#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#define ANALYSIS_C
#ifdef MLP_TRAINING
#include <stdio.h>
#endif
#include "mathops.h"
#include "kiss_fft.h"
#include "celt.h"
#include "modes.h"
#include "arch.h"
#include "quant_bands.h"
#include "analysis.h"
#include "mlp.h"
#include "stack_alloc.h"
#include "float_cast.h"
#ifndef M_PI
#define M_PI 3.141592653
#endif
#ifndef DISABLE_FLOAT_API
#define TRANSITION_PENALTY 10
static const float dct_table[128] = {
0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f,
0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f,
0.351851f, 0.338330f, 0.311806f, 0.273300f, 0.224292f, 0.166664f, 0.102631f, 0.034654f,
-0.034654f,-0.102631f,-0.166664f,-0.224292f,-0.273300f,-0.311806f,-0.338330f,-0.351851f,
0.346760f, 0.293969f, 0.196424f, 0.068975f,-0.068975f,-0.196424f,-0.293969f,-0.346760f,
-0.346760f,-0.293969f,-0.196424f,-0.068975f, 0.068975f, 0.196424f, 0.293969f, 0.346760f,
0.338330f, 0.224292f, 0.034654f,-0.166664f,-0.311806f,-0.351851f,-0.273300f,-0.102631f,
0.102631f, 0.273300f, 0.351851f, 0.311806f, 0.166664f,-0.034654f,-0.224292f,-0.338330f,
0.326641f, 0.135299f,-0.135299f,-0.326641f,-0.326641f,-0.135299f, 0.135299f, 0.326641f,
0.326641f, 0.135299f,-0.135299f,-0.326641f,-0.326641f,-0.135299f, 0.135299f, 0.326641f,
0.311806f, 0.034654f,-0.273300f,-0.338330f,-0.102631f, 0.224292f, 0.351851f, 0.166664f,
-0.166664f,-0.351851f,-0.224292f, 0.102631f, 0.338330f, 0.273300f,-0.034654f,-0.311806f,
0.293969f,-0.068975f,-0.346760f,-0.196424f, 0.196424f, 0.346760f, 0.068975f,-0.293969f,
-0.293969f, 0.068975f, 0.346760f, 0.196424f,-0.196424f,-0.346760f,-0.068975f, 0.293969f,
0.273300f,-0.166664f,-0.338330f, 0.034654f, 0.351851f, 0.102631f,-0.311806f,-0.224292f,
0.224292f, 0.311806f,-0.102631f,-0.351851f,-0.034654f, 0.338330f, 0.166664f,-0.273300f,
};
static const float analysis_window[240] = {
0.000043f, 0.000171f, 0.000385f, 0.000685f, 0.001071f, 0.001541f, 0.002098f, 0.002739f,
0.003466f, 0.004278f, 0.005174f, 0.006156f, 0.007222f, 0.008373f, 0.009607f, 0.010926f,
0.012329f, 0.013815f, 0.015385f, 0.017037f, 0.018772f, 0.020590f, 0.022490f, 0.024472f,
0.026535f, 0.028679f, 0.030904f, 0.033210f, 0.035595f, 0.038060f, 0.040604f, 0.043227f,
0.045928f, 0.048707f, 0.051564f, 0.054497f, 0.057506f, 0.060591f, 0.063752f, 0.066987f,
0.070297f, 0.073680f, 0.077136f, 0.080665f, 0.084265f, 0.087937f, 0.091679f, 0.095492f,
0.099373f, 0.103323f, 0.107342f, 0.111427f, 0.115579f, 0.119797f, 0.124080f, 0.128428f,
0.132839f, 0.137313f, 0.141849f, 0.146447f, 0.151105f, 0.155823f, 0.160600f, 0.165435f,
0.170327f, 0.175276f, 0.180280f, 0.185340f, 0.190453f, 0.195619f, 0.200838f, 0.206107f,
0.211427f, 0.216797f, 0.222215f, 0.227680f, 0.233193f, 0.238751f, 0.244353f, 0.250000f,
0.255689f, 0.261421f, 0.267193f, 0.273005f, 0.278856f, 0.284744f, 0.290670f, 0.296632f,
0.302628f, 0.308658f, 0.314721f, 0.320816f, 0.326941f, 0.333097f, 0.339280f, 0.345492f,
0.351729f, 0.357992f, 0.364280f, 0.370590f, 0.376923f, 0.383277f, 0.389651f, 0.396044f,
0.402455f, 0.408882f, 0.415325f, 0.421783f, 0.428254f, 0.434737f, 0.441231f, 0.447736f,
0.454249f, 0.460770f, 0.467298f, 0.473832f, 0.480370f, 0.486912f, 0.493455f, 0.500000f,
0.506545f, 0.513088f, 0.519630f, 0.526168f, 0.532702f, 0.539230f, 0.545751f, 0.552264f,
0.558769f, 0.565263f, 0.571746f, 0.578217f, 0.584675f, 0.591118f, 0.597545f, 0.603956f,
0.610349f, 0.616723f, 0.623077f, 0.629410f, 0.635720f, 0.642008f, 0.648271f, 0.654508f,
0.660720f, 0.666903f, 0.673059f, 0.679184f, 0.685279f, 0.691342f, 0.697372f, 0.703368f,
0.709330f, 0.715256f, 0.721144f, 0.726995f, 0.732807f, 0.738579f, 0.744311f, 0.750000f,
0.755647f, 0.761249f, 0.766807f, 0.772320f, 0.777785f, 0.783203f, 0.788573f, 0.793893f,
0.799162f, 0.804381f, 0.809547f, 0.814660f, 0.819720f, 0.824724f, 0.829673f, 0.834565f,
0.839400f, 0.844177f, 0.848895f, 0.853553f, 0.858151f, 0.862687f, 0.867161f, 0.871572f,
0.875920f, 0.880203f, 0.884421f, 0.888573f, 0.892658f, 0.896677f, 0.900627f, 0.904508f,
0.908321f, 0.912063f, 0.915735f, 0.919335f, 0.922864f, 0.926320f, 0.929703f, 0.933013f,
0.936248f, 0.939409f, 0.942494f, 0.945503f, 0.948436f, 0.951293f, 0.954072f, 0.956773f,
0.959396f, 0.961940f, 0.964405f, 0.966790f, 0.969096f, 0.971321f, 0.973465f, 0.975528f,
0.977510f, 0.979410f, 0.981228f, 0.982963f, 0.984615f, 0.986185f, 0.987671f, 0.989074f,
0.990393f, 0.991627f, 0.992778f, 0.993844f, 0.994826f, 0.995722f, 0.996534f, 0.997261f,
0.997902f, 0.998459f, 0.998929f, 0.999315f, 0.999615f, 0.999829f, 0.999957f, 1.000000f,
};
static const int tbands[NB_TBANDS+1] = {
4, 8, 12, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 136, 160, 192, 240
};
#define NB_TONAL_SKIP_BANDS 9
static opus_val32 silk_resampler_down2_hp(
opus_val32 *S,
opus_val32 *out,
const opus_val32 *in,
int inLen
)
{
int k, len2 = inLen/2;
opus_val32 in32, out32, out32_hp, Y, X;
opus_val64 hp_ener = 0;
for( k = 0; k < len2; k++ ) {
in32 = in[ 2 * k ];
Y = SUB32( in32, S[ 0 ] );
X = MULT16_32_Q15(QCONST16(0.6074371f, 15), Y);
out32 = ADD32( S[ 0 ], X );
S[ 0 ] = ADD32( in32, X );
out32_hp = out32;
in32 = in[ 2 * k + 1 ];
Y = SUB32( in32, S[ 1 ] );
X = MULT16_32_Q15(QCONST16(0.15063f, 15), Y);
out32 = ADD32( out32, S[ 1 ] );
out32 = ADD32( out32, X );
S[ 1 ] = ADD32( in32, X );
Y = SUB32( -in32, S[ 2 ] );
X = MULT16_32_Q15(QCONST16(0.15063f, 15), Y);
out32_hp = ADD32( out32_hp, S[ 2 ] );
out32_hp = ADD32( out32_hp, X );
S[ 2 ] = ADD32( -in32, X );
hp_ener += out32_hp*(opus_val64)out32_hp;
out[ k ] = HALF32(out32);
}
#ifdef FIXED_POINT
hp_ener = hp_ener >> (2*SIG_SHIFT + 8);
#endif
return (opus_val32)hp_ener;
}
static opus_val32 downmix_and_resample(downmix_func downmix, const void *_x, opus_val32 *y, opus_val32 S[3], int subframe, int offset, int c1, int c2, int C, int Fs)
{
VARDECL(opus_val32, tmp);
opus_val32 scale;
int j;
opus_val32 ret = 0;
SAVE_STACK;
if (subframe==0) return 0;
if (Fs == 48000)
{
subframe *= 2;
offset *= 2;
} else if (Fs == 16000) {
subframe = subframe*2/3;
offset = offset*2/3;
}
ALLOC(tmp, subframe, opus_val32);
downmix(_x, tmp, subframe, offset, c1, c2, C);
#ifdef FIXED_POINT
scale = (1<<SIG_SHIFT);
#else
scale = 1.f/32768;
#endif
if (c2==-2)
scale /= C;
else if (c2>-1)
scale /= 2;
for (j=0;j<subframe;j++)
tmp[j] *= scale;
if (Fs == 48000)
{
ret = silk_resampler_down2_hp(S, y, tmp, subframe);
} else if (Fs == 24000) {
OPUS_COPY(y, tmp, subframe);
} else if (Fs == 16000) {
VARDECL(opus_val32, tmp3x);
ALLOC(tmp3x, 3*subframe, opus_val32);
for (j=0;j<subframe;j++)
{
tmp3x[3*j] = tmp[j];
tmp3x[3*j+1] = tmp[j];
tmp3x[3*j+2] = tmp[j];
}
silk_resampler_down2_hp(S, y, tmp3x, 3*subframe);
}
RESTORE_STACK;
return ret;
}
void tonality_analysis_init(TonalityAnalysisState *tonal, opus_int32 Fs)
{
tonal->arch = opus_select_arch();
tonal->Fs = Fs;
tonality_analysis_reset(tonal);
}
void tonality_analysis_reset(TonalityAnalysisState *tonal)
{
char *start = (char*)&tonal->TONALITY_ANALYSIS_RESET_START;
OPUS_CLEAR(start, sizeof(TonalityAnalysisState) - (start - (char*)tonal));
}
void tonality_get_info(TonalityAnalysisState *tonal, AnalysisInfo *info_out, int len)
{
int pos;
int curr_lookahead;
float tonality_max;
float tonality_avg;
int tonality_count;
int i;
int pos0;
float prob_avg;
float prob_count;
float prob_min, prob_max;
float vad_prob;
int mpos, vpos;
int bandwidth_span;
pos = tonal->read_pos;
curr_lookahead = tonal->write_pos-tonal->read_pos;
if (curr_lookahead<0)
curr_lookahead += DETECT_SIZE;
tonal->read_subframe += len/(tonal->Fs/400);
while (tonal->read_subframe>=8)
{
tonal->read_subframe -= 8;
tonal->read_pos++;
}
if (tonal->read_pos>=DETECT_SIZE)
tonal->read_pos-=DETECT_SIZE;
if (len > tonal->Fs/50 && pos != tonal->write_pos)
{
pos++;
if (pos==DETECT_SIZE)
pos=0;
}
if (pos == tonal->write_pos)
pos--;
if (pos<0)
pos = DETECT_SIZE-1;
pos0 = pos;
OPUS_COPY(info_out, &tonal->info[pos], 1);
if (!info_out->valid)
return;
tonality_max = tonality_avg = info_out->tonality;
tonality_count = 1;
bandwidth_span = 6;
for (i=0;i<3;i++)
{
pos++;
if (pos==DETECT_SIZE)
pos = 0;
if (pos == tonal->write_pos)
break;
tonality_max = MAX32(tonality_max, tonal->info[pos].tonality);
tonality_avg += tonal->info[pos].tonality;
tonality_count++;
info_out->bandwidth = IMAX(info_out->bandwidth, tonal->info[pos].bandwidth);
bandwidth_span--;
}
pos = pos0;
for (i=0;i<bandwidth_span;i++)
{
pos--;
if (pos < 0)
pos = DETECT_SIZE-1;
if (pos == tonal->write_pos)
break;
info_out->bandwidth = IMAX(info_out->bandwidth, tonal->info[pos].bandwidth);
}
info_out->tonality = MAX32(tonality_avg/tonality_count, tonality_max-.2f);
mpos = vpos = pos0;
if (curr_lookahead > 15)
{
mpos += 5;
if (mpos>=DETECT_SIZE)
mpos -= DETECT_SIZE;
vpos += 1;
if (vpos>=DETECT_SIZE)
vpos -= DETECT_SIZE;
}
prob_min = 1.f;
prob_max = 0.f;
vad_prob = tonal->info[vpos].activity_probability;
prob_count = MAX16(.1f, vad_prob);
prob_avg = MAX16(.1f, vad_prob)*tonal->info[mpos].music_prob;
while (1)
{
float pos_vad;
mpos++;
if (mpos==DETECT_SIZE)
mpos = 0;
if (mpos == tonal->write_pos)
break;
vpos++;
if (vpos==DETECT_SIZE)
vpos = 0;
if (vpos == tonal->write_pos)
break;
pos_vad = tonal->info[vpos].activity_probability;
prob_min = MIN16((prob_avg - TRANSITION_PENALTY*(vad_prob - pos_vad))/prob_count, prob_min);
prob_max = MAX16((prob_avg + TRANSITION_PENALTY*(vad_prob - pos_vad))/prob_count, prob_max);
prob_count += MAX16(.1f, pos_vad);
prob_avg += MAX16(.1f, pos_vad)*tonal->info[mpos].music_prob;
}
info_out->music_prob = prob_avg/prob_count;
prob_min = MIN16(prob_avg/prob_count, prob_min);
prob_max = MAX16(prob_avg/prob_count, prob_max);
prob_min = MAX16(prob_min, 0.f);
prob_max = MIN16(prob_max, 1.f);
if (curr_lookahead < 10)
{
float pmin, pmax;
pmin = prob_min;
pmax = prob_max;
pos = pos0;
for (i=0;i<IMIN(tonal->count-1, 15);i++)
{
pos--;
if (pos < 0)
pos = DETECT_SIZE-1;
pmin = MIN16(pmin, tonal->info[pos].music_prob);
pmax = MAX16(pmax, tonal->info[pos].music_prob);
}
pmin = MAX16(0.f, pmin - .1f*vad_prob);
pmax = MIN16(1.f, pmax + .1f*vad_prob);
prob_min += (1.f-.1f*curr_lookahead)*(pmin - prob_min);
prob_max += (1.f-.1f*curr_lookahead)*(pmax - prob_max);
}
info_out->music_prob_min = prob_min;
info_out->music_prob_max = prob_max;
}
static const float std_feature_bias[9] = {
5.684947f, 3.475288f, 1.770634f, 1.599784f, 3.773215f,
2.163313f, 1.260756f, 1.116868f, 1.918795f
};
#define LEAKAGE_OFFSET 2.5f
#define LEAKAGE_SLOPE 2.f
#ifdef FIXED_POINT
#define SCALE_COMPENS (1.f/((opus_int32)1<<(15+SIG_SHIFT)))
#define SCALE_ENER(e) ((SCALE_COMPENS*SCALE_COMPENS)*(e))
#else
#define SCALE_ENER(e) (e)
#endif
#ifdef FIXED_POINT
static int is_digital_silence32(const opus_val32* pcm, int frame_size, int channels, int lsb_depth)
{
int silence = 0;
opus_val32 sample_max = 0;
#ifdef MLP_TRAINING
return 0;
#endif
sample_max = celt_maxabs32(pcm, frame_size*channels);
silence = (sample_max == 0);
(void)lsb_depth;
return silence;
}
#else
#define is_digital_silence32(pcm, frame_size, channels, lsb_depth) is_digital_silence(pcm, frame_size, channels, lsb_depth)
#endif
static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt_mode, const void *x, int len, int offset, int c1, int c2, int C, int lsb_depth, downmix_func downmix)
{
int i, b;
const kiss_fft_state *kfft;
VARDECL(kiss_fft_cpx, in);
VARDECL(kiss_fft_cpx, out);
int N = 480, N2=240;
float * OPUS_RESTRICT A = tonal->angle;
float * OPUS_RESTRICT dA = tonal->d_angle;
float * OPUS_RESTRICT d2A = tonal->d2_angle;
VARDECL(float, tonality);
VARDECL(float, noisiness);
float band_tonality[NB_TBANDS];
float logE[NB_TBANDS];
float BFCC[8];
float features[25];
float frame_tonality;
float max_frame_tonality;
float frame_noisiness;
const float pi4 = (float)(M_PI*M_PI*M_PI*M_PI);
float slope=0;
float frame_stationarity;
float relativeE;
float frame_probs[2];
float alpha, alphaE, alphaE2;
float frame_loudness;
float bandwidth_mask;
int is_masked[NB_TBANDS+1];
int bandwidth=0;
float maxE = 0;
float noise_floor;
int remaining;
AnalysisInfo *info;
float hp_ener;
float tonality2[240];
float midE[8];
float spec_variability=0;
float band_log2[NB_TBANDS+1];
float leakage_from[NB_TBANDS+1];
float leakage_to[NB_TBANDS+1];
float layer_out[MAX_NEURONS];
float below_max_pitch;
float above_max_pitch;
int is_silence;
SAVE_STACK;
if (!tonal->initialized)
{
tonal->mem_fill = 240;
tonal->initialized = 1;
}
alpha = 1.f/IMIN(10, 1+tonal->count);
alphaE = 1.f/IMIN(25, 1+tonal->count);
alphaE2 = 1.f/IMIN(100, 1+tonal->count);
if (tonal->count <= 1) alphaE2 = 1;
if (tonal->Fs == 48000)
{
len/= 2;
offset /= 2;
} else if (tonal->Fs == 16000) {
len = 3*len/2;
offset = 3*offset/2;
}
kfft = celt_mode->mdct.kfft[0];
tonal->hp_ener_accum += (float)downmix_and_resample(downmix, x,
&tonal->inmem[tonal->mem_fill], tonal->downmix_state,
IMIN(len, ANALYSIS_BUF_SIZE-tonal->mem_fill), offset, c1, c2, C, tonal->Fs);
if (tonal->mem_fill+len < ANALYSIS_BUF_SIZE)
{
tonal->mem_fill += len;
RESTORE_STACK;
return;
}
hp_ener = tonal->hp_ener_accum;
info = &tonal->info[tonal->write_pos++];
if (tonal->write_pos>=DETECT_SIZE)
tonal->write_pos-=DETECT_SIZE;
is_silence = is_digital_silence32(tonal->inmem, ANALYSIS_BUF_SIZE, 1, lsb_depth);
ALLOC(in, 480, kiss_fft_cpx);
ALLOC(out, 480, kiss_fft_cpx);
ALLOC(tonality, 240, float);
ALLOC(noisiness, 240, float);
for (i=0;i<N2;i++)
{
float w = analysis_window[i];
in[i].r = (kiss_fft_scalar)(w*tonal->inmem[i]);
in[i].i = (kiss_fft_scalar)(w*tonal->inmem[N2+i]);
in[N-i-1].r = (kiss_fft_scalar)(w*tonal->inmem[N-i-1]);
in[N-i-1].i = (kiss_fft_scalar)(w*tonal->inmem[N+N2-i-1]);
}
OPUS_MOVE(tonal->inmem, tonal->inmem+ANALYSIS_BUF_SIZE-240, 240);
remaining = len - (ANALYSIS_BUF_SIZE-tonal->mem_fill);
tonal->hp_ener_accum = (float)downmix_and_resample(downmix, x,
&tonal->inmem[240], tonal->downmix_state, remaining,
offset+ANALYSIS_BUF_SIZE-tonal->mem_fill, c1, c2, C, tonal->Fs);
tonal->mem_fill = 240 + remaining;
if (is_silence)
{
int prev_pos = tonal->write_pos-2;
if (prev_pos < 0)
prev_pos += DETECT_SIZE;
OPUS_COPY(info, &tonal->info[prev_pos], 1);
RESTORE_STACK;
return;
}
opus_fft(kfft, in, out, tonal->arch);
#ifndef FIXED_POINT
if (celt_isnan(out[0].r))
{
info->valid = 0;
RESTORE_STACK;
return;
}
#endif
for (i=1;i<N2;i++)
{
float X1r, X2r, X1i, X2i;
float angle, d_angle, d2_angle;
float angle2, d_angle2, d2_angle2;
float mod1, mod2, avg_mod;
X1r = (float)out[i].r+out[N-i].r;
X1i = (float)out[i].i-out[N-i].i;
X2r = (float)out[i].i+out[N-i].i;
X2i = (float)out[N-i].r-out[i].r;
angle = (float)(.5f/M_PI)*fast_atan2f(X1i, X1r);
d_angle = angle - A[i];
d2_angle = d_angle - dA[i];
angle2 = (float)(.5f/M_PI)*fast_atan2f(X2i, X2r);
d_angle2 = angle2 - angle;
d2_angle2 = d_angle2 - d_angle;
mod1 = d2_angle - (float)float2int(d2_angle);
noisiness[i] = ABS16(mod1);
mod1 *= mod1;
mod1 *= mod1;
mod2 = d2_angle2 - (float)float2int(d2_angle2);
noisiness[i] += ABS16(mod2);
mod2 *= mod2;
mod2 *= mod2;
avg_mod = .25f*(d2A[i]+mod1+2*mod2);
tonality[i] = 1.f/(1.f+40.f*16.f*pi4*avg_mod)-.015f;
tonality2[i] = 1.f/(1.f+40.f*16.f*pi4*mod2)-.015f;
A[i] = angle2;
dA[i] = d_angle2;
d2A[i] = mod2;
}
for (i=2;i<N2-1;i++)
{
float tt = MIN32(tonality2[i], MAX32(tonality2[i-1], tonality2[i+1]));
tonality[i] = .9f*MAX32(tonality[i], tt-.1f);
}
frame_tonality = 0;
max_frame_tonality = 0;
info->activity = 0;
frame_noisiness = 0;
frame_stationarity = 0;
if (!tonal->count)
{
for (b=0;b<NB_TBANDS;b++)
{
tonal->lowE[b] = 1e10;
tonal->highE[b] = -1e10;
}
}
relativeE = 0;
frame_loudness = 0;
{
float E = 0;
float X1r, X2r;
X1r = 2*(float)out[0].r;
X2r = 2*(float)out[0].i;
E = X1r*X1r + X2r*X2r;
for (i=1;i<4;i++)
{
float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r
+ out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i;
E += binE;
}
E = SCALE_ENER(E);
band_log2[0] = .5f*1.442695f*(float)log(E+1e-10f);
}
for (b=0;b<NB_TBANDS;b++)
{
float E=0, tE=0, nE=0;
float L1, L2;
float stationarity;
for (i=tbands[b];i<tbands[b+1];i++)
{
float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r
+ out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i;
binE = SCALE_ENER(binE);
E += binE;
tE += binE*MAX32(0, tonality[i]);
nE += binE*2.f*(.5f-noisiness[i]);
}
#ifndef FIXED_POINT
if (!(E<1e9f) || celt_isnan(E))
{
info->valid = 0;
RESTORE_STACK;
return;
}
#endif
tonal->E[tonal->E_count][b] = E;
frame_noisiness += nE/(1e-15f+E);
frame_loudness += (float)sqrt(E+1e-10f);
logE[b] = (float)log(E+1e-10f);
band_log2[b+1] = .5f*1.442695f*(float)log(E+1e-10f);
tonal->logE[tonal->E_count][b] = logE[b];
if (tonal->count==0)
tonal->highE[b] = tonal->lowE[b] = logE[b];
if (tonal->highE[b] > tonal->lowE[b] + 7.5)
{
if (tonal->highE[b] - logE[b] > logE[b] - tonal->lowE[b])
tonal->highE[b] -= .01f;
else
tonal->lowE[b] += .01f;
}
if (logE[b] > tonal->highE[b])
{
tonal->highE[b] = logE[b];
tonal->lowE[b] = MAX32(tonal->highE[b]-15, tonal->lowE[b]);
} else if (logE[b] < tonal->lowE[b])
{
tonal->lowE[b] = logE[b];
tonal->highE[b] = MIN32(tonal->lowE[b]+15, tonal->highE[b]);
}
relativeE += (logE[b]-tonal->lowE[b])/(1e-5f + (tonal->highE[b]-tonal->lowE[b]));
L1=L2=0;
for (i=0;i<NB_FRAMES;i++)
{
L1 += (float)sqrt(tonal->E[i][b]);
L2 += tonal->E[i][b];
}
stationarity = MIN16(0.99f,L1/(float)sqrt(1e-15+NB_FRAMES*L2));
stationarity *= stationarity;
stationarity *= stationarity;
frame_stationarity += stationarity;
;
band_tonality[b] = MAX16(tE/(1e-15f+E), stationarity*tonal->prev_band_tonality[b]);
#if 0#else
frame_tonality += band_tonality[b];
if (b>=NB_TBANDS-NB_TONAL_SKIP_BANDS)
frame_tonality -= band_tonality[b-NB_TBANDS+NB_TONAL_SKIP_BANDS];
#endif
max_frame_tonality = MAX16(max_frame_tonality, (1.f+.03f*(b-NB_TBANDS))*frame_tonality);
slope += band_tonality[b]*(b-8);
tonal->prev_band_tonality[b] = band_tonality[b];
}
leakage_from[0] = band_log2[0];
leakage_to[0] = band_log2[0] - LEAKAGE_OFFSET;
for (b=1;b<NB_TBANDS+1;b++)
{
float leak_slope = LEAKAGE_SLOPE*(tbands[b]-tbands[b-1])/4;
leakage_from[b] = MIN16(leakage_from[b-1]+leak_slope, band_log2[b]);
leakage_to[b] = MAX16(leakage_to[b-1]-leak_slope, band_log2[b]-LEAKAGE_OFFSET);
}
for (b=NB_TBANDS-2;b>=0;b--)
{
float leak_slope = LEAKAGE_SLOPE*(tbands[b+1]-tbands[b])/4;
leakage_from[b] = MIN16(leakage_from[b+1]+leak_slope, leakage_from[b]);
leakage_to[b] = MAX16(leakage_to[b+1]-leak_slope, leakage_to[b]);
}
celt_assert(NB_TBANDS+1 <= LEAK_BANDS);
for (b=0;b<NB_TBANDS+1;b++)
{
float boost = MAX16(0, leakage_to[b] - band_log2[b]) +
MAX16(0, band_log2[b] - (leakage_from[b]+LEAKAGE_OFFSET));
info->leak_boost[b] = IMIN(255, (int)floor(.5 + 64.f*boost));
}
for (;b<LEAK_BANDS;b++) info->leak_boost[b] = 0;
for (i=0;i<NB_FRAMES;i++)
{
int j;
float mindist = 1e15f;
for (j=0;j<NB_FRAMES;j++)
{
int k;
float dist=0;
for (k=0;k<NB_TBANDS;k++)
{
float tmp;
tmp = tonal->logE[i][k] - tonal->logE[j][k];
dist += tmp*tmp;
}
if (j!=i)
mindist = MIN32(mindist, dist);
}
spec_variability += mindist;
}
spec_variability = (float)sqrt(spec_variability/NB_FRAMES/NB_TBANDS);
bandwidth_mask = 0;
bandwidth = 0;
maxE = 0;
noise_floor = 5.7e-4f/(1<<(IMAX(0,lsb_depth-8)));
noise_floor *= noise_floor;
below_max_pitch=0;
above_max_pitch=0;
for (b=0;b<NB_TBANDS;b++)
{
float E=0;
float Em;
int band_start, band_end;
band_start = tbands[b];
band_end = tbands[b+1];
for (i=band_start;i<band_end;i++)
{
float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r
+ out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i;
E += binE;
}
E = SCALE_ENER(E);
maxE = MAX32(maxE, E);
if (band_start < 64)
{
below_max_pitch += E;
} else {
above_max_pitch += E;
}
tonal->meanE[b] = MAX32((1-alphaE2)*tonal->meanE[b], E);
Em = MAX32(E, tonal->meanE[b]);
if (E*1e9f > maxE && (Em > 3*noise_floor*(band_end-band_start) || E > noise_floor*(band_end-band_start)))
bandwidth = b+1;
is_masked[b] = E < (tonal->prev_bandwidth >= b+1 ? .01f : .05f)*bandwidth_mask;
bandwidth_mask = MAX32(.05f*bandwidth_mask, E);
}
if (tonal->Fs == 48000) {
float noise_ratio;
float Em;
float E = hp_ener*(1.f/(60*60));
noise_ratio = tonal->prev_bandwidth==20 ? 10.f : 30.f;
#ifdef FIXED_POINT
E *= 256.f*(1.f/Q15ONE)*(1.f/Q15ONE);
#endif
above_max_pitch += E;
tonal->meanE[b] = MAX32((1-alphaE2)*tonal->meanE[b], E);
Em = MAX32(E, tonal->meanE[b]);
if (Em > 3*noise_ratio*noise_floor*160 || E > noise_ratio*noise_floor*160)
bandwidth = 20;
is_masked[b] = E < (tonal->prev_bandwidth == 20 ? .01f : .05f)*bandwidth_mask;
}
if (above_max_pitch > below_max_pitch)
info->max_pitch_ratio = below_max_pitch/above_max_pitch;
else
info->max_pitch_ratio = 1;
if (bandwidth == 20 && is_masked[NB_TBANDS])
bandwidth-=2;
else if (bandwidth > 0 && bandwidth <= NB_TBANDS && is_masked[bandwidth-1])
bandwidth--;
if (tonal->count<=2)
bandwidth = 20;
frame_loudness = 20*(float)log10(frame_loudness);
tonal->Etracker = MAX32(tonal->Etracker-.003f, frame_loudness);
tonal->lowECount *= (1-alphaE);
if (frame_loudness < tonal->Etracker-30)
tonal->lowECount += alphaE;
for (i=0;i<8;i++)
{
float sum=0;
for (b=0;b<16;b++)
sum += dct_table[i*16+b]*logE[b];
BFCC[i] = sum;
}
for (i=0;i<8;i++)
{
float sum=0;
for (b=0;b<16;b++)
sum += dct_table[i*16+b]*.5f*(tonal->highE[b]+tonal->lowE[b]);
midE[i] = sum;
}
frame_stationarity /= NB_TBANDS;
relativeE /= NB_TBANDS;
if (tonal->count<10)
relativeE = .5f;
frame_noisiness /= NB_TBANDS;
#if 1
info->activity = frame_noisiness + (1-frame_noisiness)*relativeE;
#else#endif
frame_tonality = (max_frame_tonality/(NB_TBANDS-NB_TONAL_SKIP_BANDS));
frame_tonality = MAX16(frame_tonality, tonal->prev_tonality*.8f);
tonal->prev_tonality = frame_tonality;
slope /= 8*8;
info->tonality_slope = slope;
tonal->E_count = (tonal->E_count+1)%NB_FRAMES;
tonal->count = IMIN(tonal->count+1, ANALYSIS_COUNT_MAX);
info->tonality = frame_tonality;
for (i=0;i<4;i++)
features[i] = -0.12299f*(BFCC[i]+tonal->mem[i+24]) + 0.49195f*(tonal->mem[i]+tonal->mem[i+16]) + 0.69693f*tonal->mem[i+8] - 1.4349f*tonal->cmean[i];
for (i=0;i<4;i++)
tonal->cmean[i] = (1-alpha)*tonal->cmean[i] + alpha*BFCC[i];
for (i=0;i<4;i++)
features[4+i] = 0.63246f*(BFCC[i]-tonal->mem[i+24]) + 0.31623f*(tonal->mem[i]-tonal->mem[i+16]);
for (i=0;i<3;i++)
features[8+i] = 0.53452f*(BFCC[i]+tonal->mem[i+24]) - 0.26726f*(tonal->mem[i]+tonal->mem[i+16]) -0.53452f*tonal->mem[i+8];
if (tonal->count > 5)
{
for (i=0;i<9;i++)
tonal->std[i] = (1-alpha)*tonal->std[i] + alpha*features[i]*features[i];
}
for (i=0;i<4;i++)
features[i] = BFCC[i]-midE[i];
for (i=0;i<8;i++)
{
tonal->mem[i+24] = tonal->mem[i+16];
tonal->mem[i+16] = tonal->mem[i+8];
tonal->mem[i+8] = tonal->mem[i];
tonal->mem[i] = BFCC[i];
}
for (i=0;i<9;i++)
features[11+i] = (float)sqrt(tonal->std[i]) - std_feature_bias[i];
features[18] = spec_variability - 0.78f;
features[20] = info->tonality - 0.154723f;
features[21] = info->activity - 0.724643f;
features[22] = frame_stationarity - 0.743717f;
features[23] = info->tonality_slope + 0.069216f;
features[24] = tonal->lowECount - 0.067930f;
analysis_compute_dense(&layer0, layer_out, features);
analysis_compute_gru(&layer1, tonal->rnn_state, layer_out);
analysis_compute_dense(&layer2, frame_probs, tonal->rnn_state);
info->activity_probability = frame_probs[1];
info->music_prob = frame_probs[0];
#ifdef MLP_TRAINING
for (i=0;i<25;i++)
printf("%f ", features[i]);
printf("\n");
#endif
info->bandwidth = bandwidth;
tonal->prev_bandwidth = bandwidth;
info->noisiness = frame_noisiness;
info->valid = 1;
RESTORE_STACK;
}
void run_analysis(TonalityAnalysisState *analysis, const CELTMode *celt_mode, const void *analysis_pcm,
int analysis_frame_size, int frame_size, int c1, int c2, int C, opus_int32 Fs,
int lsb_depth, downmix_func downmix, AnalysisInfo *analysis_info)
{
int offset;
int pcm_len;
analysis_frame_size -= analysis_frame_size&1;
if (analysis_pcm != NULL)
{
analysis_frame_size = IMIN((DETECT_SIZE-5)*Fs/50, analysis_frame_size);
pcm_len = analysis_frame_size - analysis->analysis_offset;
offset = analysis->analysis_offset;
while (pcm_len>0) {
tonality_analysis(analysis, celt_mode, analysis_pcm, IMIN(Fs/50, pcm_len), offset, c1, c2, C, lsb_depth, downmix);
offset += Fs/50;
pcm_len -= Fs/50;
}
analysis->analysis_offset = analysis_frame_size;
analysis->analysis_offset -= frame_size;
}
tonality_get_info(analysis, analysis_info, frame_size);
}
#endif