pqc-binary-format 1.0.13

Standardized binary format for post-quantum cryptography encrypted data interchange
Documentation

PQC Binary Format v1.0.13

Crates.io Documentation License Build Status

A standardized, self-describing binary format for post-quantum cryptography encrypted data interchange.

๐ŸŒŸ The Problem

Post-quantum cryptography (PQC) implementations suffer from the "Babel Tower problem": different implementations cannot interoperate because there is no standardized format for encrypted data. Each library uses its own proprietary format, making cross-platform and cross-language encryption impossible.

๐Ÿ’ก The Solution

PQC Binary Format provides a universal, algorithm-agnostic format that:

  • โœ… Works across 42 cryptographic algorithms
  • โœ… Self-describing metadata enables seamless decryption
  • โœ… Integrity verification with SHA-256 checksums
  • โœ… Cross-platform compatible (Rust, Python, JavaScript, Go, etc.)
  • โœ… Future-proof design allows algorithm migration
  • โœ… Zero dependencies except serde and sha2

๐Ÿš€ Quick Start

Rust

Add to your Cargo.toml:

[dependencies]
pqc-binary-format = "1.0"

Basic Usage (Rust)

use pqc_binary_format::{PqcBinaryFormat, Algorithm, PqcMetadata, EncParameters};
use std::collections::HashMap;

// Create metadata with encryption parameters
let metadata = PqcMetadata {
    enc_params: EncParameters {
        iv: vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],  // 12-byte nonce
        tag: vec![0; 16],                                  // 16-byte auth tag
        params: HashMap::new(),
    },
    ..Default::default()
};

// Create encrypted data container
let encrypted_data = vec![1, 2, 3, 4, 5];  // Your encrypted bytes
let format = PqcBinaryFormat::new(Algorithm::Hybrid, metadata, encrypted_data);

// Serialize to bytes (for transmission or storage)
let bytes = format.to_bytes().unwrap();

// Deserialize from bytes (includes automatic checksum verification)
let recovered = PqcBinaryFormat::from_bytes(&bytes).unwrap();

assert_eq!(format, recovered);
println!("Algorithm: {}", recovered.algorithm().name());

Python

Install the Python bindings:

cd bindings/python
pip install maturin
maturin develop --release
from pqc_binary_format import Algorithm, EncParameters, PqcMetadata, PqcBinaryFormat

# Create algorithm and metadata
algorithm = Algorithm("hybrid")
enc_params = EncParameters(
    iv=bytes([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]),
    tag=bytes([0] * 16)
)
metadata = PqcMetadata(enc_params=enc_params, kem_params=None, sig_params=None, compression_params=None)

# Create and serialize format
pqc_format = PqcBinaryFormat(algorithm, metadata, bytes([1, 2, 3, 4, 5]))
serialized = pqc_format.to_bytes()

# Deserialize and verify
deserialized = PqcBinaryFormat.from_bytes(serialized)
deserialized.validate()  # Verify checksum integrity
print(f"Algorithm: {deserialized.algorithm.name}")

JavaScript/TypeScript

Build the WebAssembly bindings:

cd bindings/javascript
npm install
npm run build
import init, { WasmAlgorithm, WasmEncParameters, WasmPqcMetadata, WasmPqcBinaryFormat } from './pqc_binary_format.js';

await init();

const algorithm = new WasmAlgorithm('hybrid');
const encParams = new WasmEncParameters(
    new Uint8Array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]),
    new Uint8Array(16)
);
const metadata = new WasmPqcMetadata(encParams);
const pqcFormat = new WasmPqcBinaryFormat(algorithm, metadata, new Uint8Array([1, 2, 3, 4, 5]));

const serialized = pqcFormat.toBytes();
const deserialized = WasmPqcBinaryFormat.fromBytes(serialized);
console.log(`Algorithm: ${deserialized.algorithm.name}`);

Go

Build the Rust library first, then use the Go bindings:

cargo build --release
cd bindings/go
go build example.go
package main

import (
    "fmt"
    "log"
    pqc "github.com/PQCrypta/pqcrypta-community/bindings/go"
)

func main() {
    iv := []byte{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
    tag := make([]byte, 16)
    data := []byte{1, 2, 3, 4, 5}

    format, err := pqc.NewPqcBinaryFormat(pqc.AlgorithmHybrid, iv, tag, data)
    if err != nil {
        log.Fatal(err)
    }
    defer format.Free()

    serialized, _ := format.ToBytes()
    deserialized, _ := pqc.FromBytes(serialized)
    defer deserialized.Free()

    fmt.Printf("Algorithm: %s\n", deserialized.GetAlgorithmName())
}

C/C++

Build the Rust library and generate the C header:

cargo build --release
cbindgen --config cbindgen.toml --output include/pqc_binary_format.h
cd bindings/c-cpp
make
#include "pqc_binary_format.h"
#include <iostream>
#include <vector>

int main() {
    std::vector<uint8_t> iv = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
    std::vector<uint8_t> tag(16, 0);
    std::vector<uint8_t> data = {1, 2, 3, 4, 5};

    PqcFormatHandle* format = pqc_format_new(
        PQC_ALGORITHM_HYBRID,
        iv.data(), iv.size(),
        tag.data(), tag.size(),
        data.data(), data.size()
    );

    ByteBuffer serialized = pqc_format_to_bytes(format);
    PqcFormatHandle* deserialized = pqc_format_from_bytes(serialized.data, serialized.len);

    char* alg_name = pqc_format_get_algorithm_name(deserialized);
    std::cout << "Algorithm: " << alg_name << std::endl;

    pqc_free_string(alg_name);
    pqc_free_buffer(serialized);
    pqc_format_free(deserialized);
    pqc_format_free(format);

    return 0;
}

๐ŸŒ Language Bindings

PQC Binary Format provides production-ready, fully tested bindings for multiple programming languages. All bindings support the complete API and produce cross-compatible binary formats.

Available Bindings (v1.0.11)

Language Status Package Documentation Examples
Rust โœ… Native pqc-binary-format docs.rs 3 examples
Python โœ… Tested pqc_binary_format Python README 2 examples
JavaScript/WASM โœ… Tested pqc_binary_format (npm) JS README 1 example
Go โœ… Tested github.com/PQCrypta/pqcrypta-community/bindings/go pkg.go.dev 1 example
C โœ… Tested FFI via Rust C/C++ README 1 example
C++ โœ… Tested FFI via Rust C/C++ README 1 example

Installation Quick Reference

# Rust
cargo add pqc-binary-format

# Python (via maturin)
python3 -m venv .venv && source .venv/bin/activate
pip install maturin
maturin develop --release

# JavaScript/WASM (via wasm-pack)
wasm-pack build --target web --features wasm

# Go
go get github.com/PQCrypta/pqcrypta-community/bindings/go

# C/C++ (build from source)
cargo build --release --no-default-features
# Link against target/release/libpqc_binary_format.so

Cross-Language Compatibility

All language bindings are fully interoperable! You can:

  • โœ… Encrypt data in Python, decrypt in Rust
  • โœ… Serialize in Go, deserialize in JavaScript
  • โœ… Create format in C++, validate in Python
  • โœ… Mix any combination across platforms

Example workflow:

# Create encrypted data with Python
python3 examples/python/basic_usage.py > data.bin

# Verify with C++
LD_LIBRARY_PATH=target/release ./examples/cpp/basic_usage < data.bin

# Process with Go
cd examples/go && go run basic_usage.go < ../../data.bin

Binding Features

All bindings support:

  • โœ… Full algorithm suite (42 algorithms)
  • โœ… Metadata serialization/deserialization
  • โœ… SHA-256 integrity verification
  • โœ… Feature flags (compression, streaming, etc.)
  • โœ… Error handling with detailed messages
  • โœ… Memory safety (Rust-backed)

Package Distribution Status

Platform Status Notes
crates.io (Rust) โœ… Published v1.0.11 live!
PyPI (Python) โœ… Published v1.0.12 live!
npm (JavaScript) โœ… Published v1.0.12 live!
pkg.go.dev (Go) โœ… Indexed v1.0.12 live!

๐Ÿ“ฆ Binary Format Specification

+-------------------+
| Magic (4 bytes)   | "PQC\x01" - Format identifier
+-------------------+
| Version (1 byte)  | 0x01 - Format version
+-------------------+
| Algorithm (2 bytes)| Algorithm identifier (0x0050 - 0x0905)
+-------------------+
| Flags (1 byte)    | Feature flags (compression, streaming, etc.)
+-------------------+
| Metadata Len (4)  | Length of metadata section
+-------------------+
| Data Len (8)      | Length of encrypted payload
+-------------------+
| Metadata (var)    | Algorithm-specific parameters
+-------------------+
| Data (var)        | Encrypted data
+-------------------+
| Checksum (32)     | SHA-256 integrity checksum
+-------------------+

๐Ÿ” Supported Algorithms

The format supports 42 cryptographic algorithm identifiers:

Classical Algorithms (0x0050-0x00FF)

  • Classical (0x0050): X25519 + Ed25519 + AES-256-GCM
  • Password Classical (0x0051): Password-based encryption

Hybrid Algorithms (0x0100-0x01FF)

  • Hybrid (0x0100): ML-KEM-1024 + X25519 + ML-DSA-87 + Ed25519

Post-Quantum Algorithms (0x0200-0x02FF)

  • Post-Quantum (0x0200): ML-KEM-1024 + ML-DSA-87
  • ML-KEM-1024 (0x0202): Pure ML-KEM with AES-256-GCM
  • Multi-KEM (0x0203): Dual-layer KEM
  • Multi-KEM Triple (0x0204): Triple-layer KEM
  • Quad-Layer (0x0205): Four independent layers
  • PQ3-Stack (0x0207): Forward secrecy stack

Max Secure Series (0x0300-0x0306)

High-security configurations for enterprise use

FN-DSA Series (0x0400-0x0407)

Falcon-based signature algorithms

Experimental (0x0500-0x0506)

Research and next-generation algorithms

HQC Code-Based Series (0x0600-0x0602)

NIST 2025 Backup KEM standard - code-based cryptography

  • HQC-128 (0x0600): NIST Level 1, 128-bit security
  • HQC-192 (0x0601): NIST Level 3, 192-bit security
  • HQC-256 (0x0602): NIST Level 5, 256-bit security

NIST ML-KEM Variants - FIPS 203 (0x0700-0x07FF)

  • ML-KEM-512 (0x0700): NIST Level 1, 128-bit security
  • ML-KEM-768 (0x0701): NIST Level 3, 192-bit security

NIST ML-DSA Variants - FIPS 204 (0x0800-0x08FF)

  • ML-DSA-44 (0x0800): NIST Level 2, 128-bit security
  • ML-DSA-65 (0x0801): NIST Level 3, 192-bit security
  • ML-DSA-87 (0x0802): NIST Level 5, 256-bit security

NIST SLH-DSA Variants - FIPS 205 (0x0900-0x09FF)

  • SLH-DSA-SHA2-128s (0x0900): NIST Level 1, small signatures
  • SLH-DSA-SHA2-128f (0x0901): NIST Level 1, fast signatures
  • SLH-DSA-SHA2-192s (0x0902): NIST Level 3, small signatures
  • SLH-DSA-SHA2-192f (0x0903): NIST Level 3, fast signatures
  • SLH-DSA-SHA2-256s (0x0904): NIST Level 5, small signatures
  • SLH-DSA-SHA2-256f (0x0905): NIST Level 5, fast signatures

View full algorithm list

๐ŸŽฏ Features

Feature Flags

Control optional behavior with feature flags:

use pqc_binary_format::{PqcBinaryFormat, Algorithm, FormatFlags, PqcMetadata, EncParameters};
use std::collections::HashMap;

let flags = FormatFlags::new()
    .with_compression()       // Data was compressed before encryption
    .with_streaming()         // Streaming encryption mode
    .with_additional_auth();  // Additional authentication layer

let metadata = PqcMetadata {
    enc_params: EncParameters {
        iv: vec![1; 12],
        tag: vec![1; 16],
        params: HashMap::new(),
    },
    ..Default::default()
};

let format = PqcBinaryFormat::with_flags(
    Algorithm::QuadLayer,
    flags,
    metadata,
    vec![1, 2, 3],
);

assert!(format.flags().has_compression());
assert!(format.flags().has_streaming());

Metadata Structure

The format includes rich metadata for decryption:

use pqc_binary_format::{PqcMetadata, KemParameters, SigParameters, EncParameters, CompressionParameters};
use std::collections::HashMap;

let metadata = PqcMetadata {
    // Key Encapsulation (optional)
    kem_params: Some(KemParameters {
        public_key: vec![/* ML-KEM public key */],
        ciphertext: vec![/* encapsulated key */],
        params: HashMap::new(),
    }),

    // Digital Signature (optional)
    sig_params: Some(SigParameters {
        public_key: vec![/* ML-DSA public key */],
        signature: vec![/* signature bytes */],
        params: HashMap::new(),
    }),

    // Symmetric Encryption (required)
    enc_params: EncParameters {
        iv: vec![1; 12],              // Nonce/IV
        tag: vec![1; 16],             // AEAD auth tag
        params: HashMap::new(),
    },

    // Compression (optional)
    compression_params: Some(CompressionParameters {
        algorithm: "zstd".to_string(),
        level: 3,
        original_size: 1024,
        params: HashMap::new(),
    }),

    // Custom parameters (extensible)
    custom: HashMap::new(),
};

Custom Parameters

Add your own metadata:

use pqc_binary_format::PqcMetadata;

let mut metadata = PqcMetadata::new();
metadata.add_custom("my_param".to_string(), vec![1, 2, 3]);

// Later...
if let Some(value) = metadata.get_custom("my_param") {
    println!("Custom param: {:?}", value);
}

๐Ÿ” Integrity Verification

Every format includes a SHA-256 checksum calculated over all fields:

use pqc_binary_format::PqcBinaryFormat;

let bytes = format.to_bytes().unwrap();

// Tamper with the data
// let mut corrupted = bytes.clone();
// corrupted[50] ^= 0xFF;

// Deserialization automatically verifies checksum
match PqcBinaryFormat::from_bytes(&bytes) {
    Ok(format) => println!("โœ“ Checksum valid"),
    Err(e) => println!("โœ— Checksum failed: {}", e),
}

๐Ÿ“š Examples

Example 1: Basic Encryption Format

use pqc_binary_format::{PqcBinaryFormat, Algorithm, PqcMetadata, EncParameters};
use std::collections::HashMap;

fn main() {
    let metadata = PqcMetadata {
        enc_params: EncParameters {
            iv: vec![1; 12],
            tag: vec![1; 16],
            params: HashMap::new(),
        },
        ..Default::default()
    };

    let format = PqcBinaryFormat::new(
        Algorithm::Hybrid,
        metadata,
        vec![/* your encrypted data */],
    );

    // Save to file
    let bytes = format.to_bytes().unwrap();
    std::fs::write("encrypted.pqc", &bytes).unwrap();

    // Load from file
    let loaded_bytes = std::fs::read("encrypted.pqc").unwrap();
    let loaded = PqcBinaryFormat::from_bytes(&loaded_bytes).unwrap();

    println!("Algorithm: {}", loaded.algorithm().name());
}

Example 2: Cross-Language Interoperability

Rust (Encryption)

let format = PqcBinaryFormat::new(Algorithm::PostQuantum, metadata, data);
let bytes = format.to_bytes().unwrap();
// Send bytes to Python/JavaScript/Go/C++

Python (Decryption)

from pqc_binary_format import PqcBinaryFormat

format = PqcBinaryFormat.from_bytes(bytes)
print(f"Algorithm: {format.algorithm().name()}")
print(f"Data: {len(format.data())} bytes")

JavaScript (Decryption)

const format = WasmPqcBinaryFormat.fromBytes(bytes);
console.log(`Algorithm: ${format.algorithm.name}`);
console.log(`Data: ${format.data.length} bytes`);

Go (Decryption)

format, _ := pqc.FromBytes(bytes)
defer format.Free()
fmt.Printf("Algorithm: %s\n", format.GetAlgorithmName())
fmt.Printf("Data: %d bytes\n", len(format.GetData()))

Example 3: Algorithm Migration

// Old data encrypted with Classical algorithm
let old_format = PqcBinaryFormat::from_bytes(&old_encrypted_data)?;
assert_eq!(old_format.algorithm(), Algorithm::Classical);

// Re-encrypt with Post-Quantum algorithm
let plaintext = decrypt_with_classical(&old_format)?;
let new_metadata = create_pq_metadata()?;
let new_format = PqcBinaryFormat::new(
    Algorithm::PostQuantum,
    new_metadata,
    encrypt_with_pq(&plaintext)?,
);

// Same format, different algorithm!

๐ŸŽ“ Use Cases

1. Cross-Platform Encryption

Encrypt in Rust, decrypt in Python, JavaScript, or Go using the same format.

2. Long-Term Archival

Self-describing format ensures data can be decrypted decades later even as algorithms evolve.

3. Algorithm Agility

Switch between algorithms without changing application code.

4. Compliance & Audit

Embedded metadata provides audit trail for regulatory compliance (GDPR, HIPAA, etc.).

5. Research & Benchmarking

Standardized format enables fair comparison of PQC algorithm performance.

๐Ÿงช Testing

# Run tests
cargo test

# Run tests with output
cargo test -- --nocapture

# Run specific test
cargo test test_binary_format_roundtrip

๐Ÿ“Š Benchmarks

# Run benchmarks
cargo bench

# View benchmark results
open target/criterion/report/index.html

Performance characteristics:

  • Serialization: ~50 MB/s for typical payloads
  • Deserialization: ~45 MB/s (includes checksum verification)
  • Overhead: ~100 bytes + metadata size

๐Ÿ”ง Development

Building from Source

git clone https://github.com/PQCrypta/pqcrypta-community.git
cd pqcrypta-community
cargo build --release

Running Examples

cargo run --example basic_usage
cargo run --example with_compression
cargo run --example cross_platform

๐Ÿค Contributing

We welcome contributions! See CONTRIBUTING.md for guidelines.

Current Status

  • Language Bindings: โœ… Rust (native), โœ… Python (tested v1.0.11), โœ… JavaScript/WASM (tested v1.0.11), โœ… Go (tested v1.0.11), โœ… C/C++ (tested v1.0.11)
  • Examples: โœ… 9 validated examples across 6 languages
  • Package Distribution: โœ… All platforms published! crates.io, PyPI, npm, pkg.go.dev

Areas for Contribution

  • Additional Language Bindings: Java, C#, Ruby, Swift, Kotlin - help us expand!
  • Documentation: Tutorials, integration guides, video walkthroughs
  • Testing: Additional test cases, fuzzing, property-based testing
  • Performance: SIMD optimizations, benchmark improvements
  • Standards: Help draft RFC for IETF standardization submission

๐Ÿ“„ License

Licensed under either of:

at your option.

๐Ÿ™ Acknowledgments

This format was developed as part of the PQCrypta enterprise post-quantum cryptography platform. Special thanks to:

  • NIST Post-Quantum Cryptography Project
  • The Rust cryptography community
  • Contributors to pqcrypto, ring, and other foundational crates

๐Ÿ“– References

๐Ÿ”— Related Projects

๐Ÿ’ฌ Community & Support


Made with โค๏ธ by the PQCrypta Community

Securing the future, one byte at a time.