1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
//-----------------------------------------------------------------------------
//
// Security.cpp
//
// Common Security/Encryption Routines
//
// Copyright (c) 2015 Justin Hammond <justin@dynam.ac>
//
// SOFTWARE NOTICE AND LICENSE
//
// This file is part of OpenZWave.
//
// OpenZWave is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published
// by the Free Software Foundation, either version 3 of the License,
// or (at your option) any later version.
//
// OpenZWave is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with OpenZWave. If not, see <http://www.gnu.org/licenses/>.
//
//-----------------------------------------------------------------------------
#include "Defs.h"
#include "ZWSecurity.h"
#include "Node.h"
#include "Driver.h"
#include "Manager.h"
#include "Options.h"
#include "Utils.h"
#include "platform/Log.h"
#include "command_classes/MultiInstance.h"
#include "command_classes/Security.h"
#include "aes/aescpp.h"
namespace OpenZWave {
//using namespace OpenZWave;
//-----------------------------------------------------------------------------
// <GenerateAuthentication>
// Generate authentication data from a security-encrypted message
//-----------------------------------------------------------------------------
bool GenerateAuthentication
(
uint8 const* _data, // Starting from the command class command
uint32 const _length,
Driver *driver,
uint8 const _sendingNode,
uint8 const _receivingNode,
uint8 *iv,
uint8* _authentication // 8-byte buffer that will be filled with the authentication data
)
{
// Build a buffer containing a 4-byte header and the encrypted
// message data, padded with zeros to a 16-byte boundary.
uint8 buffer[256];
uint8 tmpauth[16];
memset(buffer, 0, 256);
memset(tmpauth, 0, 16);
buffer[0] = _data[0]; // Security command class command
buffer[1] = _sendingNode;
buffer[2] = _receivingNode;
buffer[3] = _length - 19; // Subtract 19 to account for the 9 security command class bytes that come before and after the encrypted data
memcpy( &buffer[4], &_data[9], _length-19 ); // Encrypted message
uint8 bufsize = _length - 19 + 4; /* the size of buffer */
#ifdef DEBUG
PrintHex("Raw Auth (minus IV)", buffer, bufsize);
Log::Write(LogLevel_Debug, _receivingNode, "Raw Auth (Minus IV) Size: %d (%d)", bufsize, bufsize+16);
#endif
aes_mode_reset(driver->GetAuthKey());
/* encrypt the IV with ecb */
if (aes_ecb_encrypt(iv, tmpauth, 16, driver->GetAuthKey()) == EXIT_FAILURE) {
Log::Write(LogLevel_Warning, _receivingNode, "Failed Initial ECB Encrypt of Auth Packet");
return false;
}
/* our temporary holding var */
uint8 encpck[16];
int block = 0;
/* reset our encpck temp var */
memset(encpck, 0, 16);
/* now xor the buffer with our encrypted IV */
for (int i = 0; i < bufsize; i++) {
encpck[block] = buffer[i];
block++;
/* if we hit a blocksize, then encrypt */
if (block == 16) {
for (int j = 0; j < 16; j++) {
/* here we do our xor */
tmpauth[j] = encpck[j] ^ tmpauth[j];
/* and reset encpck for good measure */
encpck[j] = 0;
}
/* reset our block counter back to 0 */
block = 0;
aes_mode_reset(driver->GetAuthKey());
if (aes_ecb_encrypt(tmpauth, tmpauth, 16, driver->GetAuthKey()) == EXIT_FAILURE) {
Log::Write(LogLevel_Warning, _receivingNode, "Failed Subsequent (%d) ECB Encrypt of Auth Packet", i);
return false;
}
}
}
/* any left over data that isn't a full block size*/
if (block > 0) {
for (int i= 0; i < 16; i++) {
/* encpck from block to 16 is already gauranteed to be 0
* so its safe to xor it with out tmpmac */
tmpauth[i] = encpck[i] ^ tmpauth[i];
}
aes_mode_reset(driver->GetAuthKey());
if (aes_ecb_encrypt(tmpauth, tmpauth, 16, driver->GetAuthKey()) == EXIT_FAILURE) {
Log::Write(LogLevel_Warning, _receivingNode, "Failed Final ECB Encrypt of Auth Packet");
return false;
}
}
/* we only care about the first 8 bytes of tmpauth as the mac */
#ifdef DEBUG
PrintHex("Computed Auth", tmpauth, 8);
#endif
/* so only copy 8 bytes to the _authentication var */
memcpy(_authentication, tmpauth, 8);
return true;
}
bool EncyrptBuffer(
uint8 *m_buffer,
uint8 m_length,
Driver *driver,
uint8 const _sendingNode,
uint8 const _receivingNode,
uint8 const m_nonce[8],
uint8* e_buffer
)
{
#if 0
m_nonce[0] = 0x09;
m_nonce[1] = 0x0d;
m_nonce[2] = 0x93;
m_nonce[3] = 0xd3;
m_nonce[4] = 0x61;
m_nonce[5] = 0x61;
m_nonce[6] = 0x1d;
m_nonce[7] = 0xd6;
#endif
uint8 len = 0;
e_buffer[len++] = SOF;
e_buffer[len++] = m_length + 18; // length of full packet
e_buffer[len++] = REQUEST;
e_buffer[len++] = FUNC_ID_ZW_SEND_DATA;
e_buffer[len++] = _receivingNode;
e_buffer[len++] = m_length + 11; // Length of the payload
e_buffer[len++] = Security::StaticGetCommandClassId();
e_buffer[len++] = SecurityCmd_MessageEncap;
/* create our IV */
uint8 initializationVector[16];
/* the first 8 bytes of a outgoing IV are random
* and we add it also to the start of the payload
*/
for (int i = 0; i < 8; i++) {
//initializationVector[i] = (rand()%0xFF)+1;
initializationVector[i] = 0xAA;
e_buffer[len++] = initializationVector[i];
}
/* the remaining 8 bytes are the NONCE we got from the device */
for (int i = 0; i < 8; i++) {
initializationVector[8+i] = m_nonce[i];
}
uint8 plaintextmsg[32];
/* add the Sequence Flag
* - Since we dont currently handle multipacket encryption
* just set this to 0
*/
plaintextmsg[0] = 0;
/* now add the actual message to be encrypted */
for (int i = 0; i < m_length-6-3; i++)
plaintextmsg[i+1] = m_buffer[6+i];
/* now encrypt */
uint8 encryptedpayload[30];
aes_mode_reset(driver->GetEncKey());
#ifdef DEBUG
PrintHex("Plain Text Packet:", plaintextmsg, m_length-5-3);
#endif
if (aes_ofb_encrypt(plaintextmsg, encryptedpayload, m_length-5-3, initializationVector, driver->GetEncKey()) == EXIT_FAILURE) {
Log::Write(LogLevel_Warning, _receivingNode, "Failed to Encrypt Packet");
return false;
}
#ifdef DEBUG
PrintHex("Encrypted Packet", encryptedpayload, m_length-5-3);
#endif
/* now add the Encrypted output to the packet */
for (int i = 0; i < m_length-5-3; i++) {
e_buffer[len++] = encryptedpayload[i];
}
// Append the nonce identifier :)
e_buffer[len++] = m_nonce[0];
/* regenerate the IV */
for (int i = 0; i < 8; i++) {
//initializationVector[i] = (rand()%0xFF)+1;
initializationVector[i] = 0xAA;
}
/* the remaining 8 bytes are the NONCE we got from the device */
for (int i = 0; i < 8; i++) {
initializationVector[8+i] = m_nonce[i];
}
/* now calculate the MAC and append it */
uint8 mac[8];
GenerateAuthentication(&e_buffer[7], e_buffer[5], driver, _sendingNode, _receivingNode, initializationVector, mac);
for(int i=0; i<8; ++i )
{
e_buffer[len++] = mac[i];
}
e_buffer[len++] = driver->GetTransmitOptions();
/* this is the same as the Actual Message */
e_buffer[len++] = m_buffer[m_length-2];
// Calculate the checksum
uint8 csum = 0xff;
for( int32 i=1; i<len; ++i )
{
csum ^= e_buffer[i];
}
e_buffer[len++] = csum;
return true;
}
bool createIVFromPacket_inbound(uint8 const* _data, uint8 const m_nonce[8], uint8 *iv) {
for (int i = 0; i < 8; i++) {
iv[i] = _data[i];
}
for (int i = 0; i < 8; i++) {
iv[8+i] = m_nonce[i];
}
return true;
}
/* To Decrypt, we start the packet at the IV (right after the command)
*
* Encrypted Packet Size is Packet Lenght - Device Nonce(8) - Reciever Nonce ID (1) - Mac (8) - CommandClass - Command
*
* Reciever Nonce is at Position 14 + Encrypted Packet Size
* Mac is at Position 15 + Encrypted Packet Size
* 0 - Command Class
* 1 - Command
* 2 to 9 - Device Nonce
* 10 - Sequence (e)
* 11 - Command Class (e)
* 12 - Command (e)
* 13 to EncryptedPckSize
* ReciverNonceID (1 Byte)
* Mac (8 Bytes)
*/
bool DecryptBuffer
(
uint8 *e_buffer,
uint8 e_length,
Driver *driver,
uint8 const _sendingNode,
uint8 const _receivingNode,
uint8 const m_nonce[8],
uint8* m_buffer
)
{
PrintHex("Raw", e_buffer, e_length);
if (e_length < 19) {
Log::Write(LogLevel_Warning, _sendingNode, "Recieved a Encrypted Message that is too Short. Dropping it");
return false;
}
uint8 iv[17];
createIVFromPacket_inbound(&e_buffer[2], m_nonce, iv); /* first 8 bytes of Packet are the Random Value generated by the Device
* 2nd 8 bytes of the IV are our nonce we sent previously
*/
memset(&m_buffer[0], 0, 32);
uint32 encryptedpacketsize = e_length - 8 - 8 - 2 - 2;
/* if the Encrypted Packet Size is less than 3, there is probably a issue, drop it. */
if (encryptedpacketsize < 3) {
Log::Write(LogLevel_Warning, _sendingNode, "Encrypted Packet Size is Less than 3 Bytes. Dropping");
return false;
}
uint8 encyptedpacket[32];
for (uint32 i = 0; i < 32; i++) {
if (i >= encryptedpacketsize) {
/* pad the remaining fields */
encyptedpacket[i] = 0;
} else {
encyptedpacket[i] = e_buffer[10+i];
}
}
#ifdef DEBUG
Log::Write(LogLevel_Debug, _sendingNode, "Encrypted Packet Sizes: %d (Total) %d (Payload)", e_length, encryptedpacketsize);
PrintHex("IV", iv, 16);
PrintHex("Encrypted", encyptedpacket, 16);
/* Mac Starts after Encrypted Packet. */
PrintHex("Auth", &e_buffer[11+encryptedpacketsize], 8);
#endif
aes_mode_reset(driver->GetEncKey());
#if 0
uint8_t iv[16] = { 0x81, 0x42, 0xd1, 0x51, 0xf1, 0x59, 0x3d, 0x70, 0xd5, 0xe3, 0x6c, 0xcb, 0x02, 0xd0, 0x3f, 0x5c, /* */ };
uint8_t pck[] = { 0x25, 0x68, 0x06, 0xc5, 0xb3, 0xee, 0x2c, 0x17, 0x26, 0x7e, 0xf0, 0x84, 0xd4, 0xc3, 0xba, 0xed, 0xe5, 0xb9, 0x55};
if (aes_ofb_decrypt(pck, decryptpacket, 19, iv, this->EncryptKey) == EXIT_FAILURE) {
Log::Write(LogLevel_Warning, GetNodeId(), "Failed to Decrypt Packet");
return false;
}
PrintHex("Pck", decryptpacket, 19);
#else
if (aes_ofb_decrypt(encyptedpacket, m_buffer, encryptedpacketsize, iv, driver->GetEncKey()) == EXIT_FAILURE) {
Log::Write(LogLevel_Warning, _sendingNode, "Failed to Decrypt Packet");
return false;
}
Log::Write(LogLevel_Detail, _sendingNode, "Decrypted Packet: %s", PktToString(m_buffer, encryptedpacketsize).c_str());
#endif
uint8 mac[32];
/* we have to regenerate the IV as the ofb decryption routine will alter it. */
createIVFromPacket_inbound(&e_buffer[2], m_nonce, iv);
GenerateAuthentication(&e_buffer[1], e_length-1, driver, _sendingNode, _receivingNode, iv, mac);
if (memcmp(&e_buffer[11+encryptedpacketsize], mac, 8) != 0) {
Log::Write(LogLevel_Warning, _sendingNode, "MAC Authentication of Packet Failed. Dropping");
return false;
}
/* XXX TODO: Check the Sequence Header Frame to see if this is the first part of a
* message, or 2nd part, or a entire message.
*
* I havn't actually seen a Z-Wave Message thats too big to fit in a encrypted message
* yet, so we will look at this if such a message actually exists!
*/
return true;
}
SecurityStrategy ShouldSecureCommandClass(uint8 CommandClass) {
string securestrategy;
Options::Get()->GetOptionAsString( "SecurityStrategy", &securestrategy );
if (ToUpper(securestrategy) == "ESSENTIAL") {
return SecurityStrategy_Essential;
} else if (ToUpper(securestrategy) == "SUPPORTED") {
return SecurityStrategy_Supported;
} else if (ToUpper(securestrategy) == "CUSTOM") {
string customsecurecc;
Options::Get()->GetOptionAsString( "CustomSecuredCC", &customsecurecc);
char* pos = const_cast<char*>(customsecurecc.c_str());
while( *pos )
{
if (CommandClass == (uint8)strtol( pos, &pos, 16 )) {
return SecurityStrategy_Supported;
}
if( (*pos) == ',' )
{
++pos;
}
}
}
return SecurityStrategy_Essential;
}
}