quantrs2_ml/
reinforcement.rs

1use crate::error::{MLError, Result};
2use crate::qnn::QuantumNeuralNetwork;
3use quantrs2_circuit::prelude::Circuit;
4use scirs2_core::ndarray::{Array1, Array2};
5use scirs2_core::random::prelude::*;
6use std::collections::HashMap;
7
8/// Environment for reinforcement learning
9pub trait Environment {
10    /// Gets the current state
11    fn state(&self) -> Array1<f64>;
12
13    /// Gets the number of available actions
14    fn num_actions(&self) -> usize;
15
16    /// Takes an action and returns the reward and next state
17    fn step(&mut self, action: usize) -> Result<(Array1<f64>, f64, bool)>;
18
19    /// Resets the environment
20    fn reset(&mut self) -> Array1<f64>;
21}
22
23/// Agent for reinforcement learning
24pub trait QuantumAgent {
25    /// Gets an action for a given state
26    fn get_action(&self, state: &Array1<f64>) -> Result<usize>;
27
28    /// Updates the agent based on a reward
29    fn update(
30        &mut self,
31        state: &Array1<f64>,
32        action: usize,
33        reward: f64,
34        next_state: &Array1<f64>,
35        done: bool,
36    ) -> Result<()>;
37
38    /// Trains the agent on an environment
39    fn train(&mut self, env: &mut dyn Environment, episodes: usize) -> Result<f64>;
40
41    /// Evaluates the agent on an environment
42    fn evaluate(&self, env: &mut dyn Environment, episodes: usize) -> Result<f64>;
43}
44
45/// Reinforcement learning algorithm type
46#[derive(Debug, Clone, Copy)]
47pub enum ReinforcementLearningType {
48    /// Q-learning
49    QLearning,
50
51    /// SARSA
52    SARSA,
53
54    /// Deep Q-Network
55    DQN,
56
57    /// Policy Gradient
58    PolicyGradient,
59
60    /// Quantum Approximate Optimization Algorithm
61    QAOA,
62}
63
64/// Reinforcement learning with quantum circuit
65#[derive(Debug, Clone)]
66pub struct ReinforcementLearning {
67    /// Type of reinforcement learning algorithm
68    rl_type: ReinforcementLearningType,
69
70    /// Quantum neural network
71    qnn: QuantumNeuralNetwork,
72
73    /// Learning rate
74    learning_rate: f64,
75
76    /// Discount factor
77    discount_factor: f64,
78
79    /// Exploration rate
80    exploration_rate: f64,
81
82    /// Number of state dimensions
83    state_dim: usize,
84
85    /// Number of actions
86    action_dim: usize,
87}
88
89impl ReinforcementLearning {
90    /// Creates a new quantum reinforcement learning agent
91    ///
92    /// # Errors
93    /// Returns an error if the quantum neural network cannot be created
94    pub fn new() -> Result<Self> {
95        // This is a placeholder implementation
96        // In a real system, this would create a proper QNN
97
98        let layers = vec![
99            crate::qnn::QNNLayerType::EncodingLayer { num_features: 4 },
100            crate::qnn::QNNLayerType::VariationalLayer { num_params: 16 },
101            crate::qnn::QNNLayerType::EntanglementLayer {
102                connectivity: "full".to_string(),
103            },
104            crate::qnn::QNNLayerType::VariationalLayer { num_params: 16 },
105            crate::qnn::QNNLayerType::MeasurementLayer {
106                measurement_basis: "computational".to_string(),
107            },
108        ];
109
110        let qnn = QuantumNeuralNetwork::new(
111            layers, 8, // 8 qubits
112            4, // 4 input features
113            2, // 2 output actions
114        )?;
115
116        Ok(ReinforcementLearning {
117            rl_type: ReinforcementLearningType::QLearning,
118            qnn,
119            learning_rate: 0.01,
120            discount_factor: 0.95,
121            exploration_rate: 0.1,
122            state_dim: 4,
123            action_dim: 2,
124        })
125    }
126
127    /// Sets the reinforcement learning algorithm type
128    pub fn with_algorithm(mut self, rl_type: ReinforcementLearningType) -> Self {
129        self.rl_type = rl_type;
130        self
131    }
132
133    /// Sets the state dimension
134    pub fn with_state_dimension(mut self, state_dim: usize) -> Self {
135        self.state_dim = state_dim;
136        self
137    }
138
139    /// Sets the action dimension
140    pub fn with_action_dimension(mut self, action_dim: usize) -> Self {
141        self.action_dim = action_dim;
142        self
143    }
144
145    /// Sets the learning rate
146    pub fn with_learning_rate(mut self, learning_rate: f64) -> Self {
147        self.learning_rate = learning_rate;
148        self
149    }
150
151    /// Sets the discount factor
152    pub fn with_discount_factor(mut self, discount_factor: f64) -> Self {
153        self.discount_factor = discount_factor;
154        self
155    }
156
157    /// Sets the exploration rate
158    pub fn with_exploration_rate(mut self, exploration_rate: f64) -> Self {
159        self.exploration_rate = exploration_rate;
160        self
161    }
162
163    /// Encodes a state into a quantum circuit
164    fn encode_state(&self, state: &Array1<f64>) -> Result<Circuit<8>> {
165        // This is a dummy implementation
166        // In a real system, this would encode the state into a quantum circuit
167
168        let mut circuit = Circuit::<8>::new();
169
170        for i in 0..state.len().min(8) {
171            circuit.ry(i, state[i] * std::f64::consts::PI)?;
172        }
173
174        Ok(circuit)
175    }
176
177    /// Gets the Q-values for a state
178    fn get_q_values(&self, state: &Array1<f64>) -> Result<Array1<f64>> {
179        // This is a dummy implementation
180        // In a real system, this would compute Q-values using the QNN
181
182        let mut q_values = Array1::zeros(self.action_dim);
183
184        for i in 0..self.action_dim {
185            q_values[i] = 0.5 + 0.5 * thread_rng().gen::<f64>();
186        }
187
188        Ok(q_values)
189    }
190}
191
192impl QuantumAgent for ReinforcementLearning {
193    fn get_action(&self, state: &Array1<f64>) -> Result<usize> {
194        // Epsilon-greedy action selection
195        if thread_rng().gen::<f64>() < self.exploration_rate {
196            // Explore: random action
197            Ok(fastrand::usize(0..self.action_dim))
198        } else {
199            // Exploit: best action
200            let q_values = self.get_q_values(state)?;
201            let mut best_action = 0;
202            let mut best_value = q_values[0];
203
204            for i in 1..self.action_dim {
205                if q_values[i] > best_value {
206                    best_value = q_values[i];
207                    best_action = i;
208                }
209            }
210
211            Ok(best_action)
212        }
213    }
214
215    fn update(
216        &mut self,
217        _state: &Array1<f64>,
218        _action: usize,
219        _reward: f64,
220        _next_state: &Array1<f64>,
221        _done: bool,
222    ) -> Result<()> {
223        // This is a dummy implementation
224        // In a real system, this would update the QNN
225
226        Ok(())
227    }
228
229    fn train(&mut self, env: &mut dyn Environment, episodes: usize) -> Result<f64> {
230        let mut total_reward = 0.0;
231
232        for _ in 0..episodes {
233            let mut state = env.reset();
234            let mut episode_reward = 0.0;
235            let mut done = false;
236
237            while !done {
238                let action = self.get_action(&state)?;
239                let (next_state, reward, is_done) = env.step(action)?;
240
241                self.update(&state, action, reward, &next_state, is_done)?;
242
243                state = next_state;
244                episode_reward += reward;
245                done = is_done;
246            }
247
248            total_reward += episode_reward;
249        }
250
251        Ok(total_reward / episodes as f64)
252    }
253
254    fn evaluate(&self, env: &mut dyn Environment, episodes: usize) -> Result<f64> {
255        let mut total_reward = 0.0;
256
257        for _ in 0..episodes {
258            let mut state = env.reset();
259            let mut episode_reward = 0.0;
260            let mut done = false;
261
262            while !done {
263                let action = self.get_action(&state)?;
264                let (next_state, reward, is_done) = env.step(action)?;
265
266                state = next_state;
267                episode_reward += reward;
268                done = is_done;
269            }
270
271            total_reward += episode_reward;
272        }
273
274        Ok(total_reward / episodes as f64)
275    }
276}
277
278/// GridWorld environment for testing reinforcement learning
279pub struct GridWorldEnvironment {
280    /// Width of the grid
281    width: usize,
282
283    /// Height of the grid
284    height: usize,
285
286    /// Current position (x, y)
287    position: (usize, usize),
288
289    /// Goal position (x, y)
290    goal: (usize, usize),
291
292    /// Obstacle positions (x, y)
293    obstacles: Vec<(usize, usize)>,
294}
295
296impl GridWorldEnvironment {
297    /// Creates a new GridWorld environment
298    pub fn new(width: usize, height: usize) -> Self {
299        GridWorldEnvironment {
300            width,
301            height,
302            position: (0, 0),
303            goal: (width - 1, height - 1),
304            obstacles: Vec::new(),
305        }
306    }
307
308    /// Sets the goal position
309    pub fn with_goal(mut self, x: usize, y: usize) -> Self {
310        self.goal = (x.min(self.width - 1), y.min(self.height - 1));
311        self
312    }
313
314    /// Sets the obstacles
315    pub fn with_obstacles(mut self, obstacles: Vec<(usize, usize)>) -> Self {
316        self.obstacles = obstacles;
317        self
318    }
319
320    /// Checks if a position is an obstacle
321    pub fn is_obstacle(&self, x: usize, y: usize) -> bool {
322        self.obstacles.contains(&(x, y))
323    }
324
325    /// Checks if a position is the goal
326    pub fn is_goal(&self, x: usize, y: usize) -> bool {
327        (x, y) == self.goal
328    }
329}
330
331impl Environment for GridWorldEnvironment {
332    fn state(&self) -> Array1<f64> {
333        let mut state = Array1::zeros(4);
334
335        // Normalize position
336        state[0] = self.position.0 as f64 / self.width as f64;
337        state[1] = self.position.1 as f64 / self.height as f64;
338
339        // Normalize goal
340        state[2] = self.goal.0 as f64 / self.width as f64;
341        state[3] = self.goal.1 as f64 / self.height as f64;
342
343        state
344    }
345
346    fn num_actions(&self) -> usize {
347        4 // Up, Right, Down, Left
348    }
349
350    fn step(&mut self, action: usize) -> Result<(Array1<f64>, f64, bool)> {
351        // Calculate new position
352        let (x, y) = self.position;
353        let (new_x, new_y) = match action {
354            0 => (x, y.saturating_sub(1)), // Up
355            1 => (x + 1, y),               // Right
356            2 => (x, y + 1),               // Down
357            3 => (x.saturating_sub(1), y), // Left
358            _ => {
359                return Err(MLError::InvalidParameter(format!(
360                    "Invalid action: {}",
361                    action
362                )))
363            }
364        };
365
366        // Check if new position is valid
367        let new_x = new_x.min(self.width - 1);
368        let new_y = new_y.min(self.height - 1);
369
370        // Check if new position is an obstacle
371        if self.obstacles.contains(&(new_x, new_y)) {
372            // Stay in the same position
373            let reward = -1.0;
374            let done = false;
375            return Ok((self.state(), reward, done));
376        }
377
378        // Update position
379        self.position = (new_x, new_y);
380
381        // Calculate reward
382        let reward = if (new_x, new_y) == self.goal {
383            10.0 // Goal reached
384        } else {
385            -0.1 // Step penalty
386        };
387
388        // Check if done
389        let done = (new_x, new_y) == self.goal;
390
391        Ok((self.state(), reward, done))
392    }
393
394    fn reset(&mut self) -> Array1<f64> {
395        self.position = (0, 0);
396        self.state()
397    }
398}