quantrs2_ml/
reinforcement.rs

1use crate::error::{MLError, Result};
2use crate::qnn::QuantumNeuralNetwork;
3use ndarray::{Array1, Array2};
4use quantrs2_circuit::prelude::Circuit;
5use std::collections::HashMap;
6
7/// Environment for reinforcement learning
8pub trait Environment {
9    /// Gets the current state
10    fn state(&self) -> Array1<f64>;
11
12    /// Gets the number of available actions
13    fn num_actions(&self) -> usize;
14
15    /// Takes an action and returns the reward and next state
16    fn step(&mut self, action: usize) -> Result<(Array1<f64>, f64, bool)>;
17
18    /// Resets the environment
19    fn reset(&mut self) -> Array1<f64>;
20}
21
22/// Agent for reinforcement learning
23pub trait QuantumAgent {
24    /// Gets an action for a given state
25    fn get_action(&self, state: &Array1<f64>) -> Result<usize>;
26
27    /// Updates the agent based on a reward
28    fn update(
29        &mut self,
30        state: &Array1<f64>,
31        action: usize,
32        reward: f64,
33        next_state: &Array1<f64>,
34        done: bool,
35    ) -> Result<()>;
36
37    /// Trains the agent on an environment
38    fn train(&mut self, env: &mut dyn Environment, episodes: usize) -> Result<f64>;
39
40    /// Evaluates the agent on an environment
41    fn evaluate(&self, env: &mut dyn Environment, episodes: usize) -> Result<f64>;
42}
43
44/// Reinforcement learning algorithm type
45#[derive(Debug, Clone, Copy)]
46pub enum ReinforcementLearningType {
47    /// Q-learning
48    QLearning,
49
50    /// SARSA
51    SARSA,
52
53    /// Deep Q-Network
54    DQN,
55
56    /// Policy Gradient
57    PolicyGradient,
58
59    /// Quantum Approximate Optimization Algorithm
60    QAOA,
61}
62
63/// Reinforcement learning with quantum circuit
64#[derive(Debug, Clone)]
65pub struct ReinforcementLearning {
66    /// Type of reinforcement learning algorithm
67    rl_type: ReinforcementLearningType,
68
69    /// Quantum neural network
70    qnn: QuantumNeuralNetwork,
71
72    /// Learning rate
73    learning_rate: f64,
74
75    /// Discount factor
76    discount_factor: f64,
77
78    /// Exploration rate
79    exploration_rate: f64,
80
81    /// Number of state dimensions
82    state_dim: usize,
83
84    /// Number of actions
85    action_dim: usize,
86}
87
88impl ReinforcementLearning {
89    /// Creates a new quantum reinforcement learning agent
90    pub fn new() -> Self {
91        // This is a placeholder implementation
92        // In a real system, this would create a proper QNN
93
94        let layers = vec![
95            crate::qnn::QNNLayerType::EncodingLayer { num_features: 4 },
96            crate::qnn::QNNLayerType::VariationalLayer { num_params: 16 },
97            crate::qnn::QNNLayerType::EntanglementLayer {
98                connectivity: "full".to_string(),
99            },
100            crate::qnn::QNNLayerType::VariationalLayer { num_params: 16 },
101            crate::qnn::QNNLayerType::MeasurementLayer {
102                measurement_basis: "computational".to_string(),
103            },
104        ];
105
106        let qnn = QuantumNeuralNetwork::new(
107            layers, 8, // 8 qubits
108            4, // 4 input features
109            2, // 2 output actions
110        )
111        .unwrap();
112
113        ReinforcementLearning {
114            rl_type: ReinforcementLearningType::QLearning,
115            qnn,
116            learning_rate: 0.01,
117            discount_factor: 0.95,
118            exploration_rate: 0.1,
119            state_dim: 4,
120            action_dim: 2,
121        }
122    }
123
124    /// Sets the reinforcement learning algorithm type
125    pub fn with_algorithm(mut self, rl_type: ReinforcementLearningType) -> Self {
126        self.rl_type = rl_type;
127        self
128    }
129
130    /// Sets the state dimension
131    pub fn with_state_dimension(mut self, state_dim: usize) -> Self {
132        self.state_dim = state_dim;
133        self
134    }
135
136    /// Sets the action dimension
137    pub fn with_action_dimension(mut self, action_dim: usize) -> Self {
138        self.action_dim = action_dim;
139        self
140    }
141
142    /// Sets the learning rate
143    pub fn with_learning_rate(mut self, learning_rate: f64) -> Self {
144        self.learning_rate = learning_rate;
145        self
146    }
147
148    /// Sets the discount factor
149    pub fn with_discount_factor(mut self, discount_factor: f64) -> Self {
150        self.discount_factor = discount_factor;
151        self
152    }
153
154    /// Sets the exploration rate
155    pub fn with_exploration_rate(mut self, exploration_rate: f64) -> Self {
156        self.exploration_rate = exploration_rate;
157        self
158    }
159
160    /// Encodes a state into a quantum circuit
161    fn encode_state(&self, state: &Array1<f64>) -> Result<Circuit<8>> {
162        // This is a dummy implementation
163        // In a real system, this would encode the state into a quantum circuit
164
165        let mut circuit = Circuit::<8>::new();
166
167        for i in 0..state.len().min(8) {
168            circuit.ry(i, state[i] * std::f64::consts::PI)?;
169        }
170
171        Ok(circuit)
172    }
173
174    /// Gets the Q-values for a state
175    fn get_q_values(&self, state: &Array1<f64>) -> Result<Array1<f64>> {
176        // This is a dummy implementation
177        // In a real system, this would compute Q-values using the QNN
178
179        let mut q_values = Array1::zeros(self.action_dim);
180
181        for i in 0..self.action_dim {
182            q_values[i] = 0.5 + 0.5 * rand::random::<f64>();
183        }
184
185        Ok(q_values)
186    }
187}
188
189impl QuantumAgent for ReinforcementLearning {
190    fn get_action(&self, state: &Array1<f64>) -> Result<usize> {
191        // Epsilon-greedy action selection
192        if rand::random::<f64>() < self.exploration_rate {
193            // Explore: random action
194            Ok(fastrand::usize(0..self.action_dim))
195        } else {
196            // Exploit: best action
197            let q_values = self.get_q_values(state)?;
198            let mut best_action = 0;
199            let mut best_value = q_values[0];
200
201            for i in 1..self.action_dim {
202                if q_values[i] > best_value {
203                    best_value = q_values[i];
204                    best_action = i;
205                }
206            }
207
208            Ok(best_action)
209        }
210    }
211
212    fn update(
213        &mut self,
214        _state: &Array1<f64>,
215        _action: usize,
216        _reward: f64,
217        _next_state: &Array1<f64>,
218        _done: bool,
219    ) -> Result<()> {
220        // This is a dummy implementation
221        // In a real system, this would update the QNN
222
223        Ok(())
224    }
225
226    fn train(&mut self, env: &mut dyn Environment, episodes: usize) -> Result<f64> {
227        let mut total_reward = 0.0;
228
229        for _ in 0..episodes {
230            let mut state = env.reset();
231            let mut episode_reward = 0.0;
232            let mut done = false;
233
234            while !done {
235                let action = self.get_action(&state)?;
236                let (next_state, reward, is_done) = env.step(action)?;
237
238                self.update(&state, action, reward, &next_state, is_done)?;
239
240                state = next_state;
241                episode_reward += reward;
242                done = is_done;
243            }
244
245            total_reward += episode_reward;
246        }
247
248        Ok(total_reward / episodes as f64)
249    }
250
251    fn evaluate(&self, env: &mut dyn Environment, episodes: usize) -> Result<f64> {
252        let mut total_reward = 0.0;
253
254        for _ in 0..episodes {
255            let mut state = env.reset();
256            let mut episode_reward = 0.0;
257            let mut done = false;
258
259            while !done {
260                let action = self.get_action(&state)?;
261                let (next_state, reward, is_done) = env.step(action)?;
262
263                state = next_state;
264                episode_reward += reward;
265                done = is_done;
266            }
267
268            total_reward += episode_reward;
269        }
270
271        Ok(total_reward / episodes as f64)
272    }
273}
274
275/// GridWorld environment for testing reinforcement learning
276pub struct GridWorldEnvironment {
277    /// Width of the grid
278    width: usize,
279
280    /// Height of the grid
281    height: usize,
282
283    /// Current position (x, y)
284    position: (usize, usize),
285
286    /// Goal position (x, y)
287    goal: (usize, usize),
288
289    /// Obstacle positions (x, y)
290    obstacles: Vec<(usize, usize)>,
291}
292
293impl GridWorldEnvironment {
294    /// Creates a new GridWorld environment
295    pub fn new(width: usize, height: usize) -> Self {
296        GridWorldEnvironment {
297            width,
298            height,
299            position: (0, 0),
300            goal: (width - 1, height - 1),
301            obstacles: Vec::new(),
302        }
303    }
304
305    /// Sets the goal position
306    pub fn with_goal(mut self, x: usize, y: usize) -> Self {
307        self.goal = (x.min(self.width - 1), y.min(self.height - 1));
308        self
309    }
310
311    /// Sets the obstacles
312    pub fn with_obstacles(mut self, obstacles: Vec<(usize, usize)>) -> Self {
313        self.obstacles = obstacles;
314        self
315    }
316
317    /// Checks if a position is an obstacle
318    pub fn is_obstacle(&self, x: usize, y: usize) -> bool {
319        self.obstacles.contains(&(x, y))
320    }
321
322    /// Checks if a position is the goal
323    pub fn is_goal(&self, x: usize, y: usize) -> bool {
324        (x, y) == self.goal
325    }
326}
327
328impl Environment for GridWorldEnvironment {
329    fn state(&self) -> Array1<f64> {
330        let mut state = Array1::zeros(4);
331
332        // Normalize position
333        state[0] = self.position.0 as f64 / self.width as f64;
334        state[1] = self.position.1 as f64 / self.height as f64;
335
336        // Normalize goal
337        state[2] = self.goal.0 as f64 / self.width as f64;
338        state[3] = self.goal.1 as f64 / self.height as f64;
339
340        state
341    }
342
343    fn num_actions(&self) -> usize {
344        4 // Up, Right, Down, Left
345    }
346
347    fn step(&mut self, action: usize) -> Result<(Array1<f64>, f64, bool)> {
348        // Calculate new position
349        let (x, y) = self.position;
350        let (new_x, new_y) = match action {
351            0 => (x, y.saturating_sub(1)), // Up
352            1 => (x + 1, y),               // Right
353            2 => (x, y + 1),               // Down
354            3 => (x.saturating_sub(1), y), // Left
355            _ => {
356                return Err(MLError::InvalidParameter(format!(
357                    "Invalid action: {}",
358                    action
359                )))
360            }
361        };
362
363        // Check if new position is valid
364        let new_x = new_x.min(self.width - 1);
365        let new_y = new_y.min(self.height - 1);
366
367        // Check if new position is an obstacle
368        if self.obstacles.contains(&(new_x, new_y)) {
369            // Stay in the same position
370            let reward = -1.0;
371            let done = false;
372            return Ok((self.state(), reward, done));
373        }
374
375        // Update position
376        self.position = (new_x, new_y);
377
378        // Calculate reward
379        let reward = if (new_x, new_y) == self.goal {
380            10.0 // Goal reached
381        } else {
382            -0.1 // Step penalty
383        };
384
385        // Check if done
386        let done = (new_x, new_y) == self.goal;
387
388        Ok((self.state(), reward, done))
389    }
390
391    fn reset(&mut self) -> Array1<f64> {
392        self.position = (0, 0);
393        self.state()
394    }
395}