opencv 0.81.2

Rust bindings for OpenCV
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
pub mod cudastereo {
	//! # Stereo Correspondence
	use crate::{mod_prelude::*, core, sys, types};
	pub mod prelude {
		pub use { super::CUDA_StereoBMConst, super::CUDA_StereoBM, super::CUDA_StereoBeliefPropagationConst, super::CUDA_StereoBeliefPropagation, super::CUDA_StereoConstantSpaceBPConst, super::CUDA_StereoConstantSpaceBP, super::CUDA_StereoSGMConst, super::CUDA_StereoSGM, super::CUDA_DisparityBilateralFilterConst, super::CUDA_DisparityBilateralFilter };
	}
	
	/// Creates DisparityBilateralFilter object.
	/// 
	/// ## Parameters
	/// * ndisp: Number of disparities.
	/// * radius: Filter radius.
	/// * iters: Number of iterations.
	/// 
	/// ## C++ default parameters
	/// * ndisp: 64
	/// * radius: 3
	/// * iters: 1
	#[inline]
	pub fn create_disparity_bilateral_filter(ndisp: i32, radius: i32, iters: i32) -> Result<core::Ptr<dyn crate::cudastereo::CUDA_DisparityBilateralFilter>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_cuda_createDisparityBilateralFilter_int_int_int(ndisp, radius, iters, ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<dyn crate::cudastereo::CUDA_DisparityBilateralFilter>::opencv_from_extern(ret) };
		Ok(ret)
	}
	
	/// Creates StereoBM object.
	/// 
	/// ## Parameters
	/// * numDisparities: the disparity search range. For each pixel algorithm will find the best
	/// disparity from 0 (default minimum disparity) to numDisparities. The search range can then be
	/// shifted by changing the minimum disparity.
	/// * blockSize: the linear size of the blocks compared by the algorithm. The size should be odd
	/// (as the block is centered at the current pixel). Larger block size implies smoother, though less
	/// accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher
	/// chance for algorithm to find a wrong correspondence.
	/// 
	/// ## C++ default parameters
	/// * num_disparities: 64
	/// * block_size: 19
	#[inline]
	pub fn create_stereo_bm(num_disparities: i32, block_size: i32) -> Result<core::Ptr<dyn crate::cudastereo::CUDA_StereoBM>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_cuda_createStereoBM_int_int(num_disparities, block_size, ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<dyn crate::cudastereo::CUDA_StereoBM>::opencv_from_extern(ret) };
		Ok(ret)
	}
	
	/// Creates StereoBeliefPropagation object.
	/// 
	/// ## Parameters
	/// * ndisp: Number of disparities.
	/// * iters: Number of BP iterations on each level.
	/// * levels: Number of levels.
	/// * msg_type: Type for messages. CV_16SC1 and CV_32FC1 types are supported.
	/// 
	/// ## C++ default parameters
	/// * ndisp: 64
	/// * iters: 5
	/// * levels: 5
	/// * msg_type: CV_32F
	#[inline]
	pub fn create_stereo_belief_propagation(ndisp: i32, iters: i32, levels: i32, msg_type: i32) -> Result<core::Ptr<dyn crate::cudastereo::CUDA_StereoBeliefPropagation>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_cuda_createStereoBeliefPropagation_int_int_int_int(ndisp, iters, levels, msg_type, ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<dyn crate::cudastereo::CUDA_StereoBeliefPropagation>::opencv_from_extern(ret) };
		Ok(ret)
	}
	
	/// Creates StereoConstantSpaceBP object.
	/// 
	/// ## Parameters
	/// * ndisp: Number of disparities.
	/// * iters: Number of BP iterations on each level.
	/// * levels: Number of levels.
	/// * nr_plane: Number of disparity levels on the first level.
	/// * msg_type: Type for messages. CV_16SC1 and CV_32FC1 types are supported.
	/// 
	/// ## C++ default parameters
	/// * ndisp: 128
	/// * iters: 8
	/// * levels: 4
	/// * nr_plane: 4
	/// * msg_type: CV_32F
	#[inline]
	pub fn create_stereo_constant_space_bp(ndisp: i32, iters: i32, levels: i32, nr_plane: i32, msg_type: i32) -> Result<core::Ptr<dyn crate::cudastereo::CUDA_StereoConstantSpaceBP>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_cuda_createStereoConstantSpaceBP_int_int_int_int_int(ndisp, iters, levels, nr_plane, msg_type, ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<dyn crate::cudastereo::CUDA_StereoConstantSpaceBP>::opencv_from_extern(ret) };
		Ok(ret)
	}
	
	/// Creates StereoSGM object.
	/// 
	/// ## Parameters
	/// * minDisparity: Minimum possible disparity value. Normally, it is zero but sometimes rectification algorithms can shift images, so this parameter needs to be adjusted accordingly.
	/// * numDisparities: Maximum disparity minus minimum disparity. The value must be 64, 128 or 256.
	/// * P1: The first parameter controlling the disparity smoothness.This parameter is used for the case of slanted surfaces (not fronto parallel).
	/// * P2: The second parameter controlling the disparity smoothness.This parameter is used for "solving" the depth discontinuities problem.
	/// * uniquenessRatio: Margin in percentage by which the best (minimum) computed cost function
	/// value should "win" the second best value to consider the found match correct. Normally, a value
	/// within the 5-15 range is good enough.
	/// * mode: Set it to StereoSGM::MODE_HH to run the full-scale two-pass dynamic programming algorithm.
	/// It will consume O(W\*H\*numDisparities) bytes. By default, it is set to StereoSGM::MODE_HH4.
	/// 
	/// ## C++ default parameters
	/// * min_disparity: 0
	/// * num_disparities: 128
	/// * p1: 10
	/// * p2: 120
	/// * uniqueness_ratio: 5
	/// * mode: cv::cuda::StereoSGM::MODE_HH4
	#[inline]
	pub fn create_stereo_sgm(min_disparity: i32, num_disparities: i32, p1: i32, p2: i32, uniqueness_ratio: i32, mode: i32) -> Result<core::Ptr<dyn crate::cudastereo::CUDA_StereoSGM>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_cuda_createStereoSGM_int_int_int_int_int_int(min_disparity, num_disparities, p1, p2, uniqueness_ratio, mode, ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<dyn crate::cudastereo::CUDA_StereoSGM>::opencv_from_extern(ret) };
		Ok(ret)
	}
	
	/// Colors a disparity image.
	/// 
	/// ## Parameters
	/// * src_disp: Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit
	/// floating-point disparity image. If 16-bit signed format is used, the values are assumed to have no
	/// fractional bits.
	/// * dst_disp: Output disparity image. It has the same size as src_disp. The type is CV_8UC4
	/// in BGRA format (alpha = 255).
	/// * ndisp: Number of disparities.
	/// * stream: Stream for the asynchronous version.
	/// 
	/// This function draws a colored disparity map by converting disparity values from [0..ndisp) interval
	/// first to HSV color space (where different disparity values correspond to different hues) and then
	/// converting the pixels to RGB for visualization.
	/// 
	/// ## C++ default parameters
	/// * stream: Stream::Null()
	#[inline]
	pub fn draw_color_disp(src_disp: &dyn core::ToInputArray, dst_disp: &mut dyn core::ToOutputArray, ndisp: i32, stream: &mut core::Stream) -> Result<()> {
		extern_container_arg!(src_disp);
		extern_container_arg!(dst_disp);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_cuda_drawColorDisp_const__InputArrayR_const__OutputArrayR_int_StreamR(src_disp.as_raw__InputArray(), dst_disp.as_raw__OutputArray(), ndisp, stream.as_raw_mut_Stream(), ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	
	/// ## C++ default parameters
	/// * dst_cn: 4
	/// * stream: Stream::Null()
	#[inline]
	pub fn reproject_image_to_3d_1(mut disp: core::GpuMat, xyzw: &mut core::GpuMat, mut q: core::Mat, dst_cn: i32, stream: &mut core::Stream) -> Result<()> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_cuda_reprojectImageTo3D_GpuMat_GpuMatR_Mat_int_StreamR(disp.as_raw_mut_GpuMat(), xyzw.as_raw_mut_GpuMat(), q.as_raw_mut_Mat(), dst_cn, stream.as_raw_mut_Stream(), ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	
	/// Reprojects a disparity image to 3D space.
	/// 
	/// ## Parameters
	/// * disp: Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit
	/// floating-point disparity image. If 16-bit signed format is used, the values are assumed to have no
	/// fractional bits.
	/// * xyzw: Output 3- or 4-channel floating-point image of the same size as disp . Each element of
	/// xyzw(x,y) contains 3D coordinates (x,y,z) or (x,y,z,1) of the point (x,y) , computed from the
	/// disparity map.
	/// * Q: ![inline formula](https://latex.codecogs.com/png.latex?4%20%5Ctimes%204) perspective transformation matrix that can be obtained via stereoRectify .
	/// * dst_cn: The number of channels for output image. Can be 3 or 4.
	/// * stream: Stream for the asynchronous version.
	/// ## See also
	/// reprojectImageTo3D
	/// 
	/// ## C++ default parameters
	/// * dst_cn: 4
	/// * stream: Stream::Null()
	#[inline]
	pub fn reproject_image_to_3d(disp: &dyn core::ToInputArray, xyzw: &mut dyn core::ToOutputArray, q: &dyn core::ToInputArray, dst_cn: i32, stream: &mut core::Stream) -> Result<()> {
		extern_container_arg!(disp);
		extern_container_arg!(xyzw);
		extern_container_arg!(q);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_cuda_reprojectImageTo3D_const__InputArrayR_const__OutputArrayR_const__InputArrayR_int_StreamR(disp.as_raw__InputArray(), xyzw.as_raw__OutputArray(), q.as_raw__InputArray(), dst_cn, stream.as_raw_mut_Stream(), ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	
	/// Constant methods for [crate::cudastereo::CUDA_DisparityBilateralFilter]
	pub trait CUDA_DisparityBilateralFilterConst: core::AlgorithmTraitConst {
		fn as_raw_CUDA_DisparityBilateralFilter(&self) -> *const c_void;
	
		#[inline]
		fn get_num_disparities(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_DisparityBilateralFilter_getNumDisparities_const(self.as_raw_CUDA_DisparityBilateralFilter(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn get_radius(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_DisparityBilateralFilter_getRadius_const(self.as_raw_CUDA_DisparityBilateralFilter(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn get_num_iters(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_DisparityBilateralFilter_getNumIters_const(self.as_raw_CUDA_DisparityBilateralFilter(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		/// truncation of data continuity
		#[inline]
		fn get_edge_threshold(&self) -> Result<f64> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_DisparityBilateralFilter_getEdgeThreshold_const(self.as_raw_CUDA_DisparityBilateralFilter(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		/// truncation of disparity continuity
		#[inline]
		fn get_max_disc_threshold(&self) -> Result<f64> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_DisparityBilateralFilter_getMaxDiscThreshold_const(self.as_raw_CUDA_DisparityBilateralFilter(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		/// filter range sigma
		#[inline]
		fn get_sigma_range(&self) -> Result<f64> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_DisparityBilateralFilter_getSigmaRange_const(self.as_raw_CUDA_DisparityBilateralFilter(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// Class refining a disparity map using joint bilateral filtering. :
	/// 
	/// The class implements [Yang2010](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Yang2010) algorithm.
	pub trait CUDA_DisparityBilateralFilter: core::AlgorithmTrait + crate::cudastereo::CUDA_DisparityBilateralFilterConst {
		fn as_raw_mut_CUDA_DisparityBilateralFilter(&mut self) -> *mut c_void;
	
		/// Refines a disparity map using joint bilateral filtering.
		/// 
		/// ## Parameters
		/// * disparity: Input disparity map. CV_8UC1 and CV_16SC1 types are supported.
		/// * image: Input image. CV_8UC1 and CV_8UC3 types are supported.
		/// * dst: Destination disparity map. It has the same size and type as disparity .
		/// * stream: Stream for the asynchronous version.
		/// 
		/// ## C++ default parameters
		/// * stream: Stream::Null()
		#[inline]
		fn apply(&mut self, disparity: &dyn core::ToInputArray, image: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, stream: &mut core::Stream) -> Result<()> {
			extern_container_arg!(disparity);
			extern_container_arg!(image);
			extern_container_arg!(dst);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_DisparityBilateralFilter_apply_const__InputArrayR_const__InputArrayR_const__OutputArrayR_StreamR(self.as_raw_mut_CUDA_DisparityBilateralFilter(), disparity.as_raw__InputArray(), image.as_raw__InputArray(), dst.as_raw__OutputArray(), stream.as_raw_mut_Stream(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_num_disparities(&mut self, num_disparities: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_DisparityBilateralFilter_setNumDisparities_int(self.as_raw_mut_CUDA_DisparityBilateralFilter(), num_disparities, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_radius(&mut self, radius: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_DisparityBilateralFilter_setRadius_int(self.as_raw_mut_CUDA_DisparityBilateralFilter(), radius, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_num_iters(&mut self, iters: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_DisparityBilateralFilter_setNumIters_int(self.as_raw_mut_CUDA_DisparityBilateralFilter(), iters, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_edge_threshold(&mut self, edge_threshold: f64) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_DisparityBilateralFilter_setEdgeThreshold_double(self.as_raw_mut_CUDA_DisparityBilateralFilter(), edge_threshold, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_max_disc_threshold(&mut self, max_disc_threshold: f64) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_DisparityBilateralFilter_setMaxDiscThreshold_double(self.as_raw_mut_CUDA_DisparityBilateralFilter(), max_disc_threshold, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_sigma_range(&mut self, sigma_range: f64) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_DisparityBilateralFilter_setSigmaRange_double(self.as_raw_mut_CUDA_DisparityBilateralFilter(), sigma_range, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// Constant methods for [crate::cudastereo::CUDA_StereoBM]
	pub trait CUDA_StereoBMConst: crate::calib3d::StereoBMConst {
		fn as_raw_CUDA_StereoBM(&self) -> *const c_void;
	
	}
	
	/// Class computing stereo correspondence (disparity map) using the block matching algorithm. :
	/// ## See also
	/// StereoBM
	pub trait CUDA_StereoBM: crate::calib3d::StereoBM + crate::cudastereo::CUDA_StereoBMConst {
		fn as_raw_mut_CUDA_StereoBM(&mut self) -> *mut c_void;
	
		#[inline]
		fn compute(&mut self, left: &dyn core::ToInputArray, right: &dyn core::ToInputArray, disparity: &mut dyn core::ToOutputArray, stream: &mut core::Stream) -> Result<()> {
			extern_container_arg!(left);
			extern_container_arg!(right);
			extern_container_arg!(disparity);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_StereoBM_compute_const__InputArrayR_const__InputArrayR_const__OutputArrayR_StreamR(self.as_raw_mut_CUDA_StereoBM(), left.as_raw__InputArray(), right.as_raw__InputArray(), disparity.as_raw__OutputArray(), stream.as_raw_mut_Stream(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// Constant methods for [crate::cudastereo::CUDA_StereoBeliefPropagation]
	pub trait CUDA_StereoBeliefPropagationConst: crate::calib3d::StereoMatcherConst {
		fn as_raw_CUDA_StereoBeliefPropagation(&self) -> *const c_void;
	
		/// number of BP iterations on each level
		#[inline]
		fn get_num_iters(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_StereoBeliefPropagation_getNumIters_const(self.as_raw_CUDA_StereoBeliefPropagation(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		/// number of levels
		#[inline]
		fn get_num_levels(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_StereoBeliefPropagation_getNumLevels_const(self.as_raw_CUDA_StereoBeliefPropagation(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		/// truncation of data cost
		#[inline]
		fn get_max_data_term(&self) -> Result<f64> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_StereoBeliefPropagation_getMaxDataTerm_const(self.as_raw_CUDA_StereoBeliefPropagation(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		/// data weight
		#[inline]
		fn get_data_weight(&self) -> Result<f64> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_StereoBeliefPropagation_getDataWeight_const(self.as_raw_CUDA_StereoBeliefPropagation(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		/// truncation of discontinuity cost
		#[inline]
		fn get_max_disc_term(&self) -> Result<f64> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_StereoBeliefPropagation_getMaxDiscTerm_const(self.as_raw_CUDA_StereoBeliefPropagation(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		/// discontinuity single jump
		#[inline]
		fn get_disc_single_jump(&self) -> Result<f64> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_StereoBeliefPropagation_getDiscSingleJump_const(self.as_raw_CUDA_StereoBeliefPropagation(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		/// type for messages (CV_16SC1 or CV_32FC1)
		#[inline]
		fn get_msg_type(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_StereoBeliefPropagation_getMsgType_const(self.as_raw_CUDA_StereoBeliefPropagation(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// Class computing stereo correspondence using the belief propagation algorithm. :
	/// 
	/// The class implements algorithm described in [Felzenszwalb2006](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Felzenszwalb2006) . It can compute own data cost
	/// (using a truncated linear model) or use a user-provided data cost.
	/// 
	/// 
	/// Note:
	///    StereoBeliefPropagation requires a lot of memory for message storage:
	/// 
	///    ![block formula](https://latex.codecogs.com/png.latex?width%20%5C%5F%20step%20%20%5Ccdot%20height%20%20%5Ccdot%20ndisp%20%20%5Ccdot%204%20%20%5Ccdot%20%281%20%2B%200%2E25%29)
	/// 
	///    and for data cost storage:
	/// 
	///    ![block formula](https://latex.codecogs.com/png.latex?width%5C%5Fstep%20%5Ccdot%20height%20%5Ccdot%20ndisp%20%5Ccdot%20%281%20%2B%200%2E25%20%2B%200%2E0625%20%2B%20%20%5Cdotsm%20%2B%20%5Cfrac%7B1%7D%7B4%5E%7Blevels%7D%7D%29)
	/// 
	///    width_step is the number of bytes in a line including padding.
	/// 
	/// StereoBeliefPropagation uses a truncated linear model for the data cost and discontinuity terms:
	/// 
	/// ![block formula](https://latex.codecogs.com/png.latex?DataCost%20%3D%20data%20%5C%5F%20weight%20%20%5Ccdot%20%5Cmin%20%28%20%5Clvert%20Img%5FLeft%28x%2Cy%29%2DImg%5FRight%28x%2Dd%2Cy%29%20%20%5Crvert%20%2C%20max%20%5C%5F%20data%20%5C%5F%20term%29)
	/// 
	/// ![block formula](https://latex.codecogs.com/png.latex?DiscTerm%20%3D%20%20%5Cmin%20%28disc%20%5C%5F%20single%20%5C%5F%20jump%20%20%5Ccdot%20%5Clvert%20f%5F1%2Df%5F2%20%20%5Crvert%20%2C%20max%20%5C%5F%20disc%20%5C%5F%20term%29)
	/// 
	/// For more details, see [Felzenszwalb2006](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Felzenszwalb2006) .
	/// 
	/// By default, StereoBeliefPropagation uses floating-point arithmetics and the CV_32FC1 type for
	/// messages. But it can also use fixed-point arithmetics and the CV_16SC1 message type for better
	/// performance. To avoid an overflow in this case, the parameters must satisfy the following
	/// requirement:
	/// 
	/// ![block formula](https://latex.codecogs.com/png.latex?10%20%20%5Ccdot%202%5E%7Blevels%2D1%7D%20%20%5Ccdot%20max%20%5C%5F%20data%20%5C%5F%20term%20%3C%20SHRT%20%5C%5F%20MAX)
	/// ## See also
	/// StereoMatcher
	pub trait CUDA_StereoBeliefPropagation: crate::calib3d::StereoMatcher + crate::cudastereo::CUDA_StereoBeliefPropagationConst {
		fn as_raw_mut_CUDA_StereoBeliefPropagation(&mut self) -> *mut c_void;
	
		/// Enables the stereo correspondence operator that finds the disparity for the specified data cost.
		/// 
		/// ## Parameters
		/// * data: User-specified data cost, a matrix of msg_type type and
		/// Size(\<image columns\>\*ndisp, \<image rows\>) size.
		/// * disparity: Output disparity map. If disparity is empty, the output type is CV_16SC1 .
		/// Otherwise, the type is retained. In 16-bit signed format, the disparity values do not have
		/// fractional bits.
		/// * stream: Stream for the asynchronous version.
		/// 
		/// ## Overloaded parameters
		#[inline]
		fn compute(&mut self, left: &dyn core::ToInputArray, right: &dyn core::ToInputArray, disparity: &mut dyn core::ToOutputArray, stream: &mut core::Stream) -> Result<()> {
			extern_container_arg!(left);
			extern_container_arg!(right);
			extern_container_arg!(disparity);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_StereoBeliefPropagation_compute_const__InputArrayR_const__InputArrayR_const__OutputArrayR_StreamR(self.as_raw_mut_CUDA_StereoBeliefPropagation(), left.as_raw__InputArray(), right.as_raw__InputArray(), disparity.as_raw__OutputArray(), stream.as_raw_mut_Stream(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		/// Enables the stereo correspondence operator that finds the disparity for the specified data cost.
		/// 
		/// ## Parameters
		/// * data: User-specified data cost, a matrix of msg_type type and
		/// Size(\<image columns\>\*ndisp, \<image rows\>) size.
		/// * disparity: Output disparity map. If disparity is empty, the output type is CV_16SC1 .
		/// Otherwise, the type is retained. In 16-bit signed format, the disparity values do not have
		/// fractional bits.
		/// * stream: Stream for the asynchronous version.
		/// 
		/// ## C++ default parameters
		/// * stream: Stream::Null()
		#[inline]
		fn compute_1(&mut self, data: &dyn core::ToInputArray, disparity: &mut dyn core::ToOutputArray, stream: &mut core::Stream) -> Result<()> {
			extern_container_arg!(data);
			extern_container_arg!(disparity);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_StereoBeliefPropagation_compute_const__InputArrayR_const__OutputArrayR_StreamR(self.as_raw_mut_CUDA_StereoBeliefPropagation(), data.as_raw__InputArray(), disparity.as_raw__OutputArray(), stream.as_raw_mut_Stream(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_num_iters(&mut self, iters: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_StereoBeliefPropagation_setNumIters_int(self.as_raw_mut_CUDA_StereoBeliefPropagation(), iters, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_num_levels(&mut self, levels: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_StereoBeliefPropagation_setNumLevels_int(self.as_raw_mut_CUDA_StereoBeliefPropagation(), levels, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_max_data_term(&mut self, max_data_term: f64) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_StereoBeliefPropagation_setMaxDataTerm_double(self.as_raw_mut_CUDA_StereoBeliefPropagation(), max_data_term, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_data_weight(&mut self, data_weight: f64) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_StereoBeliefPropagation_setDataWeight_double(self.as_raw_mut_CUDA_StereoBeliefPropagation(), data_weight, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_max_disc_term(&mut self, max_disc_term: f64) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_StereoBeliefPropagation_setMaxDiscTerm_double(self.as_raw_mut_CUDA_StereoBeliefPropagation(), max_disc_term, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_disc_single_jump(&mut self, disc_single_jump: f64) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_StereoBeliefPropagation_setDiscSingleJump_double(self.as_raw_mut_CUDA_StereoBeliefPropagation(), disc_single_jump, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_msg_type(&mut self, msg_type: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_StereoBeliefPropagation_setMsgType_int(self.as_raw_mut_CUDA_StereoBeliefPropagation(), msg_type, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	impl dyn CUDA_StereoBeliefPropagation + '_ {
		/// Uses a heuristic method to compute the recommended parameters ( ndisp, iters and levels ) for the
		/// specified image size ( width and height ).
		#[inline]
		pub fn estimate_recommended_params(width: i32, height: i32, ndisp: &mut i32, iters: &mut i32, levels: &mut i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_StereoBeliefPropagation_estimateRecommendedParams_int_int_intR_intR_intR(width, height, ndisp, iters, levels, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	/// Constant methods for [crate::cudastereo::CUDA_StereoConstantSpaceBP]
	pub trait CUDA_StereoConstantSpaceBPConst: crate::cudastereo::CUDA_StereoBeliefPropagationConst {
		fn as_raw_CUDA_StereoConstantSpaceBP(&self) -> *const c_void;
	
		/// number of active disparity on the first level
		#[inline]
		fn get_nr_plane(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_StereoConstantSpaceBP_getNrPlane_const(self.as_raw_CUDA_StereoConstantSpaceBP(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn get_use_local_init_data_cost(&self) -> Result<bool> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_StereoConstantSpaceBP_getUseLocalInitDataCost_const(self.as_raw_CUDA_StereoConstantSpaceBP(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// Class computing stereo correspondence using the constant space belief propagation algorithm. :
	/// 
	/// The class implements algorithm described in [Yang2010](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Yang2010) . StereoConstantSpaceBP supports both local
	/// minimum and global minimum data cost initialization algorithms. For more details, see the paper
	/// mentioned above. By default, a local algorithm is used. To enable a global algorithm, set
	/// use_local_init_data_cost to false .
	/// 
	/// StereoConstantSpaceBP uses a truncated linear model for the data cost and discontinuity terms:
	/// 
	/// ![block formula](https://latex.codecogs.com/png.latex?DataCost%20%3D%20data%20%5C%5F%20weight%20%20%5Ccdot%20%5Cmin%20%28%20%5Clvert%20I%5F2%2DI%5F1%20%20%5Crvert%20%2C%20max%20%5C%5F%20data%20%5C%5F%20term%29)
	/// 
	/// ![block formula](https://latex.codecogs.com/png.latex?DiscTerm%20%3D%20%20%5Cmin%20%28disc%20%5C%5F%20single%20%5C%5F%20jump%20%20%5Ccdot%20%5Clvert%20f%5F1%2Df%5F2%20%20%5Crvert%20%2C%20max%20%5C%5F%20disc%20%5C%5F%20term%29)
	/// 
	/// For more details, see [Yang2010](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Yang2010) .
	/// 
	/// By default, StereoConstantSpaceBP uses floating-point arithmetics and the CV_32FC1 type for
	/// messages. But it can also use fixed-point arithmetics and the CV_16SC1 message type for better
	/// performance. To avoid an overflow in this case, the parameters must satisfy the following
	/// requirement:
	/// 
	/// ![block formula](https://latex.codecogs.com/png.latex?10%20%20%5Ccdot%202%5E%7Blevels%2D1%7D%20%20%5Ccdot%20max%20%5C%5F%20data%20%5C%5F%20term%20%3C%20SHRT%20%5C%5F%20MAX)
	pub trait CUDA_StereoConstantSpaceBP: crate::cudastereo::CUDA_StereoBeliefPropagation + crate::cudastereo::CUDA_StereoConstantSpaceBPConst {
		fn as_raw_mut_CUDA_StereoConstantSpaceBP(&mut self) -> *mut c_void;
	
		#[inline]
		fn set_nr_plane(&mut self, nr_plane: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_StereoConstantSpaceBP_setNrPlane_int(self.as_raw_mut_CUDA_StereoConstantSpaceBP(), nr_plane, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_use_local_init_data_cost(&mut self, use_local_init_data_cost: bool) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_StereoConstantSpaceBP_setUseLocalInitDataCost_bool(self.as_raw_mut_CUDA_StereoConstantSpaceBP(), use_local_init_data_cost, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	impl dyn CUDA_StereoConstantSpaceBP + '_ {
		/// Uses a heuristic method to compute parameters (ndisp, iters, levelsand nrplane) for the specified
		/// image size (widthand height).
		#[inline]
		pub fn estimate_recommended_params(width: i32, height: i32, ndisp: &mut i32, iters: &mut i32, levels: &mut i32, nr_plane: &mut i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_StereoConstantSpaceBP_estimateRecommendedParams_int_int_intR_intR_intR_intR(width, height, ndisp, iters, levels, nr_plane, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	/// Constant methods for [crate::cudastereo::CUDA_StereoSGM]
	pub trait CUDA_StereoSGMConst: crate::calib3d::StereoSGBMConst {
		fn as_raw_CUDA_StereoSGM(&self) -> *const c_void;
	
	}
	
	/// The class implements the modified H. Hirschmuller algorithm [HH08](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_HH08).
	/// Limitation and difference are as follows:
	/// 
	/// *   By default, the algorithm uses only 4 directions which are horizontal and vertical path instead of 8.
	/// Set mode=StereoSGM::MODE_HH in createStereoSGM to run the full variant of the algorithm.
	/// *   Mutual Information cost function is not implemented.
	/// Instead, Center-Symmetric Census Transform with ![inline formula](https://latex.codecogs.com/png.latex?9%20%5Ctimes%207) window size from [Spangenberg2013](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Spangenberg2013)
	/// is used for robustness.
	/// ## See also
	/// cv::StereoSGBM
	pub trait CUDA_StereoSGM: crate::calib3d::StereoSGBM + crate::cudastereo::CUDA_StereoSGMConst {
		fn as_raw_mut_CUDA_StereoSGM(&mut self) -> *mut c_void;
	
		/// Computes disparity map for the specified stereo pair
		/// 
		/// ## Parameters
		/// * left: Left 8-bit or 16-bit unsigned single-channel image.
		/// * right: Right image of the same size and the same type as the left one.
		/// * disparity: Output disparity map. It has the same size as the input images.
		/// StereoSGM computes 16-bit fixed-point disparity map (where each disparity value has 4 fractional bits).
		#[inline]
		fn compute(&mut self, left: &dyn core::ToInputArray, right: &dyn core::ToInputArray, disparity: &mut dyn core::ToOutputArray) -> Result<()> {
			extern_container_arg!(left);
			extern_container_arg!(right);
			extern_container_arg!(disparity);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_StereoSGM_compute_const__InputArrayR_const__InputArrayR_const__OutputArrayR(self.as_raw_mut_CUDA_StereoSGM(), left.as_raw__InputArray(), right.as_raw__InputArray(), disparity.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		/// Computes disparity map with specified CUDA Stream
		/// ## See also
		/// compute
		#[inline]
		fn compute_with_stream(&mut self, left: &dyn core::ToInputArray, right: &dyn core::ToInputArray, disparity: &mut dyn core::ToOutputArray, stream: &mut core::Stream) -> Result<()> {
			extern_container_arg!(left);
			extern_container_arg!(right);
			extern_container_arg!(disparity);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_StereoSGM_compute_const__InputArrayR_const__InputArrayR_const__OutputArrayR_StreamR(self.as_raw_mut_CUDA_StereoSGM(), left.as_raw__InputArray(), right.as_raw__InputArray(), disparity.as_raw__OutputArray(), stream.as_raw_mut_Stream(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
}