pyo3 0.9.0

Bindings to Python interpreter
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
# Python Classes

## Defining a new class

To define a custom Python class, a Rust struct needs to be annotated with the
`#[pyclass]` attribute.

```rust
# use pyo3::prelude::*;
#[pyclass]
struct MyClass {
    num: i32,
    debug: bool,
}
```

The above example generates implementations for [`PyTypeInfo`], [`PyTypeObject`],
and [`PyClass`] for `MyClass`.

Specifically, the following implementation is generated:

```rust
use pyo3::prelude::*;

/// Class for demonstration
struct MyClass {
    num: i32,
    debug: bool,
}

impl pyo3::pyclass::PyClassAlloc for MyClass {}

unsafe impl pyo3::PyTypeInfo for MyClass {
    type Type = MyClass;
    type BaseType = PyAny;
    type BaseLayout = pyo3::pycell::PyCellBase<PyAny>;
    type Layout = PyCell<Self>;
    type Initializer = PyClassInitializer<Self>;
    type AsRefTarget = PyCell<Self>;

    const NAME: &'static str = "MyClass";
    const MODULE: Option<&'static str> = None;
    const DESCRIPTION: &'static str = "Class for demonstration";
    const FLAGS: usize = 0;

    #[inline]
    fn type_object() -> &'static pyo3::ffi::PyTypeObject {
        use pyo3::type_object::LazyStaticType;
        static TYPE_OBJECT: LazyStaticType = LazyStaticType::new();
        TYPE_OBJECT.get_or_init::<Self>()
    }
}

impl pyo3::pyclass::PyClass for MyClass {
    type Dict = pyo3::pyclass_slots::PyClassDummySlot;
    type WeakRef = pyo3::pyclass_slots::PyClassDummySlot;
    type BaseNativeType = PyAny;
}

impl pyo3::IntoPy<PyObject> for MyClass {
    fn into_py(self, py: pyo3::Python) -> pyo3::PyObject {
        pyo3::IntoPy::into_py(pyo3::Py::new(py, self).unwrap(), py)
    }
}

pub struct MyClassGeneratedPyo3Inventory {
    methods: &'static [pyo3::class::PyMethodDefType],
}

impl pyo3::class::methods::PyMethodsInventory for MyClassGeneratedPyo3Inventory {
    fn new(methods: &'static [pyo3::class::PyMethodDefType]) -> Self {
        Self { methods }
    }

    fn get_methods(&self) -> &'static [pyo3::class::PyMethodDefType] {
        self.methods
    }
}

impl pyo3::class::methods::PyMethodsInventoryDispatch for MyClass {
    type InventoryType = MyClassGeneratedPyo3Inventory;
}

pyo3::inventory::collect!(MyClassGeneratedPyo3Inventory);
# let gil = Python::acquire_gil();
# let py = gil.python();
# let cls = py.get_type::<MyClass>();
# pyo3::py_run!(py, cls, "assert cls.__name__ == 'MyClass'")
```

## Adding the class to a module

Custom Python classes can then be added to a module using `add_class()`.

```rust
# use pyo3::prelude::*;
# #[pyclass]
# struct MyClass {
#    num: i32,
#    debug: bool,
# }
#[pymodule]
fn mymodule(_py: Python, m: &PyModule) -> PyResult<()> {
    m.add_class::<MyClass>()?;
    Ok(())
}
```

## PyCell and interior mutability

You sometimes need to convert your `pyclass` into a Python object and access it
from Rust code (e.g., for testing it).
[`PyCell`] is the primary interface for that.

`PyCell<T: PyClass>` is always allocated in the Python heap, so Rust doesn't have ownership of it.
In other words, Rust code can only extract a `&PyCell<T>`, not a `PyCell<T>`.

Thus, to mutate data behind `&PyCell` safely, PyO3 employs the
[Interior Mutability Pattern](https://doc.rust-lang.org/book/ch15-05-interior-mutability.html)
like [`RefCell`].

Users who are familiar with `RefCell` can use `PyCell` just like `RefCell`.

For users who are not very familiar with `RefCell`, here is a reminder of Rust's rules of borrowing:
- At any given time, you can have either (but not both of) one mutable reference or any number of immutable references.
- References must always be valid.

`PyCell`, like `RefCell`, ensures these borrowing rules by tracking references at runtime.

```rust
# use pyo3::prelude::*;
# use pyo3::types::PyDict;
#[pyclass]
struct MyClass {
    #[pyo3(get)]
    num: i32,
    debug: bool,
}
let gil = Python::acquire_gil();
let py = gil.python();
let obj = PyCell::new(py, MyClass { num: 3, debug: true }).unwrap();
{
    let obj_ref = obj.borrow(); // Get PyRef
    assert_eq!(obj_ref.num, 3);
    // You cannot get PyRefMut unless all PyRefs are dropped
    assert!(obj.try_borrow_mut().is_err());
}
{
    let mut obj_mut = obj.borrow_mut(); // Get PyRefMut
    obj_mut.num = 5;
    // You cannot get any other refs until the PyRefMut is dropped
    assert!(obj.try_borrow().is_err());
    assert!(obj.try_borrow_mut().is_err());
}

// You can convert `&PyCell` to a Python object
pyo3::py_run!(py, obj, "assert obj.num == 5")
```

`&PyCell<T>` is bounded by the same lifetime as a [`GILGuard`].
To make the object longer lived (for example, to store it in a struct on the
Rust side), you can use `Py<T>`, which stores an object longer than the GIL
lifetime, and therefore needs a `Python<'_>` token to access.

```rust
# use pyo3::prelude::*;
#[pyclass]
struct MyClass {
    num: i32,
}
fn return_myclass() -> Py<MyClass> {
    let gil = Python::acquire_gil();
    let py = gil.python();
    Py::new(py, MyClass { num: 1 }).unwrap()
}
let gil = Python::acquire_gil();
let obj = return_myclass();
let cell = obj.as_ref(gil.python()); // AsPyRef::as_ref returns &PyCell
let obj_ref = cell.borrow(); // Get PyRef<T>
assert_eq!(obj_ref.num, 1);
```

## Customizing the class

The `#[pyclass]` macro accepts the following parameters:

* `name=XXX` - Set the class name shown in Python code. By default, the struct name is used as the class name.
* `freelist=XXX` - The `freelist` parameter adds support of free allocation list to custom class.
The performance improvement applies to types that are often created and deleted in a row,
so that they can benefit from a freelist. `XXX` is a number of items for the free list.
* `gc` - Classes with the `gc` parameter participate in Python garbage collection.
If a custom class contains references to other Python objects that can be collected, the [`PyGCProtocol`] trait has to be implemented.
* `weakref` - Adds support for Python weak references.
* `extends=BaseType` - Use a custom base class. The base `BaseType` must implement `PyTypeInfo`.
* `subclass` - Allows Python classes to inherit from this class.
* `dict` - Adds `__dict__` support, so that the instances of this type have a dictionary containing arbitrary instance variables.
* `module="XXX"` - Set the name of the module the class will be shown as defined in. If not given, the class
  will be a virtual member of the `builtins` module.

## Constructor

By default it is not possible to create an instance of a custom class from Python code.
To declare a constructor, you need to define a method and annotate it with the `#[new]`
attribute. Only Python's `__new__` method can be specified, `__init__` is not available.

```rust
# use pyo3::prelude::*;
#[pyclass]
struct MyClass {
    num: i32,
}

#[pymethods]
impl MyClass {
    #[new]
    fn new(num: i32) -> Self {
        MyClass { num }
    }
}
```

If no method marked with `#[new]` is declared, object instances can only be
created from Rust, but not from Python.

For arguments, see the `Method arguments` section below.

### Return type

Generally, `#[new]` method have to return `T: Into<PyClassInitializer<Self>>` or
`PyResult<T> where T: Into<PyClassInitializer<Self>>`.

For constructors that may fail, you should wrap the return type in a PyResult as well.
Consult the table below to determine which type your constructor should return:

|                             | **Cannot fail**           | **May fail**                      |
|-----------------------------|---------------------------|-----------------------------------|
|**No inheritance**           | `T`                       | `PyResult<T>`                     |
|**Inheritance(T Inherits U)**| `(T, U)`                  | `PyResult<(T, U)>`                |
|**Inheritance(General Case)**| [`PyClassInitializer<T>`] | `PyResult<PyClassInitializer<T>>` |

## Inheritance

By default, `PyAny` is used as the base class. To override this default,
use the `extends` parameter for `pyclass` with the full path to the base class.

For convenience, `(T, U)` implements `Into<PyClassInitializer<T>>` where `U` is the
baseclass of `T`.
But for more deeply nested inheritance, you have to return `PyClassInitializer<T>`
explicitly.

To get a parent class from a child, use [`PyRef`] instead of `&self` for methods,
or [`PyRefMut`] instead of `&mut self`.
Then you can access a parent class by `self_.as_ref()` as `&Self::BaseClass`,
or by `self_.into_super()` as `PyRef<Self::BaseClass>`.

```rust
# use pyo3::prelude::*;

#[pyclass]
struct BaseClass {
    val1: usize,
}

#[pymethods]
impl BaseClass {
    #[new]
    fn new() -> Self {
        BaseClass { val1: 10 }
    }

    pub fn method(&self) -> PyResult<usize> {
        Ok(self.val1)
    }
}

#[pyclass(extends=BaseClass)]
struct SubClass {
    val2: usize,
}

#[pymethods]
impl SubClass {
    #[new]
    fn new() -> (Self, BaseClass) {
        (SubClass { val2: 15 }, BaseClass::new())
    }

    fn method2(self_: PyRef<Self>) -> PyResult<usize> {
        let super_ = self_.as_ref();  // Get &BaseClass
        super_.method().map(|x| x * self_.val2)
    }
}

#[pyclass(extends=SubClass)]
struct SubSubClass {
    val3: usize,
}

#[pymethods]
impl SubSubClass {
    #[new]
    fn new() -> PyClassInitializer<Self> {
        PyClassInitializer::from(SubClass::new())
            .add_subclass(SubSubClass{val3: 20})
    }

    fn method3(self_: PyRef<Self>) -> PyResult<usize> {
        let v = self_.val3;
        let super_ = self_.into_super();  // Get PyRef<SubClass>
        SubClass::method2(super_).map(|x| x * v)
    }
}
# let gil = Python::acquire_gil();
# let py = gil.python();
# let subsub = pyo3::PyCell::new(py, SubSubClass::new()).unwrap();
# pyo3::py_run!(py, subsub, "assert subsub.method3() == 3000")
```

You can also inherit native types such as `PyDict`, if they implement
[`PySizedLayout`](https://pyo3.rs/master/doc/pyo3/type_object/trait.PySizedLayout.html).

However, because of some technical problems, we don't currently provide safe upcasting methods for types
that inherit native types. Even in such cases, you can unsafely get a base class by raw pointer conversion.

```rust
# use pyo3::prelude::*;
use pyo3::types::PyDict;
use pyo3::{AsPyPointer, PyNativeType};
use std::collections::HashMap;

#[pyclass(extends=PyDict)]
#[derive(Default)]
struct DictWithCounter {
    counter: HashMap<String, usize>,
}

#[pymethods]
impl DictWithCounter {
    #[new]
    fn new() -> Self {
        Self::default()
    }
    fn set(mut self_: PyRefMut<Self>, key: String, value: &PyAny) -> PyResult<()> {
        self_.counter.entry(key.clone()).or_insert(0);
        let py = self_.py();
        let dict: &PyDict = unsafe { py.from_borrowed_ptr_or_err(self_.as_ptr())? };
        dict.set_item(key, value)
    }
}
# let gil = Python::acquire_gil();
# let py = gil.python();
# let cnt = pyo3::PyCell::new(py, DictWithCounter::new()).unwrap();
# pyo3::py_run!(py, cnt, "cnt.set('abc', 10); assert cnt['abc'] == 10")
```

If `SubClass` does not provide a baseclass initialization, the compilation fails.
```compile_fail
# use pyo3::prelude::*;

#[pyclass]
struct BaseClass {
    val1: usize,
}

#[pyclass(extends=BaseClass)]
struct SubClass {
    val2: usize,
}

#[pymethods]
impl SubClass {
    #[new]
    fn new() -> Self {
        SubClass { val2: 15 }
    }
}
```

## Object properties

Property descriptor methods can be defined in a `#[pymethods]` `impl` block only and have to be
annotated with `#[getter]` and `#[setter]` attributes. For example:

```rust
# use pyo3::prelude::*;
#[pyclass]
struct MyClass {
    num: i32,
}

#[pymethods]
impl MyClass {
    #[getter]
    fn num(&self) -> PyResult<i32> {
        Ok(self.num)
    }
}
```

A getter or setter's function name is used as the property name by default. There are several
ways how to override the name.

If a function name starts with `get_` or `set_` for getter or setter respectively,
the descriptor name becomes the function name with this prefix removed. This is also useful in case of
Rust keywords like `type`
([raw identifiers](https://doc.rust-lang.org/edition-guide/rust-2018/module-system/raw-identifiers.html)
can be used since Rust 2018).

```rust
# use pyo3::prelude::*;
# #[pyclass]
# struct MyClass {
#     num: i32,
# }
#[pymethods]
impl MyClass {
    #[getter]
    fn get_num(&self) -> PyResult<i32> {
        Ok(self.num)
    }

    #[setter]
    fn set_num(&mut self, value: i32) -> PyResult<()> {
        self.num = value;
        Ok(())
    }
}
```

In this case, a property `num` is defined and available from Python code as `self.num`.

Both the `#[getter]` and `#[setter]` attributes accept one parameter.
If this parameter is specified, it is used as the property name, i.e.

```rust
# use pyo3::prelude::*;
# #[pyclass]
# struct MyClass {
#    num: i32,
# }
#[pymethods]
impl MyClass {
    #[getter(number)]
    fn num(&self) -> PyResult<i32> {
        Ok(self.num)
    }

    #[setter(number)]
    fn set_num(&mut self, value: i32) -> PyResult<()> {
        self.num = value;
        Ok(())
    }
}
```

In this case, the property `number` is defined and available from Python code as `self.number`.

For simple cases where a member variable is just read and written with no side effects, you
can also declare getters and setters in your Rust struct field definition, for example:

```rust
# use pyo3::prelude::*;
#[pyclass]
struct MyClass {
    #[pyo3(get, set)]
    num: i32
}
```

Then it is available from Python code as `self.num`.

## Instance methods

To define a Python compatible method, an `impl` block for your struct has to be annotated with the
`#[pymethods]` attribute. PyO3 generates Python compatible wrappers for all functions in this
block with some variations, like descriptors, class method static methods, etc.

Since Rust allows any number of `impl` blocks, you can easily split methods
between those accessible to Python (and Rust) and those accessible only to Rust.

```rust
# use pyo3::prelude::*;
# #[pyclass]
# struct MyClass {
#     num: i32,
# }
#[pymethods]
impl MyClass {
    fn method1(&self) -> PyResult<i32> {
        Ok(10)
    }

    fn set_method(&mut self, value: i32) -> PyResult<()> {
        self.num = value;
        Ok(())
    }
}
```

Calls to these methods are protected by the GIL, so both `&self` and `&mut self` can be used.
The return type must be `PyResult<T>` or `T` for some `T` that implements `IntoPy<PyObject>`;
the latter is allowed if the method cannot raise Python exceptions.

A `Python` parameter can be specified as part of method signature, in this case the `py` argument
gets injected by the method wrapper, e.g.

```rust
# use pyo3::prelude::*;
# #[pyclass]
# struct MyClass {
#     num: i32,
#     debug: bool,
# }
#[pymethods]
impl MyClass {
    fn method2(&self, py: Python) -> PyResult<i32> {
        Ok(10)
    }
}
```

From the Python perspective, the `method2` in this example does not accept any arguments.

## Class methods

To create a class method for a custom class, the method needs to be annotated
with the `#[classmethod]` attribute.

```rust
# use pyo3::prelude::*;
# use pyo3::types::PyType;
# #[pyclass]
# struct MyClass {
#     num: i32,
#     debug: bool,
# }
#[pymethods]
impl MyClass {
    #[classmethod]
    fn cls_method(cls: &PyType) -> PyResult<i32> {
        Ok(10)
    }
}
```

Declares a class method callable from Python.

* The first parameter is the type object of the class on which the method is called.
  This may be the type object of a derived class.
* The first parameter implicitly has type `&PyType`.
* For details on `parameter-list`, see the documentation of `Method arguments` section.
* The return type must be `PyResult<T>` or `T` for some `T` that implements `IntoPy<PyObject>`.

## Static methods

To create a static method for a custom class, the method needs to be annotated with the
`#[staticmethod]` attribute. The return type must be `T` or `PyResult<T>` for some `T` that implements
`IntoPy<PyObject>`.

```rust
# use pyo3::prelude::*;
# #[pyclass]
# struct MyClass {
#     num: i32,
#     debug: bool,
# }
#[pymethods]
impl MyClass {
    #[staticmethod]
    fn static_method(param1: i32, param2: &str) -> PyResult<i32> {
        Ok(10)
    }
}
```

## Callable objects

To specify a custom `__call__` method for a custom class, the method needs to be annotated with
the `#[call]` attribute. Arguments of the method are specified as for instance methods.

```rust
# use pyo3::prelude::*;
use pyo3::types::PyTuple;
# #[pyclass]
# struct MyClass {
#     num: i32,
#     debug: bool,
# }
#[pymethods]
impl MyClass {
    #[call]
    #[args(args="*")]
    fn __call__(&self, args: &PyTuple) -> PyResult<i32> {
        println!("MyClass has been called");
        Ok(self.num)
    }
}
```

## Method arguments

By default, PyO3 uses function signatures to determine which arguments are required. Then it scans
the incoming `args` and `kwargs` parameters. If it can not find all required
parameters, it raises a `TypeError` exception. It is possible to override the default behavior
with the `#[args(...)]` attribute. This attribute accepts a comma separated list of parameters in
the form of `attr_name="default value"`. Each parameter has to match the method parameter by name.

Each parameter can be one of the following types:

 * `"*"`: var arguments separator, each parameter defined after `"*"` is a keyword-only parameter.
   Corresponds to python's `def meth(*, arg1.., arg2=..)`.
 * `args="*"`: "args" is var args, corresponds to Python's `def meth(*args)`. Type of the `args`
   parameter has to be `&PyTuple`.
 * `kwargs="**"`: "kwargs" receives keyword arguments, corresponds to Python's `def meth(**kwargs)`.
   The type of the `kwargs` parameter has to be `Option<&PyDict>`.
 * `arg="Value"`: arguments with default value. Corresponds to Python's `def meth(arg=Value)`.
   If the `arg` argument is defined after var arguments, it is treated as a keyword-only argument.
   Note that `Value` has to be valid rust code, PyO3 just inserts it into the generated
   code unmodified.

Example:
```rust
# use pyo3::prelude::*;
use pyo3::types::{PyDict, PyTuple};
#
# #[pyclass]
# struct MyClass {
#     num: i32,
#     debug: bool,
# }
#[pymethods]
impl MyClass {
    #[new]
    #[args(num = "-1", debug = "true")]
    fn new(num: i32, debug: bool) -> Self {
        MyClass { num, debug }
    }

    #[args(
        num = "10",
        debug = "true",
        py_args = "*",
        name = "\"Hello\"",
        py_kwargs = "**"
    )]
    fn method(
        &mut self,
        num: i32,
        debug: bool,
        name: &str,
        py_args: &PyTuple,
        py_kwargs: Option<&PyDict>,
    ) -> PyResult<String> {
        self.debug = debug;
        self.num = num;
        Ok(format!(
            "py_args={:?}, py_kwargs={:?}, name={}, num={}, debug={}",
            py_args, py_kwargs, name, self.num, self.debug
        ))
    }

    fn make_change(&mut self, num: i32, debug: bool) -> PyResult<String> {
        self.num = num;
        self.debug = debug;
        Ok(format!("num={}, debug={}", self.num, self.debug))
    }
}
```
N.B. the position of the `"*"` argument (if included) controls the system of handling positional and keyword arguments. In Python:
```python
import mymodule

mc = mymodule.MyClass()
print(mc.method(44, False, "World", 666, x=44, y=55))
print(mc.method(num=-1, name="World"))
print(mc.make_change(44, False))
print(mc.make_change(debug=False, num=-1))
```
Produces output:
```text
py_args=('World', 666), py_kwargs=Some({'x': 44, 'y': 55}), name=Hello, num=44, debug=false
py_args=(), py_kwargs=None, name=World, num=-1, debug=true
num=44, debug=false
num=-1, debug=false
```

## Class customizations

Python's object model defines several protocols for different object behavior, like sequence,
mapping or number protocols. PyO3 defines separate traits for each of them. To provide specific
Python object behavior, you need to implement the specific trait for your struct. Important note,
each protocol implementation block has to be annotated with the `#[pyproto]` attribute.

### Basic object customization

The [`PyObjectProtocol`] trait provides several basic customizations.

#### Attribute access

To customize object attribute access, define the following methods:

  * `fn __getattr__(&self, name: FromPyObject) -> PyResult<impl IntoPy<PyObject>>`
  * `fn __setattr__(&mut self, name: FromPyObject, value: FromPyObject) -> PyResult<()>`
  * `fn __delattr__(&mut self, name: FromPyObject) -> PyResult<()>`

Each method corresponds to Python's `self.attr`, `self.attr = value` and `del self.attr` code.

#### String Conversions

  * `fn __repr__(&self) -> PyResult<impl ToPyObject<ObjectType=PyString>>`
  * `fn __str__(&self) -> PyResult<impl ToPyObject<ObjectType=PyString>>`

    Possible return types for `__str__` and `__repr__` are `PyResult<String>` or `PyResult<PyString>`.

  * `fn __bytes__(&self) -> PyResult<PyBytes>`

    Provides the conversion to `bytes`.

  * `fn __format__(&self, format_spec: &str) -> PyResult<impl ToPyObject<ObjectType=PyString>>`

    Special method that is used by the `format()` builtin and the `str.format()` method.
    Possible return types are `PyResult<String>` or `PyResult<PyString>`.

#### Comparison operators

  * `fn __richcmp__(&self, other: impl FromPyObject, op: CompareOp) -> PyResult<impl ToPyObject>`

    Overloads Python comparison operations (`==`, `!=`, `<`, `<=`, `>`, and `>=`).
    The `op` argument indicates the comparison operation being performed.
    The return type will normally be `PyResult<bool>`, but any Python object can be returned.
    If `other` is not of the type specified in the signature, the generated code will
    automatically `return NotImplemented`.

  * `fn __hash__(&self) -> PyResult<impl PrimInt>`

    Objects that compare equal must have the same hash value.
    The return type must be `PyResult<T>` where `T` is one of Rust's primitive integer types.

#### Other methods

  * `fn __bool__(&self) -> PyResult<bool>`

    Determines the "truthyness" of the object.

### Garbage Collector Integration

If your type owns references to other Python objects, you will need to
integrate with Python's garbage collector so that the GC is aware of
those references.
To do this, implement the [`PyGCProtocol`] trait for your struct.
It includes two methods `__traverse__` and `__clear__`.
These correspond to the slots `tp_traverse` and `tp_clear` in the Python C API.
`__traverse__` must call `visit.call()` for each reference to another Python object.
`__clear__` must clear out any mutable references to other Python objects
(thus breaking reference cycles). Immutable references do not have to be cleared,
as every cycle must contain at least one mutable reference.
Example:
```rust
extern crate pyo3;

use pyo3::prelude::*;
use pyo3::PyTraverseError;
use pyo3::gc::{PyGCProtocol, PyVisit};

#[pyclass]
struct ClassWithGCSupport {
    obj: Option<PyObject>,
}

#[pyproto]
impl PyGCProtocol for ClassWithGCSupport {
    fn __traverse__(&self, visit: PyVisit) -> Result<(), PyTraverseError> {
        if let Some(ref obj) = self.obj {
            visit.call(obj)?
        }
        Ok(())
    }

    fn __clear__(&mut self) {
        if let Some(obj) = self.obj.take() {
            // Release reference, this decrements ref counter.
            let gil = GILGuard::acquire();
            let py = gil.python();
            py.release(obj);
        }
    }
}
```

Special protocol trait implementations have to be annotated with the `#[pyproto]` attribute.

It is also possible to enable GC for custom classes using the `gc` parameter of the `pyclass` attribute.
i.e. `#[pyclass(gc)]`. In that case instances of custom class participate in Python garbage
collection, and it is possible to track them with `gc` module methods. When using the `gc` parameter,
it is *required* to implement the `PyGCProtocol` trait, failure to do so will result in an error
at compile time:

```compile_fail
#[pyclass(gc)]
struct GCTracked {} // Fails because it does not implement PyGCProtocol
```

### Iterator Types

Iterators can be defined using the
[`PyIterProtocol`](https://docs.rs/pyo3/latest/pyo3/class/iter/trait.PyIterProtocol.html) trait.
It includes two methods `__iter__` and `__next__`:
  * `fn __iter__(slf: PyRefMut<Self>) -> PyResult<impl IntoPy<PyObject>>`
  * `fn __next__(slf: PyRefMut<Self>) -> PyResult<Option<impl IntoPy<PyObject>>>`

  Returning `Ok(None)` from `__next__` indicates that that there are no further items.

Example:

```rust
use pyo3::prelude::*;
use pyo3::PyIterProtocol;

#[pyclass]
struct MyIterator {
    iter: Box<Iterator<Item = PyObject> + Send>,
}

#[pyproto]
impl PyIterProtocol for MyIterator {
    fn __iter__(mut slf: PyRefMut<Self>) -> PyResult<Py<MyIterator>> {
        Ok(slf.into())
    }
    fn __next__(mut slf: PyRefMut<Self>) -> PyResult<Option<PyObject>> {
        Ok(slf.iter.next())
    }
}
```

## How methods are implemented

Users should be able to define a `#[pyclass]` with or without `#[pymethods]`, while PyO3 needs a
trait with a function that returns all methods. Since it's impossible to make the code generation in
pyclass dependent on whether there is an impl block, we'd need to implement the trait on
`#[pyclass]` and override the implementation in `#[pymethods]`, which is to the best of my knowledge
only possible with the specialization feature, which can't be used on stable.

To escape this we use [inventory](https://github.com/dtolnay/inventory), which allows us to collect `impl`s from arbitrary source code by exploiting some binary trick. See [inventory: how it works](https://github.com/dtolnay/inventory#how-it-works) and `pyo3_derive_backend::py_class::impl_inventory` for more details.

[`GILGuard`]: https://docs.rs/pyo3/latest/pyo3/struct.GILGuard.html
[`PyGCProtocol`]: https://docs.rs/pyo3/latest/pyo3/class/gc/trait.PyGCProtocol.html
[`PyObjectProtocol`]: https://docs.rs/pyo3/latest/pyo3/class/basic/trait.PyObjectProtocol.html
[`PyTypeInfo`]: https://docs.rs/pyo3/latest/pyo3/type_object/trait.PyTypeInfo.html
[`PyTypeObject`]: https://docs.rs/pyo3/latest/pyo3/type_object/trait.PyTypeObject.html

[`PyCell`]: https://pyo3.rs/master/doc/pyo3/pycell/struct.PyCell.html
[`PyClass`]: https://pyo3.rs/master/doc/pyo3/pyclass/trait.PyClass.html
[`PyRef`]: https://pyo3.rs/master/doc/pyo3/pycell/struct.PyRef.html
[`PyRefMut`]: https://pyo3.rs/master/doc/pyo3/pycell/struct.PyRefMut.html
[`PyClassInitializer<T>`]: https://pyo3.rs/master/doc/pyo3/pyclass_init/struct.PyClassInitializer.html

[`RefCell`]: https://doc.rust-lang.org/std/cell/struct.RefCell.html