1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
use slog::Logger;
use grid::GridPoint3;
use grid::cell_shape;
use super::spec::Spec;
use super::{Globe, Cursor, ChunkOrigin};
use super::chunk::Material;
use types::Pt3;
use render;
// TODO: between this and "draw" we now have some confusing names.
// Shuffle this code into something that implies it's just about
// generating geometry for other components/systems, e.g., drawing
// and physics.
// `View` doesn't store a reference to a `Globe`,
// to avoid complex lifetime wrangling; we might want
// to load and unload globes and their views out of
// step with each other. E.g. we might use a `Globe`
// to create some geometry for a moon, and then never
// use the `Globe` itself again.
//
// Instead, the rendering subsystem will provide us with that
// globe when it wants us to build geometry.
pub struct View {
spec: Spec,
log: Logger,
}
impl View {
pub fn new(globe_spec: Spec, parent_log: &Logger) -> View {
View {
spec: globe_spec,
log: parent_log.new(o!()),
}
}
/// Creates chunk geometry with vertex positions specified
/// relative to the bottom-middle of the chunk origin cell.
// TODO: don't take a reference to a chunk
// in this method; to make geometry for this
// chunk we'll eventually need to have data for adjacent chunks
// loaded, and rebase some of the edge positions
// on those adjacent chunks to get their cell data.
//
// **OR** we can have a step before this that
// ensures we have all adjacent cell data cached
// in extra rows/columns along the edges of this chunk.
// The latter probably makes more sense for memory
// locality in the hot path. Sometimes we might want
// to ask further afield, though, (e.g. five cells
// into another chunk) so decide whether you want
// a general interface that can fetch as necessary,
// commit to always caching as much as you
// might ever need, or some combination.
pub fn make_chunk_geometry(
&self,
globe: &Globe,
origin: ChunkOrigin,
vertex_data: &mut Vec<render::Vertex>,
index_data: &mut Vec<u32>,
) {
trace!(self.log, "Building chunk geometry"; "origin" => format!("{:?}", origin));
// We store the geometry relative to the bottom-center of the chunk origin cell.
let chunk_origin_pos = self.spec.cell_bottom_center(*origin.pos());
let mut cursor = Cursor::new_in_chunk(globe, origin);
// Include cells _on_ the far edge of the chunk;
// even though we don't own them we'll need to draw part of them.
let end_x = origin.pos().x + self.spec.chunk_resolution[0];
let end_y = origin.pos().y + self.spec.chunk_resolution[1];
// Chunks don't share cells in the z-direction,
// but do in the x- and y-directions.
let end_z = origin.pos().z + self.spec.chunk_resolution[2] - 1;
for cell_z in origin.pos().z..(end_z + 1) {
for cell_y in origin.pos().y..(end_y + 1) {
for cell_x in origin.pos().x..(end_x + 1) {
// Use cell center as first vertex of each triangle.
let grid_point = GridPoint3::new(origin.pos().root, cell_x, cell_y, cell_z);
cursor.set_pos(grid_point);
if self.cull_cell(&cursor) {
continue;
}
let mut cell_color = {
// Eww... can I please have non-lexical borrow scopes? :)
let cell = cursor.cell().expect("We shouldn't be trying to build geometry for a chunk that isn't loaded.");
// TEMP color dirt as green, ocean as blue.
// TEMP: Randomly mutate cell color to make it easier to see edges.
let mut inner_cell_color = if cell.material == Material::Dirt {
// Grassy green
[0.0, 0.4, 0.0]
} else if cell.material == Material::Water {
// Ocean blue
[0.0, 0.1, 0.7]
} else {
// Don't draw air or anything else we don't understand.
continue;
};
for color_channel in &mut inner_cell_color {
*color_channel *= 1.0 - 0.5 * cell.shade;
}
inner_cell_color
};
// TODO: use functions that return just the bit they care
// about and... maths. This is silly.
let first_top_vertex_index = vertex_data.len() as u32;
// TODO: don't switch; split all this out into calls
// over different ranges of cells.
//
// For now, put the most specific cases first.
let cell_shape = if cell_x == 0 && cell_y == 0 {
cell_shape::NORTH_PORTION
} else if cell_x == end_x && cell_y == end_y {
cell_shape::SOUTH_PORTION
} else if cell_x == end_x && cell_y == 0 {
cell_shape::WEST_PORTION
} else if cell_x == 0 && cell_y == end_y {
cell_shape::EAST_PORTION
} else if cell_y == 0 {
cell_shape::NORTH_WEST_PORTION
} else if cell_x == 0 {
cell_shape::NORTH_EAST_PORTION
} else if cell_x == end_x {
cell_shape::SOUTH_WEST_PORTION
} else if cell_y == end_y {
cell_shape::SOUTH_EAST_PORTION
} else {
cell_shape::FULL_HEX
};
// Emit each top vertex of whatever shape we're using for this cell.
let offsets = &cell_shape.top_outline_dir_offsets;
for offset in offsets.iter() {
let vertex_pt3 = Pt3::from_coordinates(
self.spec.cell_top_vertex(grid_point, *offset) -
chunk_origin_pos,
);
vertex_data.push(render::Vertex::new_from_pt3(vertex_pt3, cell_color));
}
// Emit triangles for the top of the cell. All triangles
// will contain the first vertex, plus two others.
for i in 1..(offsets.len() as u32 - 1) {
index_data.extend_from_slice(
&[
first_top_vertex_index,
first_top_vertex_index + i,
first_top_vertex_index + i + 1,
],
);
}
// Emit each top vertex of whatever shape we're using for this cell
// AGAIN for the top of the sides, so they can have a different colour.
// Darken the top of the sides slightly to fake lighting.
for color_channel in &mut cell_color {
*color_channel *= 0.9;
}
let first_side_top_vertex_index = first_top_vertex_index + offsets.len() as u32;
for offset in offsets.iter() {
let vertex_pt3 = Pt3::from_coordinates(
self.spec.cell_top_vertex(grid_point, *offset) -
chunk_origin_pos,
);
vertex_data.push(render::Vertex::new_from_pt3(vertex_pt3, cell_color));
}
// Emit each bottom vertex of whatever shape we're using for this cell.
// Darken the bottom of the sides substantially to fake lighting.
for color_channel in &mut cell_color {
*color_channel *= 0.5;
}
let first_side_bottom_vertex_index = first_side_top_vertex_index +
offsets.len() as u32;
for offset in offsets.iter() {
let vertex_pt3 = Pt3::from_coordinates(
self.spec.cell_bottom_vertex(grid_point, *offset) -
chunk_origin_pos,
);
vertex_data.push(render::Vertex::new_from_pt3(vertex_pt3, cell_color));
}
// Emit triangles for the cell sides.
for ab_i in 0..(offsets.len() as u32) {
let cd_i = (ab_i + 1) % offsets.len() as u32;
let a_i = first_side_top_vertex_index + ab_i;
let b_i = first_side_bottom_vertex_index + ab_i;
let c_i = first_side_bottom_vertex_index + cd_i;
let d_i = first_side_top_vertex_index + cd_i;
index_data.extend_from_slice(&[a_i, b_i, d_i, d_i, b_i, c_i]);
}
}
}
}
}
fn cull_cell(&self, cursor: &Cursor) -> bool {
use grid::Neighbors;
let resolution = cursor.globe().spec().root_resolution;
let grid_point = cursor.pos();
let mut neighbor_cursor = cursor.clone();
// If none of the neighboring cells contain air,
// then we won't render the cell at all.
let neighbors = Neighbors::new(grid_point, resolution);
for neighbor_pos in neighbors {
neighbor_cursor.set_pos(neighbor_pos);
if let Some(neighbor) = neighbor_cursor.cell() {
if neighbor.material == Material::Air {
// This cell can be seen; we can't cull it.
return false;
}
}
}
// If there was no reason to save it,
// then assume we can cull it!
true
}
}