#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <math.h>
#include "opus_types.h"
#include "opus_defines.h"
#include "arch.h"
#include "mlp.h"
#define fmadd(a, b, c) ((a)*(b)+(c))
static OPUS_INLINE float tansig_approx(float x)
{
const float N0 = 952.52801514f;
const float N1 = 96.39235687f;
const float N2 = 0.60863042f;
const float D0 = 952.72399902f;
const float D1 = 413.36801147f;
const float D2 = 11.88600922f;
float X2, num, den;
X2 = x*x;
num = fmadd(fmadd(N2, X2, N1), X2, N0);
den = fmadd(fmadd(D2, X2, D1), X2, D0);
num = num*x/den;
return MAX32(-1.f, MIN32(1.f, num));
}
static OPUS_INLINE float sigmoid_approx(float x)
{
return .5f + .5f*tansig_approx(.5f*x);
}
static void gemm_accum(float *out, const opus_int8 *weights, int rows, int cols, int col_stride, const float *x)
{
int i, j;
for (i=0;i<rows;i++)
{
for (j=0;j<cols;j++)
out[i] += weights[j*col_stride + i]*x[j];
}
}
void analysis_compute_dense(const AnalysisDenseLayer *layer, float *output, const float *input)
{
int i;
int N, M;
int stride;
M = layer->nb_inputs;
N = layer->nb_neurons;
stride = N;
for (i=0;i<N;i++)
output[i] = layer->bias[i];
gemm_accum(output, layer->input_weights, N, M, stride, input);
for (i=0;i<N;i++)
output[i] *= WEIGHTS_SCALE;
if (layer->sigmoid) {
for (i=0;i<N;i++)
output[i] = sigmoid_approx(output[i]);
} else {
for (i=0;i<N;i++)
output[i] = tansig_approx(output[i]);
}
}
void analysis_compute_gru(const AnalysisGRULayer *gru, float *state, const float *input)
{
int i;
int N, M;
int stride;
float tmp[MAX_NEURONS];
float z[MAX_NEURONS];
float r[MAX_NEURONS];
float h[MAX_NEURONS];
M = gru->nb_inputs;
N = gru->nb_neurons;
stride = 3*N;
for (i=0;i<N;i++)
z[i] = gru->bias[i];
gemm_accum(z, gru->input_weights, N, M, stride, input);
gemm_accum(z, gru->recurrent_weights, N, N, stride, state);
for (i=0;i<N;i++)
z[i] = sigmoid_approx(WEIGHTS_SCALE*z[i]);
for (i=0;i<N;i++)
r[i] = gru->bias[N + i];
gemm_accum(r, &gru->input_weights[N], N, M, stride, input);
gemm_accum(r, &gru->recurrent_weights[N], N, N, stride, state);
for (i=0;i<N;i++)
r[i] = sigmoid_approx(WEIGHTS_SCALE*r[i]);
for (i=0;i<N;i++)
h[i] = gru->bias[2*N + i];
for (i=0;i<N;i++)
tmp[i] = state[i] * r[i];
gemm_accum(h, &gru->input_weights[2*N], N, M, stride, input);
gemm_accum(h, &gru->recurrent_weights[2*N], N, N, stride, tmp);
for (i=0;i<N;i++)
h[i] = z[i]*state[i] + (1-z[i])*tansig_approx(WEIGHTS_SCALE*h[i]);
for (i=0;i<N;i++)
state[i] = h[i];
}