associative_memory {
976            for _ in 0..5 {
977                // Create multiple memory banks
978                let memory_bank = QuantumAssociativeMemory::new(100, 128)?;
979                associative_banks.push(memory_bank);
980            }
981        }
982
983        // Create retrieval circuit parameters
984        for _ in 0..config.memory_size / 100 {
985            let mut params = Vec::new();
986            for _ in 0..8 {
987                params.push(1.0); // H gate marker
988                params.push(0.0); // RY angle
989            }
990            for _ in 0..7 {
991                params.push(2.0); // CNOT marker
992            }
993            retrieval_circuit_params.push(params);
994        }
995
996        Ok(Self {
997            config,
998            associative_banks,
999            episodic_memory: Vec::new(),
1000            retrieval_circuit_params,
1001            compression_codebooks: HashMap::new(),
1002        })
1003    }
1004
1005    /// Enhance embeddings with memory retrieval
1006    pub fn enhance_embeddings(&self, embeddings: &Array3<f64>) -> Result<Array3<f64>> {
1007        let mut enhanced = embeddings.clone();
1008
1009        if self.config.associative_memory && !self.associative_banks.is_empty() {
1010            // Retrieve relevant memories
1011            for batch_idx in 0..embeddings.dim().0 {
1012                for seq_idx in 0..embeddings.dim().1 {
1013                    let query = embeddings.slice(s![batch_idx, seq_idx, ..]).to_owned();
1014                    let retrieved_memory = self.retrieve_associative_memory(&query)?;
1015
1016                    // Combine with original embedding
1017                    let combination_weight = 0.1;
1018                    enhanced.slice_mut(s![batch_idx, seq_idx, ..]).zip_mut_with(
1019                        &retrieved_memory,
1020                        |orig, mem| {
1021                            *orig = *orig * (1.0 - combination_weight) + mem * combination_weight;
1022                        },
1023                    );
1024                }
1025            }
1026        }
1027
1028        Ok(enhanced)
1029    }
1030
1031    /// Retrieve from associative memory
1032    fn retrieve_associative_memory(&self, query: &Array1<f64>) -> Result<Array1<f64>> {
1033        if self.associative_banks.is_empty() {
1034            return Ok(query.clone());
1035        }
1036
1037        // Use first memory bank for simplicity
1038        self.associative_banks[0].retrieve(query)
1039    }
1040
1041    /// Update memory with new information
1042    pub fn update_memory(
1043        &mut self,
1044        hidden_states: &Array3<f64>,
1045        input_ids: &Array2<usize>,
1046    ) -> Result<()> {
1047        let (batch_size, seq_len, hidden_dim) = hidden_states.dim();
1048
1049        // Store episodic memories
1050        if self.config.episodic_memory {
1051            for batch_idx in 0..batch_size {
1052                let context = hidden_states.slice(s![batch_idx, 0, ..]).to_owned();
1053                let content = hidden_states.slice(s![batch_idx, .., ..]).to_owned();
1054
1055                let episode = QuantumEpisode {
1056                    context,
1057                    content,
1058                    quantum_state: Array1::zeros(hidden_dim), // Placeholder
1059                    timestamp: self.episodic_memory.len() as f64,
1060                    coherence: 0.8,
1061                    importance: 1.0,
1062                };
1063
1064                self.episodic_memory.push(episode);
1065
1066                // Limit memory size
1067                if self.episodic_memory.len() > self.config.memory_size {
1068                    self.episodic_memory.remove(0);
1069                }
1070            }
1071        }
1072
1073        // Update associative memory banks
1074        for bank in &mut self.associative_banks {
1075            let sample_hidden = hidden_states.slice(s![0, 0, ..]).to_owned();
1076            bank.store_pattern(&sample_hidden)?;
1077        }
1078
1079        Ok(())
1080    }
1081
1082    /// Get number of parameters
1083    pub fn num_parameters(&self) -> usize {
1084        let mut total = 0;
1085
1086        for bank in &self.associative_banks {
1087            total += bank.hopfield_weights.len();
1088            total += bank.patterns.len();
1089        }
1090
1091        for codebook in self.compression_codebooks.values() {
1092            total += codebook.len();
1093        }
1094
1095        total
1096    }
1097}
1098
1099impl QuantumAssociativeMemory {
1100    /// Create new quantum associative memory
1101    pub fn new(capacity: usize, pattern_size: usize) -> Result<Self> {
1102        let patterns = Array2::zeros((capacity, pattern_size));
1103        let hopfield_weights = Array2::zeros((pattern_size, pattern_size));
1104
1105        let num_qubits = 8;
1106        let mut memory_circuit_params = Vec::new();
1107
1108        // Create Hopfield-inspired quantum circuit parameters
1109        for _ in 0..num_qubits {
1110            memory_circuit_params.push(1.0); // H gate marker
1111        }
1112
1113        for i in 0..num_qubits {
1114            for j in i + 1..num_qubits {
1115                memory_circuit_params.push(2.0); // CNOT marker
1116            }
1117        }
1118
1119        Ok(Self {
1120            patterns,
1121            hopfield_weights,
1122            memory_circuit_params,
1123            amplitudes: Array1::zeros(capacity),
1124            threshold: 0.5,
1125        })
1126    }
1127
1128    /// Store pattern in memory
1129    pub fn store_pattern(&mut self, pattern: &Array1<f64>) -> Result<()> {
1130        // Find empty slot or replace oldest
1131        let store_idx = self
1132            .amplitudes
1133            .iter()
1134            .enumerate()
1135            .min_by(|a, b| a.1.partial_cmp(b.1).unwrap_or(std::cmp::Ordering::Equal))
1136            .map(|(i, _)| i)
1137            .unwrap_or(0);
1138
1139        // Store pattern
1140        self.patterns
1141            .slice_mut(s![store_idx, ..pattern.len()])
1142            .assign(pattern);
1143
1144        // Update Hopfield weights (simplified Hebbian learning)
1145        for i in 0..pattern.len() {
1146            for j in 0..pattern.len() {
1147                if i != j {
1148                    self.hopfield_weights[[i, j]] += pattern[i] * pattern[j] * 0.1;
1149                }
1150            }
1151        }
1152
1153        self.amplitudes[store_idx] = 1.0;
1154
1155        Ok(())
1156    }
1157
1158    /// Retrieve pattern from memory
1159    pub fn retrieve(&self, query: &Array1<f64>) -> Result<Array1<f64>> {
1160        let mut best_match = query.clone();
1161        let mut best_similarity = 0.0;
1162
1163        // Find best matching pattern
1164        for i in 0..self.patterns.nrows() {
1165            if self.amplitudes[i] > 0.1 {
1166                let pattern = self.patterns.row(i).to_owned();
1167                let similarity = self.compute_similarity(query, &pattern)?;
1168
1169                if similarity > best_similarity {
1170                    best_similarity = similarity;
1171                    best_match = pattern;
1172                }
1173            }
1174        }
1175
1176        // Apply Hopfield dynamics for retrieval
1177        if best_similarity > self.threshold {
1178            let retrieved = self.apply_hopfield_dynamics(&best_match)?;
1179            Ok(retrieved)
1180        } else {
1181            Ok(query.clone())
1182        }
1183    }
1184
1185    /// Compute similarity between patterns
1186    fn compute_similarity(&self, pattern1: &Array1<f64>, pattern2: &Array1<f64>) -> Result<f64> {
1187        let norm1 = pattern1.mapv(|x| x * x).sum().sqrt();
1188        let norm2 = pattern2.mapv(|x| x * x).sum().sqrt();
1189
1190        if norm1 < 1e-10 || norm2 < 1e-10 {
1191            return Ok(0.0);
1192        }
1193
1194        let dot_product = pattern1.dot(pattern2);
1195        Ok(dot_product / (norm1 * norm2))
1196    }
1197
1198    /// Apply Hopfield dynamics for pattern completion
1199    fn apply_hopfield_dynamics(&self, initial: &Array1<f64>) -> Result<Array1<f64>> {
1200        let mut state = initial.clone();
1201
1202        // Simplified Hopfield update
1203        for _ in 0..5 {
1204            let new_state = self.hopfield_weights.dot(&state);
1205            state = new_state.mapv(|x| x.tanh()); // Apply activation
1206        }
1207
1208        Ok(state)
1209    }
1210}
1211
1212impl QuantumReasoningModule {
1213    /// Create new quantum reasoning module
1214    pub fn new(config: QuantumReasoningConfig) -> Result<Self> {
1215        let mut logical_circuits = Vec::new();
1216        let mut causal_networks = Vec::new();
1217
1218        // Create logical reasoning circuits
1219        if config.logical_reasoning {
1220            for _ in 0..config.reasoning_steps {
1221                let mut circuit = Circuit::<16>::new();
1222
1223                // Create quantum logic gates for reasoning
1224                for i in 0..8 {
1225                    circuit.h(i);
1226                    circuit.ry(i, 0.0); // Will be parameterized
1227                }
1228
1229                // Entanglement for logical connections
1230                for i in 0..7 {
1231                    circuit.cnot(i, i + 1);
1232                }
1233
1234                logical_circuits.push(circuit);
1235            }
1236        }
1237
1238        // Create causal reasoning networks
1239        if config.causal_reasoning {
1240            for _ in 0..config.reasoning_steps {
1241                let layers = vec![
1242                    QNNLayerType::EncodingLayer { num_features: 256 },
1243                    QNNLayerType::VariationalLayer { num_params: 128 },
1244                    QNNLayerType::EntanglementLayer {
1245                        connectivity: "circular".to_string(),
1246                    },
1247                    QNNLayerType::VariationalLayer { num_params: 256 },
1248                    QNNLayerType::MeasurementLayer {
1249                        measurement_basis: "computational".to_string(),
1250                    },
1251                ];
1252
1253                let network = QuantumNeuralNetwork::new(layers, 12, 256, 256)?;
1254                causal_networks.push(network);
1255            }
1256        }
1257
1258        // Create analogical reasoning system
1259        let analogical_system = QuantumAnalogyEngine::new()?;
1260
1261        Ok(Self {
1262            config,
1263            logical_circuits,
1264            causal_networks,
1265            analogical_system,
1266            reasoning_memory: Array2::zeros((100, 256)),
1267            cot_states: Vec::new(),
1268        })
1269    }
1270
1271    /// Apply quantum reasoning to transformer output
1272    pub fn apply_reasoning(&mut self, hidden_states: &Array3<f64>) -> Result<Array3<f64>> {
1273        let mut reasoned_output = hidden_states.clone();
1274
1275        // Apply logical reasoning
1276        if self.config.logical_reasoning {
1277            reasoned_output = self.apply_logical_reasoning(&reasoned_output)?;
1278        }
1279
1280        // Apply causal reasoning
1281        if self.config.causal_reasoning {
1282            reasoned_output = self.apply_causal_reasoning(&reasoned_output)?;
1283        }
1284
1285        // Apply analogical reasoning
1286        if self.config.analogical_reasoning {
1287            reasoned_output = self.apply_analogical_reasoning(&reasoned_output)?;
1288        }
1289
1290        Ok(reasoned_output)
1291    }
1292
1293    /// Apply logical reasoning using quantum circuits
1294    fn apply_logical_reasoning(&mut self, hidden_states: &Array3<f64>) -> Result<Array3<f64>> {
1295        let mut output = hidden_states.clone();
1296        let (batch_size, seq_len, hidden_dim) = hidden_states.dim();
1297
1298        for step in 0..self.config.reasoning_steps.min(self.logical_circuits.len()) {
1299            // Apply quantum logical reasoning circuit
1300            let simulator = StateVectorSimulator::new();
1301            let register = simulator.run(&self.logical_circuits[step])?;
1302            let quantum_state = register.probabilities();
1303
1304            // Extract reasoning features from quantum state
1305            let reasoning_features = self.extract_logical_features(&quantum_state)?;
1306
1307            // Apply reasoning to hidden states
1308            for batch_idx in 0..batch_size {
1309                for seq_idx in 0..seq_len {
1310                    let mut hidden = output.slice_mut(s![batch_idx, seq_idx, ..]);
1311
1312                    // Combine with reasoning features
1313                    let reasoning_weight = 0.1;
1314                    for (i, &feature) in reasoning_features.iter().enumerate() {
1315                        if i < hidden.len() {
1316                            hidden[i] =
1317                                hidden[i] * (1.0 - reasoning_weight) + feature * reasoning_weight;
1318                        }
1319                    }
1320                }
1321            }
1322
1323            // Store reasoning state for chain-of-thought
1324            let reasoning_state = Array1::from_vec(reasoning_features);
1325            self.cot_states.push(reasoning_state);
1326        }
1327
1328        Ok(output)
1329    }
1330
1331    /// Apply causal reasoning using quantum networks
1332    fn apply_causal_reasoning(&self, hidden_states: &Array3<f64>) -> Result<Array3<f64>> {
1333        if self.causal_networks.is_empty() {
1334            return Ok(hidden_states.clone());
1335        }
1336
1337        let mut output = hidden_states.clone();
1338        let (batch_size, seq_len, hidden_dim) = hidden_states.dim();
1339
1340        // Apply causal reasoning network
1341        for batch_idx in 0..batch_size {
1342            for seq_idx in 1..seq_len {
1343                // Start from 1 for causal dependency
1344                let current_hidden = hidden_states.slice(s![batch_idx, seq_idx, ..]).to_owned();
1345                let prev_hidden = hidden_states
1346                    .slice(s![batch_idx, seq_idx - 1, ..])
1347                    .to_owned();
1348
1349                // Combine current and previous for causal reasoning
1350                let causal_input = Array1::from_iter(
1351                    current_hidden
1352                        .iter()
1353                        .chain(prev_hidden.iter())
1354                        .take(256)
1355                        .cloned(),
1356                );
1357
1358                // Apply causal reasoning network
1359                let causal_output = self.causal_networks[0].forward(&causal_input)?;
1360
1361                // Update hidden state with causal reasoning
1362                let causal_weight = 0.2;
1363                output.slice_mut(s![batch_idx, seq_idx, ..]).zip_mut_with(
1364                    &causal_output,
1365                    |orig, causal| {
1366                        *orig = *orig * (1.0 - causal_weight) + causal * causal_weight;
1367                    },
1368                );
1369            }
1370        }
1371
1372        Ok(output)
1373    }
1374
1375    /// Apply analogical reasoning
1376    fn apply_analogical_reasoning(&self, hidden_states: &Array3<f64>) -> Result<Array3<f64>> {
1377        // Use analogical reasoning engine
1378        self.analogical_system
1379            .apply_analogical_reasoning(hidden_states)
1380    }
1381
1382    /// Enhance token selection with quantum reasoning
1383    pub fn enhance_token_selection(&self, logits: &Array1<f64>) -> Result<Array1<f64>> {
1384        let mut enhanced_logits = logits.clone();
1385
1386        // Apply reasoning-based enhancement
1387        if !self.cot_states.is_empty() {
1388            let latest_reasoning = &self.cot_states[self.cot_states.len() - 1];
1389
1390            // Combine logits with reasoning state
1391            let reasoning_weight = 0.1;
1392            for (i, &reasoning_val) in latest_reasoning.iter().enumerate() {
1393                if i < enhanced_logits.len() {
1394                    enhanced_logits[i] += reasoning_val * reasoning_weight;
1395                }
1396            }
1397        }
1398
1399        Ok(enhanced_logits)
1400    }
1401
1402    /// Measure quantum coherence in reasoning
1403    pub fn measure_coherence(&self) -> Result<f64> {
1404        if self.cot_states.is_empty() {
1405            return Ok(0.0);
1406        }
1407
1408        // Compute coherence across reasoning states
1409        let latest_state = &self.cot_states[self.cot_states.len() - 1];
1410        let coherence = 1.0
1411            - latest_state
1412                .mapv(|x| (x * PI).sin().abs())
1413                .mean()
1414                .unwrap_or(0.0);
1415
1416        Ok(coherence)
1417    }
1418
1419    /// Extract logical features from quantum state
1420    fn extract_logical_features(&self, quantum_state: &[f64]) -> Result<Vec<f64>> {
1421        // Extract features representing logical operations
1422        let mut features = Vec::new();
1423
1424        // Amplitude-based features
1425        for (i, &amplitude) in quantum_state.iter().enumerate() {
1426            let logical_feature = amplitude * amplitude; // Probability
1427            features.push(logical_feature);
1428
1429            if features.len() >= 256 {
1430                // Limit feature count
1431                break;
1432            }
1433        }
1434
1435        // Pad with zeros if needed
1436        while features.len() < 256 {
1437            features.push(0.0);
1438        }
1439
1440        Ok(features)
1441    }
1442
1443    /// Get number of parameters
1444    pub fn num_parameters(&self) -> usize {
1445        let mut total = 0;
1446
1447        for network in &self.causal_networks {
1448            total += network.parameters.len();
1449        }
1450
1451        total += self.analogical_system.num_parameters();
1452        total += self.reasoning_memory.len();
1453
1454        total
1455    }
1456}
1457
1458impl QuantumAnalogyEngine {
1459    /// Create new quantum analogy engine
1460    pub fn new() -> Result<Self> {
1461        let mut mapping_circuit_params = Vec::new();
1462
1463        // Create analogy mapping circuit parameters
1464        for _ in 0..5 {
1465            let mut params = Vec::new();
1466
1467            for _ in 0..10 {
1468                params.push(1.0); // H gate marker
1469                params.push(0.0); // RY angle
1470            }
1471
1472            // Create analogical connections
1473            for _ in 0..5 {
1474                params.push(2.0); // CNOT marker
1475            }
1476
1477            mapping_circuit_params.push(params);
1478        }
1479
1480        Ok(Self {
1481            mapping_circuit_params,
1482            similarity_measures: Array2::zeros((100, 100)),
1483            transformations: Vec::new(),
1484            interference_patterns: Array3::zeros((10, 10, 10)),
1485        })
1486    }
1487
1488    /// Apply analogical reasoning
1489    pub fn apply_analogical_reasoning(&self, hidden_states: &Array3<f64>) -> Result<Array3<f64>> {
1490        // Simplified analogical reasoning
1491        let mut output = hidden_states.clone();
1492
1493        // Apply quantum interference patterns for analogical mapping
1494        let (batch_size, seq_len, hidden_dim) = hidden_states.dim();
1495
1496        for batch_idx in 0..batch_size {
1497            for seq_idx in 0..seq_len {
1498                let hidden = hidden_states.slice(s![batch_idx, seq_idx, ..]);
1499
1500                // Find analogical mappings (simplified)
1501                let analogy_weight = 0.05;
1502                let analogy_factor = (seq_idx as f64 * 0.1).sin() * analogy_weight;
1503
1504                output
1505                    .slice_mut(s![batch_idx, seq_idx, ..])
1506                    .zip_mut_with(&hidden, |orig, h| {
1507                        *orig = *orig + h * analogy_factor;
1508                    });
1509            }
1510        }
1511
1512        Ok(output)
1513    }
1514
1515    /// Get number of parameters
1516    pub fn num_parameters(&self) -> usize {
1517        self.similarity_measures.len()
1518            + self.transformations.iter().map(|t| t.len()).sum::<usize>()
1519            + self.interference_patterns.len()
1520    }
1521}
1522
1523impl Vocabulary {
1524    /// Create new vocabulary
1525    pub fn new(vocab_size: usize) -> Result<Self> {
1526        let mut token_to_id = HashMap::new();
1527        let mut id_to_token = HashMap::new();
1528        let mut special_tokens = HashMap::new();
1529
1530        // Add special tokens
1531        special_tokens.insert("<pad>".to_string(), 0);
1532        special_tokens.insert("<unk>".to_string(), 1);
1533        special_tokens.insert("<sos>".to_string(), 2);
1534        special_tokens.insert("<eos>".to_string(), 3);
1535
1536        token_to_id.insert("<pad>".to_string(), 0);
1537        token_to_id.insert("<unk>".to_string(), 1);
1538        token_to_id.insert("<sos>".to_string(), 2);
1539        token_to_id.insert("<eos>".to_string(), 3);
1540
1541        id_to_token.insert(0, "<pad>".to_string());
1542        id_to_token.insert(1, "<unk>".to_string());
1543        id_to_token.insert(2, "<sos>".to_string());
1544        id_to_token.insert(3, "<eos>".to_string());
1545
1546        // Create quantum embeddings
1547        let quantum_embeddings = Array2::from_shape_fn((vocab_size, 768), |(i, j)| {
1548            0.02 * (i as f64 * 0.1 + j as f64 * 0.01).sin()
1549        });
1550
1551        let tokenizer = SubwordTokenizer::new();
1552
1553        Ok(Self {
1554            token_to_id,
1555            id_to_token,
1556            special_tokens,
1557            tokenizer,
1558            quantum_embeddings,
1559        })
1560    }
1561
1562    /// Tokenize text
1563    pub fn tokenize(&self, text: &str) -> Result<Vec<usize>> {
1564        // Simplified tokenization
1565        let tokens: Vec<usize> = text
1566            .split_whitespace()
1567            .map(|word| {
1568                self.token_to_id.get(word).copied().unwrap_or(1) // UNK token
1569            })
1570            .collect();
1571
1572        Ok(tokens)
1573    }
1574
1575    /// Get token embedding
1576    pub fn get_embedding(&self, token_id: usize) -> Result<Array1<f64>> {
1577        if token_id < self.quantum_embeddings.nrows() {
1578            Ok(self.quantum_embeddings.row(token_id).to_owned())
1579        } else {
1580            Ok(self.quantum_embeddings.row(1).to_owned()) // UNK embedding
1581        }
1582    }
1583
1584    /// Decode token
1585    pub fn decode_token(&self, token_id: usize) -> Result<String> {
1586        Ok(self
1587            .id_to_token
1588            .get(&token_id)
1589            .cloned()
1590            .unwrap_or_else(|| "<unk>".to_string()))
1591    }
1592
1593    /// Check if token is end-of-sequence
1594    pub fn is_eos_token(&self, token_id: usize) -> bool {
1595        token_id == 3 // EOS token ID
1596    }
1597}
1598
1599impl SubwordTokenizer {
1600    /// Create new subword tokenizer
1601    pub fn new() -> Self {
1602        Self {
1603            merges: Vec::new(),
1604            frequencies: HashMap::new(),
1605            quantum_encodings: HashMap::new(),
1606        }
1607    }
1608}
1609
1610impl GenerationStatistics {
1611    /// Create new generation statistics
1612    pub fn new() -> Self {
1613        Self {
1614            total_tokens: 0,
1615            avg_speed: 0.0,
1616            quantum_coherence: 0.0,
1617            reasoning_steps: 0,
1618            memory_retrievals: 0,
1619            quality_metrics: QualityMetrics {
1620                perplexity: 0.0,
1621                coherence: 0.0,
1622                factual_accuracy: 0.0,
1623                logical_consistency: 0.0,
1624                quantum_advantage: 0.0,
1625            },
1626        }
1627    }
1628}
1629
1630impl GenerationConfig {
1631    /// Default generation configuration
1632    pub fn default() -> Self {
1633        Self {
1634            max_length: 100,
1635            temperature: 1.0,
1636            top_k: Some(50),
1637            top_p: Some(0.9),
1638            repetition_penalty: 1.1,
1639            use_quantum_reasoning: true,
1640            use_memory: true,
1641            chain_of_thought: false,
1642        }
1643    }
1644
1645    /// Creative generation configuration
1646    pub fn creative() -> Self {
1647        Self {
1648            max_length: 200,
1649            temperature: 1.2,
1650            top_k: Some(100),
1651            top_p: Some(0.95),
1652            repetition_penalty: 1.05,
1653            use_quantum_reasoning: true,
1654            use_memory: true,
1655            chain_of_thought: true,
1656        }
1657    }
1658
1659    /// Precise generation configuration
1660    pub fn precise() -> Self {
1661        Self {
1662            max_length: 50,
1663            temperature: 0.7,
1664            top_k: Some(20),
1665            top_p: Some(0.8),
1666            repetition_penalty: 1.2,
1667            use_quantum_reasoning: true,
1668            use_memory: true,
1669            chain_of_thought: true,
1670        }
1671    }
1672}
1673
1674#[cfg(test)]
1675mod tests {
1676    use super::*;
1677
1678    #[test]
1679    fn test_qllm_config_creation() {
1680        let config = QuantumLLMConfig::small(10000);
1681        assert_eq!(config.vocab_size, 10000);
1682        assert_eq!(config.transformer_config.model_dim, 768);
1683
1684        let large_config = QuantumLLMConfig::large(50000);
1685        assert_eq!(large_config.vocab_size, 50000);
1686        assert_eq!(large_config.transformer_config.model_dim, 1536);
1687    }
1688
1689    #[test]
1690    fn test_vocabulary_creation() {
1691        let vocab = Vocabulary::new(1000).expect("Failed to create vocabulary");
1692        assert_eq!(vocab.quantum_embeddings.nrows(), 1000);
1693        assert!(vocab.special_tokens.contains_key("<eos>"));
1694    }
1695
1696    #[test]
1697    fn test_generation_config() {
1698        let config = GenerationConfig::default();
1699        assert_eq!(config.max_length, 100);
1700        assert_eq!(config.temperature, 1.0);
1701
1702        let creative_config = GenerationConfig::creative();
1703        assert!(creative_config.temperature > 1.0);
1704        assert!(creative_config.chain_of_thought);
1705    }
1706
1707    #[test]
1708    fn test_quantum_memory_system() {
1709        let config = QuantumMemoryConfig::default();
1710        let memory_system = QuantumMemorySystem::new(config);
1711        assert!(memory_system.is_ok());
1712
1713        let memory = memory_system.expect("QuantumMemorySystem::new should succeed");
1714        assert!(!memory.associative_banks.is_empty());
1715    }
1716
1717    #[test]
1718    fn test_quantum_reasoning_module() {
1719        let config = QuantumReasoningConfig::default();
1720        let reasoning_module = QuantumReasoningModule::new(config);
1721        assert!(reasoning_module.is_ok());
1722
1723        let reasoning = reasoning_module.expect("QuantumReasoningModule::new should succeed");
1724        assert!(!reasoning.logical_circuits.is_empty());
1725    }
1726}