1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
//! Given a chat conversation, the model will return a chat completion response.
use super::{openai_post, ApiResponseOrError, Usage};
use derive_builder::Builder;
use serde::{Deserialize, Serialize};
use std::collections::HashMap;
#[derive(Deserialize, Clone)]
pub struct ChatCompletion {
pub id: String,
pub object: String,
pub created: u64,
pub model: String,
pub choices: Vec<ChatCompletionChoice>,
pub usage: Option<Usage>,
}
#[derive(Deserialize, Clone)]
pub struct ChatCompletionChoice {
pub index: u64,
pub message: ChatCompletionMessage,
pub finish_reason: String,
}
#[derive(Deserialize, Serialize, Debug, Clone)]
pub struct ChatCompletionMessage {
/// The role of the author of this message.
pub role: ChatCompletionMessageRole,
/// The contents of the message
pub content: String,
/// The name of the user in a multi-user chat
#[serde(skip_serializing_if = "Option::is_none")]
pub name: Option<String>,
}
#[derive(Deserialize, Serialize, Debug, Clone, Copy)]
#[serde(rename_all = "lowercase")]
pub enum ChatCompletionMessageRole {
System,
User,
Assistant,
}
#[derive(Serialize, Builder, Debug, Clone)]
#[builder(pattern = "owned")]
#[builder(name = "ChatCompletionBuilder")]
#[builder(setter(strip_option, into))]
pub struct ChatCompletionRequest {
/// ID of the model to use. Currently, only `gpt-3.5-turbo` and `gpt-3.5-turbo-0301` are supported.
model: String,
/// The messages to generate chat completions for, in the [chat format](https://platform.openai.com/docs/guides/chat/introduction).
messages: Vec<ChatCompletionMessage>,
/// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.
///
/// We generally recommend altering this or `top_p` but not both.
#[builder(default)]
#[serde(skip_serializing_if = "Option::is_none")]
temperature: Option<f32>,
/// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
///
/// We generally recommend altering this or `temperature` but not both.
#[builder(default)]
#[serde(skip_serializing_if = "Option::is_none")]
top_p: Option<f32>,
/// How many chat completion choices to generate for each input message.
#[builder(default)]
#[serde(skip_serializing_if = "Option::is_none")]
n: Option<u8>,
/// If set, partial message deltas will be sent, like in ChatGPT. Tokens will be sent as data-only [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format)
/// as they become available, with the stream terminated by a `data: [DONE]` message.
#[builder(setter(skip), default)] // skipped until properly implemented
#[serde(skip_serializing_if = "Option::is_none")]
stream: Option<bool>,
/// Up to 4 sequences where the API will stop generating further tokens.
#[builder(default)]
#[serde(skip_serializing_if = "Vec::is_empty")]
stop: Vec<String>,
/// The maximum number of tokens allowed for the generated answer. By default, the number of tokens the model can return will be (4096 - prompt tokens).
#[builder(default)]
#[serde(skip_serializing_if = "Option::is_none")]
max_tokens: Option<u64>,
/// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.
///
/// [See more information about frequency and presence penalties.](https://platform.openai.com/docs/api-reference/parameter-details)
#[builder(default)]
#[serde(skip_serializing_if = "Option::is_none")]
presence_penalty: Option<f32>,
/// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.
///
/// [See more information about frequency and presence penalties.](https://platform.openai.com/docs/api-reference/parameter-details)
#[builder(default)]
#[serde(skip_serializing_if = "Option::is_none")]
frequency_penalty: Option<f32>,
/// Modify the likelihood of specified tokens appearing in the completion.
///
/// Accepts a json object that maps tokens (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically, the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model, but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should result in a ban or exclusive selection of the relevant token.
#[builder(default)]
#[serde(skip_serializing_if = "Option::is_none")]
logit_bias: Option<HashMap<String, f32>>,
/// A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
#[builder(default)]
#[serde(skip_serializing_if = "String::is_empty")]
user: String,
}
impl ChatCompletion {
pub fn builder(
model: &str,
messages: impl Into<Vec<ChatCompletionMessage>>,
) -> ChatCompletionBuilder {
ChatCompletionBuilder::create_empty()
.model(model)
.messages(messages)
}
pub async fn create(request: &ChatCompletionRequest) -> ApiResponseOrError<Self> {
openai_post("chat/completions", request).await
}
}
impl ChatCompletionBuilder {
pub async fn create(self) -> ApiResponseOrError<ChatCompletion> {
ChatCompletion::create(&self.build().unwrap()).await
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::set_key;
use dotenvy::dotenv;
use std::env;
#[tokio::test]
async fn chat() {
dotenv().ok();
set_key(env::var("OPENAI_KEY").unwrap());
let chat_completion = ChatCompletion::builder(
"gpt-3.5-turbo",
[ChatCompletionMessage {
role: ChatCompletionMessageRole::User,
content: "Hello!".to_string(),
name: None,
}],
)
.temperature(0.0)
.create()
.await
.unwrap()
.unwrap();
assert_eq!(
chat_completion.choices.first().unwrap().message.content,
"Hello there! How can I assist you today?"
);
}
}