use serde::{Deserialize, Serialize};
use crate::requests::Requests;
use crate::*;
use super::{Usage, EMBEDDINGS_CREATE};
#[derive(Debug, Serialize, Deserialize)]
pub struct EmbeddingsBody {
pub model: String,
pub input: Vec<String>,
#[serde(skip_serializing_if = "Option::is_none")]
pub user: Option<String>,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct Embeddings {
pub object: Option<String>,
pub data: Option<Vec<EmbeddingData>>,
pub model: String,
pub usage: Usage,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct EmbeddingData {
pub object: Option<String>,
pub embedding: Option<Vec<f64>>,
pub index: i32,
}
pub trait EmbeddingsApi {
fn embeddings_create(&self, embeddings_body: &EmbeddingsBody) -> ApiResult<Embeddings>;
}
impl EmbeddingsApi for OpenAI {
fn embeddings_create(&self, embeddings_body: &EmbeddingsBody) -> ApiResult<Embeddings> {
let request_body = serde_json::to_value(embeddings_body).unwrap();
let res = self.post(EMBEDDINGS_CREATE, request_body)?;
let embeddings: Embeddings = serde_json::from_value(res.clone()).unwrap();
Ok(embeddings)
}
}
#[cfg(test)]
mod tests {
use crate::{
apis::embeddings::{EmbeddingsApi, EmbeddingsBody},
openai::new_test_openai,
};
#[test]
fn test_embedding_create() {
let openai = new_test_openai();
let body = EmbeddingsBody {
model: "text-embedding-ada-002".to_string(),
input: vec!["The food was delicious and the waiter...".to_string()],
user: None,
};
let rs = openai.embeddings_create(&body);
let embeddings = rs.unwrap().data;
let embedding = embeddings.as_ref().unwrap().get(0).unwrap();
let f = embedding.embedding.as_ref().unwrap();
assert!(!f.is_empty());
}
}