1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
use rand::prelude::*;
use rand::distributions::Uniform;
use rand::distributions::Poisson;
use std::sync::Arc;
use ndarray::stack;
use ndarray::prelude::*;
use ndarray_parallel::prelude::*;
pub fn poisson_process(tmax: f64, lambda: f64) -> Array1<f64> {
assert!(lambda > 0.0);
let mut rng = thread_rng();
let num_events = Poisson::new(tmax*lambda).sample(&mut rng) as usize;
let mut events = Array1::<f64>::zeros((num_events,));
events.par_map_inplace(|x| {
let mut rng = thread_rng();
let u = Uniform::new(0.0, tmax);
*x = u.sample(&mut rng);
});
events
}
pub fn variable_poisson<F>(tmax: f64, lambda: F, max_lambda: f64) -> Array2<f64>
where F: Fn(f64) -> f64 + Send + Sync
{
let mut rng = thread_rng();
let num_events = Poisson::new(tmax*max_lambda).sample(&mut rng);
let lambda = Arc::from(lambda);
let events: Vec<Array2<f64>> = (0..num_events).into_iter().filter_map(|_| {
let mut rng = thread_rng();
let ut = Uniform::new(0.0, tmax);
let ul = Uniform::new(0.0, max_lambda);
let timestamp = ut.sample(&mut rng);
let lambda_val = ul.sample(&mut rng);
if lambda_val < lambda(timestamp) {
Some(array![[timestamp, lambda_val]])
} else {
None
}
}).collect();
let events_ref: Vec<ArrayView2<f64>> = events.iter().map(|v| v.view()).collect();
stack(Axis(0), events_ref.as_slice()).unwrap()
}
pub fn hawkes_exponential<T>(tmax: f64, beta: f64, lambda0: f64, jumps: &mut T) -> Array2<f64>
where T: Iterator<Item = f64>
{
let mut t = 0.0;
let mut previous_t: f64;
let mut last_lambda = lambda0;
let mut result = Vec::<Array2<f64>>::new();
while t < tmax {
let u1 = random::<f64>();
let s1 = -1.0/beta*u1.ln();
let d = if last_lambda > lambda0 {
1.0 + beta*u1.ln()/(last_lambda - lambda0)
} else { ::std::f64::NEG_INFINITY };
let s2 = -1.0/lambda0*random::<f64>().ln();
previous_t = t;
t += if d < 0.0 {
s2
} else {
s1.min(s2)
};
last_lambda = lambda0 + (last_lambda - lambda0)*(-beta*(t-previous_t)).exp();
if let Some(alpha) = jumps.next() {
let new_event: Array2<f64> = array![[t, last_lambda, alpha]];
result.push(new_event);
last_lambda += alpha;
} else {
panic!("Not enough marks for the Hawkes process.");
}
}
let events: Vec<ArrayView2<f64>> = result.iter().map(|v| v.view()).collect();
stack(Axis(0), events.as_slice()).unwrap()
}